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Abstract By virtue of the maximum entropy principle, we
get an Euler–Lagrange equation which is a highly nonlin-
ear differential equation containing the mass function and its
derivatives. Solving the equation by a homotopy perturba-
tion method we derive a generalized expression for the mass
which is a polynomial function of the radial distance. Using
the mass function we find a partially stable configuration and
its characteristics. We show that different physical features
of the known compact stars, viz. Her X−1, RX J 1856−37,
SAX J (SS1), SAX J (SS2), and PSR J 1614−2230, can
be explained by the present model.

1 Introduction

To find an analytical solution of nonlinear equations has
always been a great challenge in relativistic astrophysics
as well as cosmology. Considering different methods and
approximations mathematicians and relativists attempted to
find the suitable interior solutions of physical interest. It is
in this aspect seen that the homotopy perturbation method
(HPM) is a powerful yet simple tool to solve several highly
nonlinear equations with the least number of assumptions as
can be seen in the literature [1–13].

It is interesting to note that in one of his earlier works He
[4] proposed a coupling method of a homotopy technique
and a perturbation technique to solve a nonlinear equation.
In contrast to the traditional perturbation methods, the pro-
posed method by He did not require any small perturbation
in the equation to obtain an effective and simple solution.
Thereafter several researchers have employed the HPM in
the diverse fields of mathematics and physics [14–18].

For special mention in the field of astrophysics, it is
observed that by using the MIT bag model, Rahaman et
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al. [19] obtained a deterministic model for a strange star
where they considered a mass polynomial and analyzed crit-
ically all the physical properties from the model. However,
their model was unable to explain the physical properties up
to 6 km from the center of the spherical system.

Deb et al. [20] attempted to find a new class of solutions
relating to a radiation model by using the HPM. The spheri-
cal distribution was considered to be made of a perfect fluid
where radiation is along the radially outward direction of the
system. Here we have employed the HPM as a new tool for
astrophysical systems which via the mass polynomial facili-
tates solving of the field equations. A set of interior solutions
has been found on the basis of the equation of state in the
form p = 1

3ρ, where p and ρ are the radial pressure and den-
sity of the matter distribution, with the requirement that the
radiation model is consistent with the Schwarzschild metric.
It is observed that the set of solutions thus developed pro-
vides a new metric to explain strange stars, which, however,
seems to be not free from a singularity.

In another work Rahaman et al. [21] employed the HPM
for a spherically symmetric system of a radiating star which
was shown to suffer from an instability problem. It is
observed from the mass function that it was possible to
explain the features of an E0 type brown dwarf star with
0.065 M� (i.e. 45227 km) whereas the stability of the brown
dwarf could not be explained which suffers from an instabil-
ity within the region of the core radius 41800 km. However, in
the present investigation we propose a general mass function
and use it for different cases.

Therefore the motivation of the present work is to provide
a general model for compact stars by employing a polynomial
parameter n and to find the different features of compact
stars with this mass function. We derive expressions for the
density, pressure, redshift etc. and have shown that several
known compact stars, e.g. Her X − 1, RX J 1856 − 37,
SAX J (SS1), SAX J (SS2), and PSR J 1614−2230, can
be well explained by this model.
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The plan of the investigation is as follows: in Sect. 2 we
have calculated the mass of the system by using the maximum
entropy principle (MEP), and thereafter by using the HPM
we have obtained a suitable expression for the mass. We
have reformatted Einstein’s field equations by using the mass
function and obtain solutions for the system in Sect. 3. Also in
Sect. 3 we have explored different physical features, viz. the
density and mass, pressure and anisotropy, stability, energy
conditions, TOV equations, compactness, redshift, etc. with
elaborate discussion and a comparative study of the available
data from observation with that of the predicted values. In
Sect. 4 we have made some concluding remarks regarding
different aspects of the present model.

2 Spherically symmetric spacetime and the mass
function

2.1 Maximum entropy principle

Let us consider the metric of a system which has spherical
symmetry as follows

ds2 = −gtt (r)dt
2 +

(
1 − 2m(r)

r

)−1

dr2

+r2(dθ2 + sin2θdφ2), (1)

where m(r) is the mass distribution of the spherically sym-
metric body and gtt (r) is the time-time component of the
metric. These are functions of the radial coordinate r only.
Also we consider a linear equation of state for the system
with thermal radiation given by

pr = 1

3
ρ, (2)

where pr and ρ are the radial pressure and density of the mat-
ter distribution. Compatible with the spherically symmetry,
we assume the general energy momentum tensor to be

Tμ
ν = (ρ + pr )u

μuν − pr g
μ
ν + (pt − pr )η

μην (3)

with

uμuμ = −ημημ = 1.

