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Abstract Using the WKB approximation we analyse the
tunnelling of a pulsating string in deformed Minkowski
spacetime.

1 Introduction

There is a huge body of evidence that the AdS/CFT corre-
spondence holds true for strings in AdS5 × S5 and N = 4
super Yang–Mills theory in four dimensions. For instance, the
energy of spinning and rotating strings matches the anoma-
lous dimension of operators in the gauge theory in the range
where they can be compared. Integrability on both sides of the
correspondence also provides further support for the corre-
spondence [1]. It is also important to test the correspondence
in situations with less supersymmetry where the gauge theo-
ries have deformed potentials leading to marginally deformed
N = 2 or N = 1 supersymmetric gauge theories [2,3].
The gravitational dual of such theories have a deformed five-
sphere characterised by a real parameter γ and the dilaton
and some RR and NS-NS fields are also present [4]. In this
situation both sides of the correspondence also have inte-
grable structures [5]. Spinning and rotating strings have also
been considered in such a deformed context and they confirm
the correspondence whenever they can be compared [5–16].

There is a class of string configurations, pulsating strings,
which has not received much attention since its dual opera-
tor is not completely understood. They have been analysed
in AdS5 × S5 [17–27], AdS4 ×CP3 [28,29] and other back-
grounds [30–37], and more recently they have been studied
in the deformed case as well [38]. Since the string presents
a periodic motion its dynamics can be characterised by its
oscillation number. It is not one of the string charges but it is
quite useful to parametrise its behaviour [23,38,39]. At the
quantum level it is an adiabatic invariant so it provides infor-
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mation as regards the semi-classical regime for higher val-
ues of the oscillation number. In [38] we analysed pulsating
strings in deformed Minkowski spacetime and in deformed
AdS5 × S5 for a small deformation. We have found the clas-
sical energy in terms of the oscillation number in the high and
low energy limits. For high energy we performed the quan-
tisation of the highly excited string states to second order
in perturbation theory and found that the oscillation number
has to be even. In the low energy case we found a new term,
proportional to γ , which is not present in the classical case.

In order to analyse the classical dynamics of the pulsat-
ing string we introduced an effective potential which cap-
tures all relevant information as regards the deformed back-
ground. When the string pulsates on the deformed five-sphere
its effective potential grows smoothly as one of the angles
increase from zero to π/2 and the oscillation number can be
expressed in terms of complete elliptic integrals [38]. In the
case of deformed Minkowski spacetime the string pulsates
along the radial direction and the effective potential starts
growing from the origin until it reaches a maximum value of
m2/(2γ ) at r2 = 1/γ and then goes back to zero far away
from the origin (see Fig. 1). It is clear that at low energies or
small deformation the string has a periodic motion that can be
quantised perturbatively as done in [38]. However, since the
potential has a maximum, it is possible for the string to tun-
nel through the potential barrier and the computation of the
transition rate for such a process is the main goal of this paper.

A non-perturbative phenomenon like tunnelling may
be studied semi-classically using the WKB approximation
whenever the amplitude or the phase of the wave function
is taken to be slowly changing. The WKB method has been
applied in several situation involving strings [40–44] and here
it will be used to analyse the behaviour of a pulsating string
in deformed Minkowski spacetime.

This paper is organised as follows. In Sect. 2 the pulsating
string in deformed ten-dimensional Minkowski spacetime
will be briefly described. In Sect. 3 we will use the WKB
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technique to calculate the transition rate for the pulsating
string to tunnel through the potential. In Sect. 4 we will anal-
yse the classical stability of the pulsating string and show
that for small deformation it is stable. We then present some
conclusions in the last section.

2 Pulsating strings in deformed Minkowski spacetime

The energy of a semi-classical pulsating string in ten-
dimensional Minkowski spacetime and in AdS5 × S5 was
computed in terms of its oscillation number in [19] while for
the case of a deformed Minkowski spacetime and deformed
AdS5 × S5 the energy was found in [38]. We will briefly
review the case of deformed Minkowski spacetime. Lunin
and Maldacena [4] found a technique to build deformed
supergravity backgrounds which have a U (1) ×U (1) global
symmetry required by the deformed gauge theory. When
applied to the ten-dimensional Minkowski spacetime it gives
the deformed background

ds2 = ημνdxμdxν +
3∑

i=1

(
dr2

i + Gr2
i dφ2

i

)

