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Abstract We analyze a recently proposed scheme to con-
struct analytic lump solutions in open SFT. We argue that in
order for the scheme to be operative and to guarantee back-
ground independence it must be implemented in the same 2D
conformal field theory in which SFT is formulated. We out-
line and discuss two different possible approaches. Next we
reconsider an older proposal for analytic lump solutions and
implement a few improvements. In the course of the analy-
sis we formulate a distinction between regular and singular
gauge transformations and advocate the necessity of defining
a topology in the space of string fields.

1 Introduction

After the discovery [1,2] of the first analytic solution of open
SFT a la Witten [3], which links the perturbative vacuum to
the tachyon vacuum, there have been a considerable number
of papers devoted to related solutions [4,5] and to marginal
deformations thereof [6—13]. The literature concerning ana-
lytic lump solutions, i.e. analytic solutions interpretable as
lower dimensional branes (meant to complete the analytic
proof of the three conjectures by Sen [14]), is instead poorer.
There have been essentially two attempts to find such ana-
lytic solutions: the first is the so-called BMT proposal [15-
17], the second is the most recent one formulated in [18],
which we will refer to as EM. They are both modeled on
the Erler—Schnabl (ES) solution [5], an alternative simpler
formulation of the original tachyon vacuum (TV) solution
(for recent reviews on the whole subject, see [19-22]). In
[18] the construction is based on previous results on correla-
tors involving boundary condition changing (bcc) operators
and on a set of (implicit) prescriptions laid down in order
for the solution to satisfy the SFT equation of motion. As we
shall see, hidden behind this is the risk of background depen-
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dence. More precisely, we wish to clarify first of all if and to
what extent these results and prescriptions can be embedded
in SFT; second, we would like to discuss their background
independence. By the latter we mean that one can derive a
variety of backgrounds as solutions of the SFT equation of
motion, although such an equation of motion is formulated
in a specific background (the D25-brane). The only way to
clarify these issues is to implement the EM approach in an
explicit 2D field theory formulation similar to the one in
[5,12,15], consistent with the original one in which the SFT
is formulated. The first part of our paper is an attempt in this
direction. We clarify the problems behind the EM proposal
and try to solve them. We do not succeed in carrying out this
task, but, nevertheless, we think our scrutiny may be instruc-
tive. More explicitly, while we believe the first issue above,
although not solved by us in this paper, should anyhow be
implementable, the second, i.e. background independence,
looks almost impossible to realize.

We then turn to the BMT proposal and, in the second
part of the paper, we discuss some aspects of the latter and
present a few improvements. In the course of the analysis we
propose a definite distinction between singular and regular
BRST transformations, which turns out to be instrumental in
clarifying some confused issues present in analytic solutions
of SFT.

The paper is organized as follows. Sections 2, 3, and 6 are
short introductions to the ES solution and to the EM and BMT
proposals. Section 4 is devoted to a detailed presentation of
the bee operators used in the EM proposal. Section 5 con-
tains our (failed) attempt to implement the EM approach in
an explicit field (oscillator) formulation. Section 7 contains a
digression on gauge transformations and identity based solu-
tions, which is needed for the subsequent developments in
Sect. 8, where they are applied to the BMT proposal. Section
9 contains some conclusions.
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2 Short review of the Erler—-Schnabl solution

Even though the content of this section is very well known,
we nevertheless briefly review the classical solution and its
properties found by Erler and Schnabl [5], given its paradig-
matic role with respect to the proposed lump solutions. To
start with let us introduce the {K, B, c} algebra, where

K = ZkL, c=cOI), (1)

B =ZBLI
2 T theR

where the argument of the ¢ ghost field refers to the arctan
frame and
1 1
KF=-Ki+—=(Lo+ L),
1 ) 1+ 7T( o+ ())
1 1 N
B{ = =B+ —(Bo + B)), 2
1 ) 1+ JT( 0 + 0) ( )

and the Ky, Lo, and By, By are expressed in terms of the
world-sheet energy-momentum tensor and the b ghost field
in the following way:

2 1k+1
Eo—Lo-I—Z 1) k>

4k2 -1
2( 1)k+1
Bo—bo—i-z DTS
Ky =L+ L_y, Bl=b1+b71.