The energy density and entropy density take the forms for
locally measured temperature T [22] as follows:

ρ = bT 4, (4)

s = 4

3
bT 3, (5)

where b is a constant of order unity (in Planck units G = c =
h = k = 1), on the assumption that the number of species of
radiation is of order unity [23].

For the matter distribution up to radius r ≤ R, the total
entropy is given by

S = 4π

∫ R

0
s(r)

(
1 − 2m(r)

r

)−1/2

r2dr, (6)

which is simplified as

S = (4π)
1
4 α

∫ R

0
Ldr, (7)

where the Lagrangian L is given by

L = (m′)
3
4

[
1 − 2m(r)

r

]− 1
2

r
1
2 . (8)

Here, s = α(ρ)
3
4 , α = 4

3b
1
4 , and the Einstein equations

yield

ρ = m′(r)
4πr2 .

Also, we have the Euler–Lagrange equation

d

dr

(
∂L

∂m′

)
− ∂L

∂m
= 0, (9)

which can be reduced to

m′ + m′′m − 1

2
m′′r − 2

3
(m′)2 − 4mm′

r
= 0. (10)

We see that the equation contains the mass, its deriva-
tives, and products of them. So it will be very difficult to get
an exact solution for this highly nonlinear differential equa-
tion. Therefore we use a homotopy perturbation method to
solve the equation and thus we get an approximate solution
for the mass.

2.2 Homotopy perturbation method

In the HPM we consider the linear and nonlinear parts of the
differential equation separately. Then we build the homotopy
structure [4] perturbed with a parameter, say ε, as follows:

L(m) − L(m0) + εL(m0) + ε[nonlinear part] = 0. (11)

For the present problem we take the linear part L(m) as
dm
dr and the rest of the terms as the nonlinear part. So the
above equation becomes

m′ − m′
0 + ε

[
m′

0 + mm′′ − 1

2
m′′r − 2

3
(m′)2 − 4mm′

r

]
= 0,

(12)
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where m0 is the initial solution of the linear part of the equa-
tion. Now we assume the general solution

m = m0 + εm1 + ε2m2 + ε3m3 + · · · . (13)

By varying the value of ε from 0 to 1 we shall get the
desired solution of the nonlinear equation (10).

Since we are looking for a more general expression for
the mass we assume the initial solution as m0 = arn where
we choose ‘a’ as model parameter, r as radial distance; n is
an index assumed to have any value.

Substituting this in Eq. (12) and equating coefficients of
the different orders ε, we get the solution for the mass up to
a second order correction as

m = m0 + m1 + m2. (14)

Again, adding the correction terms to the initial solution
we get the general expression for the mass as

m =
[
(n − 1)2

4
arn + n(5 − n)

(n − 1)
Aarn−1

+n(15 − n)(2n − 3)

3(2n − 1)
a2r2n−1

]

+
[
n(15 − n)(53n − 7n2 − 18)

9(3n − 2)(2n − 1)
a3r3n−2 + B

]
, (15)

where A and B are the constants of integration.
Here we get the mass as a polynomial function of the radial

distance with different powers of n. Now this equation can
be utilized to get a different expression of the mass for dif-
ferent values of n. It is the mass function here which actually
governs different features of the stars. So, primarily the goal
of the paper is to develop a generalized mass function using
the HPM. At a first glance, we observe that the mass func-
tion becomes undefined for n = 1 and some fractional values
of n, e.g. 1/2, 2/3. The values of the n should be such that
the resultant mass function be a well-defined, positive, and
increasing function of the radial distance. For this purpose
we need to check the physical validity of the mass using the
real values (integer or non-integer) of n. In the present model
we therefore consider only those integer values of n which
show physical validity of the mass and other basic features
of the stars.

We begin our investigation by taking integer values of n
as follows:

(i) For n = 0, we find that mass is independent of the
radial distance i.e. it is constant in nature. But variation
of the mass of the star is mainly responsible to all the
interstellar phenomena.

(ii) For n = 1, the mass function is undefined.

(iii) For n = 2, mass is a well-defined function of the radial
distance.