+γ 2r2
1 r

2
2 r

2
3G

(
3∑

i=1

dφi

)2

,

G−1 = 1 + γ 2
(
r2

1 r
2
2 + r2

1 r
2
3 + r2

2 r
2
3

)
, (1)

where a four-dimensional Minkowski spacetime is left unde-
formed and the remaining six-dimensional space with coor-
dinates (ri , φi ), i = 1, 2, 3, has a deformation parameter γ .
When γ vanishes we recover the ten-dimensional Minkowski
spacetime. The dilaton and the B2 field have non-trivial con-
figurations given by

B2 = γG(
r2

1r
2
2 dφ1 ∧ dφ2 + r2

2r
2
3 dφ2 ∧ dφ3

+r2
1r

2
3 dφ1 ∧ dφ3

)
,

e2� = G.

The deformed Minkowski background is a supergravity solu-
tion [4], but only its bosonic part is known. The fermionic
part is not relevant for our purposes. The parametrisation for
a pulsating string used in [38] is not convenient in analysing
stability issues. Instead we will take a string at the origin of
Minkowski spacetime with

t = √
2κτ, r1 = r2 = r(τ ), r3 = 0,

φ1 = φ2 = mσ, φ3 = 0, (2)

wherem is the string winding number. This ansatz is compat-
ible with the classical equations of motion for the pulsating
string and is suitable for the classical stability analysis of
Sect. 4. It corresponds to a string dynamically equivalent
to the simplest and well-known pulsating strings studied in
[19,38]. Using (2) in (1) we get

Fig. 1 The effective potential in deformed Minkowski spacetime for
m2 = 20 and γ = 1

ds2 = −dt2 + 2(dr2 + G r2dφ2), (3)

G−1 = 1 + γ 2r4. (4)

For this choice there is no coupling of the string to the B2

field. Then the Nambu–Goto action becomes

S = −m
∫

dτ r
√
G (

1 − ṙ2
)
, (5)

where we set the string tension equal to one.
We can then find that the radial canonical momentum �

and the squared canonical Hamiltonian is given by

H2 = �2 + m2r2

1 + γ 2r4 . (6)

We can identify an effective potential

V 2(r) = m2r2

1 + γ 2r4 , (7)

which governs the string dynamics. The potential has a max-
imum at r = 1/

√
γ where its value is m2/(2γ ) (see Fig. 1)

providing a barrier for a pulsating string trapped in the region
r < 1/

√
γ . For a particle of energy E2 < m2/(2γ ) there are

two points where its radial velocity vanishes

R2
1,2 = m2

2γ 2E2

⎛

⎝1 ∓
√

1 − 4γ 2E4

m4

⎞

⎠ . (8)

This means that the pulsating string can, in principle, tunnel
from r < R1, through the classically forbidden region of
the potential, and escape to the classically allowed region
r > R2.
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The equation of motion can be integrated in terms of ellip-
tic functions and the energy can be found in terms of the
oscillation number N = ∮

�dr/2π . For more details see
[38].

3 String tunnelling

To apply the WKB method we assume that the wave function
depends only on r so that we can take for �2 the radial part
of the Laplacian

�2 = − h̄2

√−g

d

dr

(√−g
d

dr

)
, (9)

where
√−g = r (d−1)G is the determinant of the metric.

Here we left the number of dimensions of the deformed part
of the space d arbitrary since we want to consider the general
situation. For the full ten-dimensional case d = 6. Then the
Schrodinger equation reads

− h̄2

r (d−1)

(
r (d−1)� ′)′ + 4h̄2γ 2r3

1 + γ 2r4 � ′ + m2r2

1+γ 2r4 � = E2�,

(10)

and the WKB ansatz is

�WK B(r) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1√
r (d−1) G(r) p(r)

(
A e

i
h̄

∫ R1
r dr p(r) + B e− i

h̄

∫ R1
r dr p(r)

)
, r < R1,

1√
r (d−1) G(r) |p(r)|

(
C e

1
h̄

∫ r
R1

dr |p(r)| + D e
− 1

h̄

∫ r
R1

dr |p(r)|
)

, R1 < r < R2,

1√
r (d−1) G(r) p(r)