Then the string fields K, B, and ¢ generate an algebra with
the following commutation relations and BRST variations:

[K,B]=0, {B,c}=1, [K,c]=09c, {B,dc}=0,
2=-0=¢*>, OQB=K, QK=0,
Qc=cKc=coc. 3)

In the above the juxtaposition of any two symbols represents
the star product, whose symbol has been understood. The
commutators are taken with respect to the star product.

The Erler—Schnabl (ES) solution is given by

YEs =cB(K + 1)c “)

1
K+1
The solution can be formally written via a singular gauge
transformation of the perturbative vacuum (see [4,23])

YEs = UpQU;, ', )
with

1 _1 1
UOZl_K+lBC and U, :l+?Bc. (6)

In order to show that the ES solution satisfies Sen’s first
conjecture one computes the energy corresponding to it. The
energy density is (in the sequel we set g, = 1)

@ Springer

ElYEes] = (1/fo Qo)

1 1
<(c+cKBc) —|—ICKCK+1>

1 1
cKc
K+1 K+1>

1 1
—<Q<BCK+1CKCK+1>>. (7)

The last term vanishes since it is BRST exact and the first
term in the second line gives

AN = O\I>—‘O‘\|

/\

1 o0
A / drdty e 172 (ce 1K e e2K)
0

E[YEs] = Ciyt1y
1 [ 1+ 1)? t
= __/ drydty e 1712 (1 + 1) sin? (22
6 Jo 2 n+n
N (8
T o2g2

where C; denotes a cylinder in the arctan frame of circum-
ference 7, and we have used the Schwinger parametrization

o
_ / o1 (1+K)
0

In passing from the first line to the second line of (8) one
starts from the correlator (c(z1)cdc(z2)) = —(z1 — z2)% in
the upper half-plane, and maps it to the arctan frame via the
map & = arctan(z), so that it becomes

1+K

(c@cdc(E)) = —sin* (€1 — &)
in the cylinder C;. Finally one rescales § — fé in order to
map to a cylinder Cy.

Equation (8) means that the ES solution correctly repro-
duces minus the D25-brane tension, thus identifies the
tachyon condensation vacuum. The Erler—Schnabl solution
does not support open string states, i.e. this solution agrees
with Sen’s second conjecture. A simple way to show that a
given solution Yo does not support open string states is to
find a homotopy operator .4 such that

QA =1, )
with
QyoA = QA+ Yo A+ Ay (10

for, if Qy,¢ = O this implies that ¢ = Qy, x with x = A¢.
For the ES solution, the homotopy operator exists and has
the form [2]

A=B—. (11)
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3 The EM proposal

Let us briefly review here the recent EM proposal, at least for
the (essential) aspects we wish to discuss. The EM proposal is
constructed by introducing in the ES solution boundary con-
dition changing (bcc) operators, in analogy to the solution of
Kiermaier, Okawa, and Soler (KOS), for marginal deforma-
tions (see [12] and below). The KOS solution is written in
terms of boundary condition changing (bcc) operators o and
o satisfying the following OPE:

06 =60 = 1. (12)

In EM the relevant bee operators are not the same as in KOS,
of course, rather they change the string boundary conditions
from N to D and vice versa. The property (12) is crucial for the
solution to satisfy the equation of motion and, at first, it seems
difficult to extend the procedure to solutions which describe
BCFTs that are not connected to the original BCFT by a
marginal deformation. The reason is that generic bcc oper-
ators relating two BCFTs have non-trivial OPE and cannot
satisfy (12). In order to overcome this difficulty the authors
of [18] tensor those bce operators with plane-wave factors
and introduce modified bce operators as follows:

ivVhX%(s) —i/hX%s)

o(s) = o.(s)e a(s) = a«(s)e (13)

where o, (s) and 0, (s) are the bcc operators relating the two
BCFTs and they are primary operators of conformal dimen-
sion h. In particular, for the lump solution they are given
by o = onp, 0« = opy and h = %. The modified bce
operators satisfy

oo = finite, oo = 1. (14)

EM assumes that the BRST variations of the modified bcc
operators are

Qo =cdo =c[K, o], Qo =cdo =c[K, o] (15)

where in [18] Q is the BRST operator of the original D25-
brane BCFT. This is one of the critical aspects we must dis-
cuss. In fact, as we shall see, there is no a priori guarantee
that the action of Q is well defined on o, 5.