Hence the mass function (15), under the above restrictive
values of n, takes the form

m(r) = 1

4
ar2 + 26

9
a2r3 + 130

9
a3r4 + 6Aar + B. (16)

Now, we use the boundary conditions

m(0) = 0, m′(R) = 0, (17)

with

m′(r) = 1

2
ar + 26

3
a2r2 + 520

9
a3r3 + 6Aa, (18)

R being the radius of the sphere.
Thus, we get

A = − R

108
(9 + 156aR + 1040a2R2) (19)

and

B = 0. (20)

Substituting A and B in Eq. (16), we get

m(r) = 1

4
ar2 + 26

9
a2r3 + 130

9
a3r4

−aR

18
(9 + 156aR + 1040a2R2)r. (21)

To explore different features of a star we use this mass
function in Sect. 3.

3 Einstein’s field equations and the physical parameters
of a compact star

The Einstein field equations for the matter distribution given
in Eq. (3) can be written as

2m′

r2 = 8πρ, (22)

2m

r3 −
(

1 − 2m

r

)
g′
t t

gtt

1

r
= −8π

3
ρ, (23)

−
(

1− 2m

r

) [
1

2

g′′
t t

gtt
− 1

4

(
g′
t t

gtt

)2

+ 1

2r

g′
t t

gtt

]

−
(
m

r2 − m′

r

) (
1

r
+ 1

2

g′
t t

gtt

)
= −8πpt . (24)

From Eq. (22) we get the density

ρ = m′

4πr2 . (25)
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Using Eq. (18) we get an expression for the density:

ρ = 1

4πr2

[
520

9
a3(r3−R3)+ 26

3
a2(r2−R2)+ a

2
(r − R)

]
.

(26)

Again, by using Eq. (2) we solve Eq. (23) for gtt as follows:

gtt = K
exp

∫ 4
3(r−2m)

r(r − 2m)1/3 , (27)

where K is a constant.
It can be noted that the exponential term cannot be eval-

uated analytically. So we have to make approximations to
evaluate it. Also to find the constant K we need boundary
conditions. Actually we do not need to calculate the proper
form of gtt in terms of the radial distance as we are only
interested in finding different features such as density, pres-
sure, etc. By intuition we see that these features are derivable
from the Einstein field equations and the mass function. This
is because the Einstein field equations contain ratios of g′

t t ,
g′′
t t , gtt .

The total mass of the system is given by

M = 4π

∫ R

0
ρ(r)

(
1 − 2m(r)

r

)−1/2

r2dr. (28)

We consider 2m(r)
r < 1 and simplifying the above integra-

tion we get the expression for the total mass as

M ≈ m(R) +
∫ R

0

m(r)m′(r)
r

dr. (29)

3.1 Mass and density

We begin our calculations for the group of stars of E , M , K ,G
type etc. Calculations for these stars show that the nature of
the tangential pressure is negative in nature which is against
the regularity condition for a perfect fluid. Also it is observed
that these stars suffer from instability.

While investigating a compact star we find that there are
some specific values of R and ‘a’ for which our model could
describe them. For example, we try to explain features of a
compact star, namely Her X − 1, of radius 6.7 km and mass
of 0.9824 solar mass. We see that for the model parameter
R = 10 km our model could describe all the features of the
compact star. For this purpose we find a suitable value of the
parameter ‘a’, which amounts to −0.01860326472 km−1.
The variations of the mass and the density are shown in Fig. 1.
We see that the mass and density are positive and they are
decreasing functions.

3.2 Pressure and anisotropy

Using Eqs. (2) and (26) we get an expression for the radial
pressure,

pr = 1

12πr2

[
520

9
a3(r3−R3)+ 26

3
a2(r2−R2)+ a

2
(r−R)

]
.

(30)

From Eq. (24) we obtain the expression for the tangential
pressure

pt = 1

24πr2

[
m′′r + 4m′ (m′r + 3m)

(3r − 6m)

]
. (31)

Fig. 1 Variation of mass (left panel) and density (right panel) as a function of radial distance r for a = −0.01860326472 km−1 and R = 10 km
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Fig. 2 Variation of radial pressure (upper left panel), tangential pressure (upper right panel) and anisotropy (lower panel) as a function of radial
distance r for a = −0.01860326472 km−1 and R = 10 km

From Fig. 2 we see that the radial pressure of the system
are positive and decreasing functions of the radial distance
whereas the tangential pressure switches sign at r = 6.788
km. Now for a perfect fluid, positivity of the pressure and
the decreasing nature of the pressure are the criteria to hold
good. Therefore we require the maximum allowed radius for
the star to be 6.788 km. Also we find that the total mass
of star for this radius is 1.02 solar mass. These data almost
match with the observed data for Her X−1. In the following
sections we shall show the variations of different features of
the system by graphs.