F e
i
h̄

∫ r
R2

dr p(r)
, r > R2,

(11)

where A, B,C, D and F are constants and p(r) =√
E2 − V 2(r).
The WKB approximation does not hold in the neighbour-

hood of r = R1 and r = R2 because p(r) vanishes at these
points. To avoid this problem we will consider solutions of
(10) around these two points. To this end we introduce coor-
dinates x = ci (r − Ri ), i = 1, 2, where Ri stands for R1 or
R2, and we find that (10) reduces to

� ′′
Ri + ai�

′
Ri − x�Ri = 0, (12)

where �Ri is the wave function around Ri and

ai = d − 5

ci Ri

(
1 + 4

d − 5

E2

m2R2
i

)
. (13)

If we choose

ci = 3

√
2E2

h̄2Ri

1 − γ 2R4
i

1 + γ 2R4
i

, (14)

we can reduce (12) to the Airy equation by the change of
variable �Ri (x) = exp(−ai x/2)χi (x), which yields

χ ′′
i −

(
x + a2

i

4

)
χi = 0. (15)

Then, near R1 and R2, we have

�Ri (x) = e− ai x
2

(
ai Ai

(
x + a2

i

4

)
+ bi Bi

(
x + a2

i

4

))
,

(16)

where ai and bi are integration constants and Ai(x) and
Bi(x) are the two linearly independent Airy functions.

To match the WKB and the Airy solutions around Ri we
must make sure that they have the same functional form
for large |x |. Around R1 we find that in the WKB solu-
tion

∫ R1
r p(r)dr = 2/3h̄(−x)3/2 for x < 0, while for

x > 0,
∫ R1
r p(r)dr = −2/3h̄x3/2. The Airy functions go

like e±2/3x3/2
for x < 0 and cos(2/3(−x)3/2 − π/4) and

sin(2/3(−x)3/2 − π/4) for x > 0. Similar expressions hold
for the solutions around R2. Matching the solutions we find
that around R1 we have

a1 = 2

(
1 + γ 2R4

1

h̄c1R
d−1
1

)1/2

D, (17)

b1 =
(

1 + γ 2R4
1

h̄c1R
d−1
1

)1/2

C, (18)

A =
(

−i D + C

2

)
eiπ/4, (19)

B =
(
i D + C

2

)
e−iπ/4, (20)
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while around R2 we find

a2 = 2

(
1 + γ 2R4

1

h̄c2R
d−1
2

)1/2

eP/h̄ C, (21)

b2 =
(

1 + γ 2R4
1

h̄c2R
d−1
2

)1/2

e−P/h̄ D, (22)

a2 = eiπ/4

(
1 + γ 2R4

1

h̄c2R
d−1
2

)1/2

F, (23)

b2 = −ia2, (24)

where P = ∫ R2
R1

|p(r)|dr . We can now compute |F/A|2 to
find

∣∣∣∣
F

A

∣∣∣∣
2

=
(

1

4
e−P/h̄ − eP/h̄

)−2

= e−2P/h̄

(
1 − 1

4e
−2P/h̄

)2 . (25)

Notice that all explicit dependence on d has gone away
and only P depends on the dimension through the potential
V 2(r).

To find the tunnelling probability we have to consider
the probability current i(�∗∇� − �∇�∗) in the deformed
Minkowski spacetime (1). Taking only the radial component
and integrating it with the proper measure we find that the
square root factors in (11) precisely cancel the measure fac-
tors so that in the region r < R1 it gives |B|2−|A|2. Unitarity
is then respected since (17)–(24) imply that |B|2 − |A|2 =
|F |2. This means that the tunnelling amplitude T = |F/A|2
is given by (25).

The tunnelling amplitude (25) depends only on P =∫ R2
R1

|√E2 − V 2(r)|dr , with V 2(r) given by (7). This inte-
gral is quite complicated but can be performed when the
deformation is small. To that end we redefine r as r̃ = √

γ r
so that for γ << 1 we have

R̃1 = √
γ R1 = √

γ
E

m

(
1 + 1

2
γ 2 E

4

m4

)
, (26)

R̃2 = √
γ R2 = m√

γ E

(
1 − 1

2
γ 2 E

4

m4

)
. (27)

Notice that R̃1 R̃2 = 1; from the condition E2 < m2/(2γ )

we find that R̃1 < 1. Calling R̃ = R̃1, we find that

P = E√
γ R̃

∫ 1/R̃

R̃

√
(1 − R̃2r̃2)(r̃2 − R̃2)

1 + r̃4 dr̃ . (28)

We can now split the integral from R̃ to 1/R̃ into two inte-
grals, one from R̃ to 1 and the other from 1 to 1/R̃. For the
second integral we can again change the integration variable
r̃ to 1/r̃ so that

P = E√
γ R̃

∫ 1

R̃

(
1 + 1

r̃2

) √
(1 − R̃2r̃2)(r̃2 − R̃2)

1 + r̃4 r̃ dr̃ .