Continuing the presentation of the EM proposal, the EM
solution for the equation of motion at the tachyon vacuum is
given by

D)= —ITYyT (16)

where

1
\II() \/—C(l + K)BCW,
2 ( 1 )7
ViR CUTTR
_ 1
Q(J1+KBUJ1+K)' {47

Here Q = Q + [V, ]is the BRST operator at the tachyon
vacuum. Explicitly, the proposed solution is given by

1 B 1
®p=———c(l + K)o 5(1 4+ K)e——m .
0= TR o U K e

(18)

The solution to the equation of motion at the perturbative
vacuum is

¥ =Yy 4 Py (19)

and its energy is given by

E= -5l = -2 4+ Irjad) = - 22— Lncugy)
272 6 272 6

Using previous results in the literature, in particular [29], the
authors of [18] were able to show that g, — go is consistent
with the difference between the tension of a D25- and a D24-
brane.

Inthe EM ansatz many details are understood, and we must
ask: Is it possible to implement this formulation in a concrete
field theory formalism, consistent with that of SFT?!

In the following we would like to bring to light the hidden
details and assess their validity. To start with, two BCFT’s are
mentioned in [18], BCFT, and BCFT,, and arule is declared
according to which, when writing the solution, any operator
that appears to the left of o or to the right of o belongs to
BCFTy, while operators which appear to the right of o or to
the left of & belong to BCFT,, but no distinction is made to
specify what string fields belong to the former and what to
the latter. It may well be that the Q and K that are defined on
BCFTj are the same that live on BCFT, (this is one of the
hypotheses we will consider later on). But this is a crucial

! This is what we deem necessary. Not everybody shares this opinion.
The referee of this paper believes that this problem we think to be so
important is already considered and implicitly solved in the first ref.
[38]; see eqs. (8.13—14) there. We take note of this, but we believe that
just because of this it should be possible to formulate the EM proposal
in a more explicit form using the oscillator formalism. In the process
the issue of background dependence or independence will automatically
emerge.
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aspect that must be carefully justified. As we will see more
clearly later on, the BCFTy is the BCFT with NN boundary
conditions for all directions, while BCFT, is characterized
by DD boundary conditions along one space direction, the
25th, say, and NN along the remaining ones. To keep track
of this we will simply label Q and K in these theories with
NN and DD, respectively.

Thus, in order to be consistent with the EM rules, when
passing through o, operators like Onn and Knn, become
Opp and Kpp, and they switch back to Onn and Knn when
they pass through o . We will discuss later on how itis possible
to make sense of such switching of operators. In the rest of
this section we would like to make it evident that considering
only two BCFTs, BCFT(, and BCFT,, is not enough.

In a first attempt to write the EM proposal (16) in a more
precise way, we rewrite it as

®) = —SWEE Q1)
where
wk : (1+ Kpp)B !
= —F/——F—C DD)DC—F/—,
0" JT+Kop T+ Kpp
1 1
¥ = OnN < Bo ) ,
vI+Knn 1+ Kpp

¥ = Qpp < (22)

1 1
Bo
1+ Kpp «/1+KNN>

with Onn = OnN + [Wo, ] and Qpp = QOpp + [V, ] are
the BRST operators at the tachyon vacuum. Explicitly, the
ansatz is given by

1 B
®g=———c(l + KNN)T————
0 T s ( NN) T Kop
- 1
X U(l + KNN)C\/H—T. (23)
NN

The solution to the equation of motion at the perturbative
vacuum is

v =Yy + P (24)

ﬁc(l + KNN)BC«/%TNN is still the ES

TV solution, and its energy is expected to yield

where Wy =

B & 1 3
E=—SI¥] =~ + i)
80 1 %43 80 8x
- (I W10 T o =L . 25
726 r[(Wg)”] 772 + 702 (25)

Now that we have heuristically rewritten the EM rules in
a more explicit form let us point out some difficulties. The
fact that the EM ansatz yields the expected result depends

@ Springer

crucially on enlarging the K, B, ¢ algebra by including o
and ¢. The K, B, c algebras (for zero momentum states) for
the NN and DD cases are identical (see below). For clarity
let us write them once more

{B,c} =0, {B,dc}=0,

[Kii, B] =0, [K;;,c]=0c,

(26)

where ii denotes either NN or DD. The action of the BRST
operators on those quantities should mimic Eq. (3),

QiiB=K;i, 0iiKii =0, Qjjc=cKjic. 27

From Eq. (1) we directly get the representation of two of the
elements of the algebra (26), but the representation of Kpp
should be obtained as the BRST variation of B:

T T T
EQDDBlLu) 5 {Qop, BEYI) — EBlLQDD|1>

= Skl ppll) = 5 BF Qool ). (28)
So we see that the BRST operator Opp must annihilate the
identity state | /) or any wedge state in general, otherwise the
definition of Kpp as a BRST variation of B cannot be realized
at the representation level. Is this the case? The answer is not
obvious.