The anisotropy for the perfect fluid is � = (pt − pr ),
plotted against r in Fig. 2. We see that � is negative for any

r . So, the anisotropic force is inward in this self-gravitating
system.

3.3 Stability condition

We shall use Herrera’s approach [24] [usually known as
the concept of cracking (or overturning)] to check poten-
tial instability or stability of our configuration. According to
Herrera’s theorem, the region for which v2

st − v2
sr < 0 is a

stable region. We observe from Fig. 3 that v2
st − v2

sr < 0
in the region for which r < 6.788 km. This implies that
our configuration is potentially stable within this region. The
radial and tangential sound speeds are defined as v2

si = dpi
dρ

(Fig. 3).

123



248 Page 6 of 9 Eur. Phys. J. C (2016) 76 :248

Fig. 3 Sound speeds (left panel) and difference of square of sound speeds (right panel) as a function of radial distance r for a =
−0.01860326472 km−1 and R = 10 km

Fig. 4 Energy conditions (left panel) and different forces (right panel) as a function of radial distance r for a = −0.01860326472 km−1 and
R = 10 km

3.4 Energy conditions

We shall now check the energy conditions for the present
model for each case:

(i) NEC : ρ + pr ≥ 0, ρ + pt ≥ 0,

(ii) WEC : ρ + pr ≥ 0, ρ ≥ 0, ρ + pt ≥ 0,

(iii) SEC : ρ + pr ≥ 0, ρ + pr + 2pt ≥ 0.

We see from Fig. 4 that different energy conditions in our
model are satisfied throughout the region up to approximately
8.5 km.

3.5 TOV equation

The relativistic Tolman–Oppenheimer–Volkoff (TOV) equa-
tion can be written in the following form:

−MG (ρ + pr )

r2 e
λ−ν

2 − dpr
dr

+ 2

r
(pt − pr ) = 0, (32)

where MG = MG(r) is the effective gravitational mass
within the sphere up to radius r , given by

MG(r) = 1

2
r2e

ν−λ
2 ν′. (33)

123



Eur. Phys. J. C (2016) 76 :248 Page 7 of 9 248

Fig. 5 Variation of compactness (left panel) and redshift (right panel) as a function of radial distance for a = −0.01860326472 km−1 and R = 10
km

It is derived from the Tolman–Whittaker formula and the
Einstein–Maxwell equations.

The above equation indicates that the equilibrium situation
is achieved for fluid elements subject to gravitational and
hydrostatic forces, and forces due to anisotropy. Thus the
above equation assumes the form

Fg + Fh + Fa = 0, (34)

where

Fg = −2ρ

3

g′
t t

gtt
, (35)

Fa = 2�

r
, (36)

Fh = −ρ′

3
. (37)

The profiles of Fg , Fh , and Fa for the sources are shown in
Fig. 4. It is to be noted that � < 0 implies an attractive force,
which means a hydrostatic force produces a repulsive force
and essentially this stabilizes the system from collapsing due
to the attractive forces Fa and Fg . These profiles of three
forces indicate that our model provides a stable configuration.

3.6 Compactness and redshift

The compactness of a star is defined by u = m(r)
r . By virtue

of Eq. (21), this expression reduces to

u(r) = 1

4
ar + 26

9
a2r2 + 130

9
a3r3

−aR

18
(9 + 156aR + 1040a2R2). (38)

Also, the redshift is defined by the relation

z = (1 − 2u)−
1
2 − 1, (39)

whence we obtain

z = 1√
1 − 2

{ 1
4 ar + 26

9 a2r2 + 130
9 a3r3 − aR

18

(
9 + 156aR + 1040a2R2

)}
−1. (40)

The variations of the compactness and the redshift are
shown in Fig. 5.

3.7 Minimum mass–radius relation

Buchdahl’s condition is m(R)
R < 4

9 < 0.44. Table 2 shows that
m(D)
D = 0.22 for the compact star Her X −1. So Buchdahl’s

condition is satisfied in our model. Also the value of the
surface redshift for this star is 0.19. We show the mass–radius
ratios for some other stars also in Tables 1 and 2.

In Tables 1 and 2 the following symbols are used: Robs

= observed radius, Dpre = predicted radius, MR = observed
mass, MD = predicted mass, M(D)/D = predicted mass–
radius ratio, and Z(D) = predicted surface redshift. Here the
data are considered from Ref. [25].