(29)

We can then expand the two factors in the numerator inside
the square root and perform the integrals. Keeping only the
leading terms in γ we find that

P = m

2γ

∣∣∣∣ln
(√

γ E

m

)∣∣∣∣ , (30)

so that when the deformation vanishes the transition ampli-
tude also vanishes as expected.

4 Classical stability

As show in the previous section a pulsating string can tunnel
through the potential barrier and this naturally raises ques-
tions about its classical stability. It is well known that spin-
ning strings in anti-de Sitter spaces are classically unstable
for large spin [45]. Pulsating strings, on the other side, have
better stability properties than spinning strings, as shown in
[46]. In the following we will analyse the stability proper-
ties of pulsating strings in deformed Minkowski spacetime.
We will apply the technique developed by Larsen and Frolov
[47] and we will show that when the deformation is small the
classical pulsating string is stable.

We start with the Polyakov action in curved spacetime
regarding the string coordinates and the worldsheet metric
as independent variables. Following [47] the first variation
of the Polyakov action gives

δSP = −
√

λ

2

∫
dξ2

[(
1

2
habG − Gab

)
δhab

− 2gμν

(
�Xν + hab�ν

λκ X
λ
,a X

κ
,b

)
δXμ

]
, (31)

whereGab = gμνX
μ
,a Xν

,b is the induced metric,G = habGab

and ξa are the worldsheet coordinates. In order to get the
second variation of the action, a general perturbation δXμ is
decomposed into normal and tangential components on the
worldsheet as

δXμ = Xμ
,aδX

a + nμ
r δXr , r = 2, . . . 9, (32)

where δXa is the tangential perturbation and δXr is the nor-
mal variation. The normal vectors nμ

a are orthonormal to each
other and obey

gμν n
μ
r nν

s = δrs,

gμν Xμ
,a n

ν
r = 0. (33)

The non-physical perturbations are then excluded by the
choice δXa = 0. We now introduce the second fundamental

123



Eur. Phys. J. C (2016) 76 :234 Page 5 of 9 234

form �rab and the normal fundamental form μrsa defined,
respectively, as

�rab = gμν n
μ
r ∇a X

ν
,b,

μrsa = gμν n
μ
r ∇an

ν
s , (34)

where ∇a = xρ
,a∇ρ , with ∇ρ being the spacetime covariant

derivative. After these definitions the second variation of the
action is found to be

δ2SP = −
√

λ

2

∫
dξ2

√−h

×
[
δhab

(
2Gbchad − 1

2
hadhbc G − 1

2
hab Gcd

)
δhcd

+ 2 δhab h
ac hbd�rcd δxr

− 2δXr (δrs� − habgμν∇an
μ
r ∇bn

ν
s − 2habμrsa ∂b

− habXμ
,a X

ν
,bRμκλν n

κ
r n

λ
s

)
δXs

]
, (35)

where Rμκλν is the Riemann tensor. Taking into account that
the variation of the internal metric is related to the variation
of the spacetime coordinates by

�abrδX
r = −1

4

(
Gδhab − habGcdδhcd

)
, (36)

it can be shown that the second variation of the action is

δ2SP = −λ

2

∫
dξ2

√−hδXr
(
δrs� − 2habμrsb∂a

−δtuhabμr ta μsub − 2

G
hachbd�abr�cds

−habXμ
,a X

ν
,bRμκλν n

κ
r n

λ
s

)
δXs . (37)

The equation of motion for the perturbation is then given by

�δXr − 2habμrsa∂bδX
s − hab∇aμrsbδX

s

−
(

δtuhabμr ta μsub + 2

G
hachbd�abr�cds

+habXμ
,a X

ν
,bRμκλν n

κ
r n

λ
s

)
δXs = 0. (38)