Another issue of concern is related to the computation of
physical observables for the solution W In order to calculate
the energy or the closed string overlap, one needs to use
the following Schwinger parametrization for the inverse of
1+ Kpp:

1 o0
— = / dre~"e~ KD (29)
14+ Kpp 0

In the ES solution, we replace e 'K by Qf, where Q is the
SL(2, R) invariant vacuum, which defines the wedge states.
Now, in the presence of the bcc operators, is the vacuum
SL(2, R) invariant and does the new vacuum have the right
properties to define new wedge states?

A third problem arises when we try to verify the equation
of motion for (23). In our notation the equation of motion at
the TV is

ONND + @2 = 0= ONND + (W, D} + D% =0.  (30)

According to the EM rules rewritten above, the BRST oper-
ator acts on @ as follows:

1
ONNDo = —————=(ONNO) (I + KNN)T ———
V1 4+ KnN 1+ Kpp
1
x5 (1 + KNN)C—ee—
1+ KnN
1 B
+——c(l + KnN)(Q0) ———
V14 KnN 1+ Kpp



Eur. Phys. J. C (2016) 76:203

Page 50f 18 203

xo (1 + KnN)c

1
14+ KnN

1
+———c(1 + Knn)o
V14 KnN

x6 (1 + KnN)c

(OppB)
1+ Kpp

1
V14 KnNN

1
_\/14_—7](6'(1 + KNN)
NN

B
xo0 ——(Qo)(1 + Knn)c
Kpp

1
1+ V14 KnN

1
NN

B
xa—Dé(l + KnN) (ONN©)

1
1+ Kp YT+ KN~

3D

where Q o, Q ¢ is only indicated, but not specified. In fact,
in these two cases Q cannot be neither Onn, nor Qpp. In
fact we will see in the next section that o and & belong to two
additional BCFT’s: the BCFT with ND boundary condition
along one space direction and the BCFT with DN boundary
condition along one space direction (and NN along all the oth-
ers). The corresponding Q and K will be called Onp, Knp,
and Opn, Kpn, respectively.

With these new entries it seems to be more appropriate to
rewrite (15) as

ONpo = cdo = ¢(Knpo — 0 KND),
Opno = cdo = c¢(Kpno — 0 KpN). (32)

Assuming these BRST variations of o and ¢ and that the star
product is consistent with these rules, we notice that (31)
contains Knp and Kpy, whereas the other two terms in (30)
do not contain such operators. Therefore, the cancellation
among those terms is not possible and the equation of motion
would not be satisfied.

It is clear that the previous minimalistic cosmetic of the
EM rules is too simplistic and only complicates things. A
deeper interpretation is necessary. But it is also clear that
if the above issues (among others, see below) are not clari-
fied within a concrete field theory formalism, the EM ansatz
remains abstract (but see the footnote at the beginning of the
section). Our aim in the sequel is to interpret the EM rules
in a 2D conformal field theory context, consistent with the
formulation of SFT.

4 The bcc operator
One crucial ingredient in the EM ansatz are the bcc operators.

We devote this section to a rather detailed description of this
subject.

The issue of bcc operators was introduced by Cardy,
see [24-26], and subsequently studied and applied by many
authors, see in particular [27-30]. It is generally believed that
the original and twisted theories are characterized by Hilbert
spaces that can be related to each other. This is in a sense
trivial, because all countable Hilbert spaces are isomorphic
as vector spaces. However, a CFT is not simply characterized
by a Hilbert space, but also by the central charge, its primary
operators, and by the field theory axioms (locality, for one)
and its symmetries. Therefore a direct connection between
two such theories in the form of an intertwining operator
between the two Hilbert spaces (see below) or, even more,
an identification of the two, is far from guaranteed and, if it
is possible, it is far from trivial to be determined. This is to
stress that it is necessary to analyze in depth the concept and
application of the bce operator, a type of analysis the existing
literature does not abound with.