4 Conclusion

First in our concluding remarks and discussions we would
like to make some notes on observations regarding the radial
pressure, which is expected to be positive at the boundary r =
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Table 1 Comparative study of
the physical parameters for
compact star and presented
model

Compact stars Robs (km) Dpre (km) MR (M�) MD (M�)

Her X − 1 6.70 6.788 0.9824 1.02

RX J 1856 − 37 6.00 6.08 0.9042 1.03

SAX J (SS1) 7.07 7.08 1.4349 1.4071

SAX J (SS2) 6.35 6.38 1.3237 1.2970

PSR J 1614 − 2230 10.3 10.37 1.97 1.96

Table 2 Comparative study of
the physical parameters for
compact star and presented
model

Compact stars a (km−1) R (km) M(D)/D Z(D)

Her X − 1 −0.01860326 10 0.22 0.19

RX J 1856 − 37 −0.02208016 8.7 0.24 0.22

SAX J (SS1) −0.02070156 9.7 0.29 0.28

SAX J (SS2) −0.02322041 8.8 0.29 0.29

PSR J 1614 − 2230 −0.01375931 14.4 0.27 0.26

10 km. However, the tangential pressure in the present model
actually becomes zero at r = 6.788 km. Also we observe that
the stability condition by the Herrera approach [24] is well
satisfied within the radius r = 6.788 km. Therefore, with
reference to these observations, we can think of the formation
of our stellar model of two phases. In phase I there is a shell
of 2.3 km forming the outer region of the star whereas the
phase II consists of a core of radius 6.7 km forming the inner
region of the star. Now we observe from the related graphs
that all the features of the star are physically valid within the
core but some of the features do not show physical validity
beyond the core i.e. within the outer shell. It is interesting to
note that we find a well-known star, Her X − 1 of radius 6.7
km, which can be explained by our model very well if we take
only the core part of the star into our physical consideration.

For the present model of radiating compact stars as
described above we observe the following interesting and
salient features:

(1) We obtain a general mass function by solving a highly
nonlinear equation of the mass by the HPM. In the HPM
the homotopy structure consists of a linear and a nonlin-
ear functional part. The choices of these functional oper-
ators are such that the trivial problem (the linear part)
is continuously deformed to the original problem with
variation of the embedding parameter ∈ from 0 to 1. In
the present study, however, we use a particular homo-
topy structure to solve the nonlinear differential equation
for the mass function so that all results obtained in this
paper are valid subject to an approximation given by this
particular homotopy.

(2) For n = 0 the mass has no dependence on the radial
distance. Again for n = 1 the mass function becomes
indeterminate. So we start our investigation with n = 2.

(3) We find that the tangential pressure becomes negative
throughout the whole region for the different groups of
stars (E, M, K , G type). However, in the literature we
note that this type of special solutions could exist [26].

(4) The features of the compact star of radius 6.788 km are
well explained. We figure out that the mass of the star is
1.02 solar mass. This matches the observed compact star
Her X − 1 of radius 6.7 km and a mass of 0.9824 solar
mass. Some other compact stars are also shown in Tables
1 and 2.

(5) For n = 3, as a particular case of the present paper,
we have already shown that the model supports a brown
dwarf of E0 type rather than compact stars. Also we have
shown there that the brown dwarf is partially stable [21].

Regarding the MEP we have made some specific observa-
tions:

(1) Based on the work by Rahaman et al. [21] we note that
there are several papers available in the literature where
one may find the application of the MEP in the anisotropic
case. In this connection a comment by Richstone and
Tremaine [27] seems convincing: “It is sometimes argued
that in maximum-entropy models the velocity-dispersion
tensor must be isotropic and hence the distribution func-
tion must be a function of energy alone. In fact this is not
correct when we seek the maximum-entropy model sub-
ject to the constraint of a measured density profile. In this
case, might gradients in the dispersion cause anisotropy
in the dispersion tensor of a maximum-entropy distribu-
tion function” Thus, as a future plan we would like to
consider the anisotropic case under the MEP as has been
performed by several researchers under different require-
ments [28–30]. However, applications of the HPM can
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be found in the field of astrophysics in different contexts
paving the way to a new research arena [31,32].

(2) Rahaman et al. [21] argued that instability may be an
inherent property of any radiating compact stars under the
HPM and the MEP as observed by them with brown dwarf
stars. Instability has also been observed in the extension
of the work of Bhar et al. [33], related to highly com-
pact stars such as neutron stars and strange stars. In the
present model we also observe the same feature of insta-
bility and may conclude that the applicability of the HPM
and the MEP to radiating and highly compact stars may
have some intrinsic problem to provide the entire physi-
cal validity of the models.
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