Now we will particularise the stability analysis to the
deformed Minkowski space (1) using (2). The equation of
motion for r(τ ) is

ṙ2 = κ2 − m2r2G. (39)

For a small deformation, γ 2 � 1, it reduces to ṙ2 = κ2 −
m2r2 + γ 2m2r6 and it oscillates between r = 0 and r = r−,
where r2− = κ2/m2 +γ 2κ6/m6. Then the motion is periodic

with amplitude κ
m (1+ 1

2γ 2 κ4

m4 ). We can find explicit solutions
like

r(τ ) = κ

m

(
1 + 1

2
γ 2 κ4

m4

)
sin

(
mτ + γ 2 κ4

m4 g(mτ)

)
,

g(mτ) = −15

16
mτ + 1

4
sin(2mτ) − 1

64
sin(4mτ), (40)

but they will not be needed for the stability analysis.
The induced metric is given byG00 = −G11 = −2m2r2G

and the orthogonality of the normal basis (33) requires
√

2 κ ntr − (nr1
r + nr2

r )ṙ = 0,

nφ1
r + nφ2

r = 0. (41)

The choice of the normal vectors satisfying the first constraint
in (41) requires some work. So let us denote our basis vectors

nμ
r = (

ntr , n
xi
r , nrir , nφi

r

)
, i = 1, 2, 3. (42)

Consider the first constraint for the normal vectors of the
form

nμ
r = (

ntr , 0, 0, 0, nr1
r , nr2

r , 0, 0, 0, 0
)
, (43)

which are chosen to be non-trivial for r = 2, 3. Using the
constraint and the orthogonality condition, we obtain

[
(1 − α2)nr1

3 − α2nr2
3

]
nr1

2 +
[
(1 − α2)nr2

3 − α2nr1
3

]
nr2

2 = 0,

(44)

where α = ṙ√
2 κ

≤ 1. The constraint also allows us to rewrite
the normalisation as
(

1 − α2
) (

nr1
r + nr2

r

)2 − 2 nr1
r nr2

r = 1. (45)

Matching the norm of the vectors and using (44), we obtain

nr1
2 = ±

(
1 − α2

)
nr2

3 − α2nr1
3√

1 − 2α2
. (46)

By setting nr1
3 = −nr2

3 = 1√
2

we finally find

n2 = κ

m r G
(
ṙ

κ
, 0, 0, 0,

1√
2
,

1√
2
, 0, 0, 0, 0

)
,

n3 = (0, 0, 0, 0,
1√
2
, − 1√

2
, 0, 0, 0, 0),

n4 = (0, 1, 0, 0, 0, 0, 0, 0, 0, 0),

n5 = (0, 0, 1, 0, 0, 0, 0, 0, 0, 0),

n6 = (0, 0, 0, 1, 0, 0, 0, 0, 0, 0),

n7 = (0, 0, 0, 0, 0, 0, 1, 0, 0, 0),

n8 = (0, 0, 0, 0, 0, 0, 0,
1√

(r2
1 + r2

2 )G
,

− 1√
(r2

1 + r2
2 )G

, 0),
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n9 =
(

0, 0, 0, 0, 0, 0, 0, 0, 0,
1

r3

)
. (47)

We notice that there are only seven basis vectors since we
gauge fixed three coordinates, t , φ1 and φ2.

The fundamental forms can now be found. Using the
ansatz (2) we get

μrs0 = 0,

μrs1 = mrG[
nφ1
r (nr1

s − nr2
s ) − nφ1

s (nr1
r − nr2

r )
]
,

�r01 = 0,

�r11 = −m2(nr1
r + nr2

r )rG2(1 − γ 2r4),

�r00 = 3(nr1
r + nr2

r )r̈ . (48)

Using the expressions for the basis vectors (47) and r̈ =
m2rG(1 − 2G) we obtain the non-vanishing components,

μ381 = −m
√G , �200 = 3 �211,

�211 = κm
√

2G (1 − 2G). (49)

In order to calculate the curvature term in the equations
of motion for the perturbations (38) we use the ansatz (2) to
find the non-vanishing components of the curvature tensor,