In the sequel, for definiteness, we will use an explicit for-
mulation of the bcc operator, following in particular [27].

The ordinary one-dimensional NN string in the complex
z plane is (¢ = 1)

_ i B i an, o
XnN(z,2) =x — zao(lnz +InZ) + 3 Z 7(Z "4z
n#0
(33)

with oo = p, and (o, o] = M8y, - The relevant holomor-
phic propagator is

1

(0 XNN(2) IO XNN(w)) ~ o

(34)
Then one defines the usual L,, = % Zk : ay_roy. The corre-
sponding Virasoro algebra has central charge 1. The vacuum
is defined by o, |0) = 0 forn > 0.

On the other hand the one-dimensional DD string is spec-
ified by

Xpp(z,2) = x0 + L Ax (Inz —1InZ)
21
i o .
—3 Z —(z"=zT") (35)
n#0 n

where Ax = (x; — x¢) is the separation between the two D-
branes to which the string is attached. For a single D-brane
Ax = 0. The other «;, n # 0 satisfy the same algebra as
the NN string. The holomorphic U (1) current is

i0X(z2,0) = =) auz ", (36)

The relevant propagator and the corresponding Virasoro gen-
erators have the same form as the NN string. The only dif-
ference between the NN and DD cases is the presence of the

@ Springer
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zero mode in the former.2 Therefore, the Virasoro algebra is
the same for the two cases. The BRST operator is also the
same for zero momentum states.

Now we consider the Neumann-Dirichlet (ND) string:

_ i oy, .
X ,2) = — —(z7" r 37
ND(z, 2) x0+2 Z r(z +z ) (37)
re Z+%
and the DN one:
i oy, __
X ,2) = - —(z7"=z7"). 38
DN(z D) =x0 + 5 > —(@"-27) (38)
re Z+%

For later use let us define, according to [27], the (holomor-
phic) U(1) current

J@=idX@= Y az "

re Z+%

(39)

From now on, to avoid misunderstanding, we will replace ;-
with the symbol J,.
Assume the canonical commutator

[Jr, g1 = 7r8ts. (40)
Define the vacuum |o,) by
Jrlox) =0, for r >0 (41)

with the corresponding definition of normal ordering. The
propagator is

(J()J (W) ~ —— 4 Reg.

42
G0y (42)
The Virasoro generators turn out to be
1
L, = 5 Z i S S (43)
re Z—i—%
1
Lo=ao+5 Y Jrlr (44)
re Z+%
Then we find
1
(Lo, Ln] = (m = m) Loy + 15 (0> =) (45)
provided ap = %. It follows that
Loloyx) = EW*) (46)

As usual we conclude that in the ¢ = 1 CFT there is a
primary field o,(z) of weight %. This is the bee operator.
The first excited state above o, (z) is

IT) = J_1low). (47)

2 For the oscillators we use the same symbols in the NN and DD case
and in the ND and DN case. The reader is invited to keep in mind the
difference.

@ Springer

In terms of the current J we have, for small z,

J(@)ow) = 27 2|7) + O ),

J@It) =2 3ow) + 27202 |ou) + O@2). (48)
2

It is easy to see that J2 | |o) = 2L_1|oy) = 2|o.), and the
2

weight of 7 is %. There is an infinite towers of such states.
The spectrum of these states is completely different from the
spectrum of the NN string.

Itis clear that we can repeat word by word the same things
for the DN string, whose oscillators are also half-integral-
mode. The vacuum in this case will be denoted by |d).

In conclusion in the ¢ = 1 CFT there is room for four
different Hilbert spaces HnN, Hpp, HND, and Hpn. The last
two are the same. The first two are also identifiable except
for the zero mode « in the NN case. If the coordinate X is
compactified on a circle, the momentum is discrete; dually,
in the DD case, we have wrapping modes. In other words the
relevant Hilbert spaces are organized in discrete sectors. For
the moment let us ignore, for simplicity, such discrete sectors
and the momentum in Hyn. We see that, as far as the EM
proposal is concerned, we have two kinds of Hilbert spaces,
one built out of the integral-mode matter oscillators ¢, in the
25th direction, the other with half-integral-mode oscillators
J, beside all the other matter and ghost oscillators.