Rr1φ1r1φ1 = Rr1φ1r2φ1 = Rr1φ2r2φ2 = Rr2φ2r2φ2 = 3γ 2 r4G3,

Rr1φ2r1φ2 = Rr2φ1r2φ1 = γ 2r4(1 − 2r4γ 2)G3,

Rr3φ1r3φ1 = Rr3φ2r3φ2 = −Rr3φ1r3φ2 = γ 2r4G2,

Rφ1φ2φ1φ2 = 2γ 2 r6G4. (50)

The curvature dependent terms then become

GabXμ
,a X

ν
,bRμρσνn

ρ
r n

σ
s δXs

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

γ 2κ2

m2 (1 − 6G)δX2, r = 2,

−γ 2r2G(1 − 6G)δX3, r = 3,
γ 2

m2

[
ṙ2(8 − G) − 2κ2G]

δX8, r = 8,

0, r = 4, 5, 6, 7, 9.

(51)

Finally, we have to take into account the Kalb–Ramond
term,

SB = −√
λ

∫
dξ2Bμνε

abXμ
,a X

ν
,b. (52)

Its second variation gives

δ2
(
Bμν εabXμ

,a X
ν
,b

)

= 2γ mr2G3 (3 − 5r4γ 2)ṙ
(
δXr1 + δXr2

)

×
(
δXφ2 − δXφ1

)
. (53)

Using
(
δXr1 + δXr2

)(
δXφ2 − δXφ1

)

=
[(

nr1
2 +nr2

2

)
δX2+

(
nr1

3 +nr2
3

)
δX3

] (
nφ1

8 −nφ2
8

)
δX8,

(54)

we find the final form for the equations of motion for the
perturbations

(
� − 1

2 r2 + γ 2r2G(1 − 6G)
)

δX3 = 0, (55)
(

� − 5κ2

4m2

(1 − 2G)2

r4G − γ 2 κ2

m2 (1 − 6G)

)

×δX2 + 4γ κ ṙ G (8G − 5) δX8 = 0, (56)
(

� − 1

2 r2 − γ 2

m2

[
(8 − G)ṙ2 − 2κ2G])

×δX8 + 4γ κ ṙ G (8G − 5) δX2 = 0, (57)

� δXr = 0, r = 4, 5, 6, 7, 9. (58)

Equation (58) shows that for r = 4, 5, 6, 7 and 9 the pertur-
bations are stable so that we have to consider only r = 2, 3
and 8.

From now on we will analyse the stability for a small
deformation γ � 1. Keeping only the leading terms in γ the
equations for the perturbations reduce to

(
� − 1

2 r2 − 5γ 2r2
)

δX3 = 0, (59)
(

� − 5κ2

4m2

1

r4

)
δX2 + 12γ κ ṙ δX8 = 0, (60)

(
� − 1

2 r2

)
δX8 + 12γ κ ṙ δX2 = 0. (61)

We can now expand δXi as

δXi =
∞∑

n=−∞
einσ Fi (τ ) (62)

and use � = 1
2mr2 (−∂2

τ + ∂2
σ ) to get

( d2

dτ 2 + n2 + m2 + 10γ 2m2r4
)
F3 = 0, (63)

(
d2

dτ 2 + n2 + 5κ2

2

1

r2

)
F2 − 24γ κm2 r2 ṙ F8 = 0, (64)

(
d2

dτ 2 + n2 + m2
)

F8 − 24γ κm2 r2 ṙ F2 = 0. (65)

In these equations r is the unperturbed solution to (39) which
is a periodic function of τ . Then, by the Sturm theorem, F3

oscillates for large τ so that the perturbation δX3 is stable. We
can handle F2 and F8 by expanding in γ as F2 = U2 + γ V2
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F3

τ
0 125 250 375 500

1

1/2

0

−1/2

−1

Fig. 2 Perturbation function F3. γ = 1/2,m = κ = 1, n = 0

F3

τ

0 125 250 375 500

1

1/2

0

−1/2

−1

Fig. 3 Perturbation function F3. γ = 1/5,m = κ = 1, n = 0

and F8 = U8 + γ V8 to get
(

d2

dτ 2 + n2 + 5κ2

2

1

r2

)
U2 = 0, (66)

(
d2

dτ 2 + n2 + m2
)
U8 = 0, (67)

(
d2

dτ 2 + n2 + 5κ2

2

1

r2

)
V2 − 24κm2 r2 ṙU8 = 0, (68)

(
d2

dτ 2 + n2 + m2
)

V8 − 24κm2 r2 ṙ U2 = 0. (69)

ThenU2 andU8 are oscillatory for large τ . In (68) the homo-
geneous solution for V2 is also oscillatory for large τ as is the
non-homogeneous term unless U8 has some resonance fre-
quency. This will happens whenever m2 = 5κ2

2r2 or r2 = 5κ2

2m2 ,

but because 5κ2

2m2 > r2− these values of r cannot be reached
so that there is no resonance. The same result holds for V8 so
the perturbations δX2 and δX8 are also stable. For arbitrary
values of γ , (55) still shows that δX3 is oscillatory but (56)
and (57) could not be decoupled.

As a check that the perturbation is stable we will present
some solutions of (63)–(69) in graphical form. To this end
we need to consider a pulsating string solution of (39) in
flat spacetime. As shown in [38] the condition to have an

F3

τ
0 125 250 375 500

1

1/2

0

−1/2

−1

Fig. 4 Graphs of F3 and U2(τ ) = �[sec2p mτ 2F1(a, a∗; c; sec2

mτ)]. γ = 1/10,m = κ = 1, n = 0

U2

τ
210 . 5205

12

6

0

−6

−12

Fig. 5 Graphs of F3 and U2(τ ) = �[sec2p mτ 2F1(a, a∗; c; sec2

mτ)]. p = 3/2,m = 1

oscillatory motion is 2γ κ2 ≤ m2 and a solution of (39) in
flat spacetime can be taken as r(τ ) = κ

m | cosmτ |. Using this
solution in (63) we plot the mode F3 in Figs. 2, 3 and 4.
In these figures, we have for the deformation γ = 1/2, 1/5
and 1/10, while all other parameters, the winding number m,
the mode n of the perturbation and the stringy energy κ , are
fixed. In these cases the perturbation amplitude modulates
and is stable.

We now turn our attention to (66). Since r(τ ) is periodic
the term in 1/r2 diverges whenever r vanishes and could
cast doubts about the stability. In fact, when plotting U2 we
get warnings that there is some problem at τ = π/(2m).
The same sort of problem appears in (64) and (65) or in (68)
and (69). Our previous arguments, however, show that there
is nothing special in those points. Since (66) is an ordinary
differential equation we can solve it. Changing variables to
y = sec2(mτ) and taking U2(y) = y

n
2m G(y) we find that

G(y) satisfies the hypergeometrical differential equation so
that

U2(τ ) = secn/2m(mτ) 2F1

(
a, a∗; c; sec2(mτ)

)
,

a = n

2m
+ 1

4
± 3

4
i, c = n

m
+ 1. (70)
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U2

τ
210 . 5205

7.2

3.6

0

−3.6

−7.2

Fig. 6 Graphs of U2(τ ) = � [
sec2p mτ 2F1

(
a, a∗; c; sec2 mτ

)]
.

p = m = 1

U2

τ

210 . 5205

4.32

2.16

0

−2.16

−4.32

Fig. 7 Graphs of U2(τ ) = � [
sec2p mτ 2F1

(
a, a∗; c; sec2 mτ

)]
.

p = 0,m = 1

In Figs. 4, 5 and 6 we plot U2 for some values of m and
n, showing that it is well behaved everywhere. Notice also
the amplitude of U2 modulates so that the γ independent
part of the perturbation of the mode F2 is also stable. The
γ independent part of F8, that is, U8, is also stable since it
satisfies (67). Then the homogeneous solutions for V2 and
V8 in (68) and (69) are stable and the particular solutions,
which involve U8 and U2, respectively, are also stable unless
there is some resonance frequency (Fig. 7). But as discussed
previously, this cannot happen so that the full solutions for
V2 and V8 are also stable.

5 Conclusions

We have applied the WKB method to compute the tunnelling
amplitude for an oscillating string in deformed Minkowski
spacetime. As expected it is proportional to the string energy
and vanishes when the deformation goes to zero. We have
also shown that for small deformation the classical pulsat-
ing string is stable. It is well known that pulsating strings
in AdS5 × S5 are dual to operators composed of non-
holomorphic products of scalar fields [20,23,48,49], but the

theory corresponding to the deformed Minkowski spacetime
is not known. Since the string tunnelling represents an insta-
bility of the system it would be very interesting to see what
happens on the other side of the correspondence.
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