At this point, however, it is worth recalling that OSFT is
formulated in terms of NN strings, that is, on the background
of the D25-brane. The background independence of OSFT
therefore does not rely on the original formulation, but on
the fact that, starting from it, we can derive all the other
possible backgrounds as analytic solutions of its equation of
motion. This is the OSFT’s bet. It goes without saying that
any background independent solution must be formulated in
the original SFT background (the NN string).

As we said above, based on the operator-state correspon-
dence, we can assume that in the ¢ = 1 CFT a primary o
exists of weight % (but nonlocal in the conventional sense,
[24-26]), such that 0, (0)|0) = |oy), where |0) is the vac-
uum for the (integral) «,, oscillators. However, this is not yet
enough to justify the EM rules. There is no guarantee that
the field o, admits a free field representation in terms of the
free field X or, what is the same, in terms of the free integral
oscillators ay,. If it is true, it must be proven. But if this is not
the case we have to give a sense to the operations of applying
the SFT operator Q or string field K (which we recall are
expressed in terms of free (integral-mode) matter and ghost
oscillators) to oy, 0.

To summarize we therefore face two alternatives. In the
best option we can express the fields oy, o, in terms of the
oy, oscillators. In the worst, if this is not possible, we must
find a way to deal with different Hilbert spaces. The viability
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of such options is far from obvious and in any case it has not
yet been proved.

5 Two alternatives

The aim of this section is to find the correct K, B, ¢, 0y, 04
algebra to justify the EM ansatz. As said above, we have two
kinds of Hilbert spaces, one built out of the integral-mode
matter oscillators «;, in the 25th direction, the other with half-
integral-mode oscillators J,, beside all the other matter and
ghost oscillators. Let us call them (or, better, their extensions)
‘H and H*, respectively. The vacuum of the first is the usual
string vacuum, made of the tensor product of the various
types of oscillators, in particular of the |0) vacuum for the
integral oscillators «;,, with the well-known star product of
SFT. The vacuum of the second is obtained by replacing the
first vacuum |0) with the state |o) (or |G, )) on which the half-
integer oscillators act. In the first (extended) Hilbert space
we have the usual K, B, ¢ algebra and the BRST operator
Q = Qj acting on it. In the second K is replaced by K* =
Knp = Kpn and Q by O* = Onp = QOpn and the star
product is also modified accordingly.

Let us try to express this in formulas. In the half-integral-
mode space H* with one ND or DN direction, the BRST
charge is given by

0 =Y, + 2

SCmCnb_pm—n 1 —Co 49)

where
d—1
* =L, 4 L9
where Lf,d_l) is the contribution from the NN X! (i =

0,...24) and L, is as defined above. Instead, for the fully
integral-mode space H, the BRST charge is

Q:ZCnL—n+Zm2_n
n m,n

L CmCnb_m—n : —co. (50)

We note that, since the Virasoro generators £, obey the same
algebra as L, the proof of the nilpotency of Q* is the same
as that of Q.

The vacuum state for the half-integral-mode space can be
written as

[0)a = lox) @ [0)a—1 ® 10) g, (5D
where |0y ) is as defined above and
for n > —1

LYD10),-1 =0,

cnl0)gn =0, for n>2, b,|0)y, =0, for n>—1.
(52)

We also note that

Lyloy) =0, for n> 1. (53)

Therefore, the action on the vacuum of the BRST operator
Q* is well defined and is given by

Q*10)a =) cnLnlow) ® 0)a—1 ® |0)gn

n
= L_1lox) ®10)a—1 ® c1|0)¢n
+ Lolos) @ 10)a—1 @ c0l0)gn
“1low) ®10)a—1 @ c110) gn

1
+ %W*) ® [0)a—1 ®CO|0>gh~

Translated into the BRST variation of the primary operator
04(s), this can be written

Q%04 (s) = ()00 (s) + %80(8)0*@). (54)

X0 (s)

Now let us introduce o (s) = o (s)e4 , 0(8) = a4(s)

X’ (Y), which are the conformal dimension zero bcc oper-
ators used in the EM ansatz, and use the shortcut notation
o(s) = 0x(SHw(s), (s) = 0x(s)D(s). (55)
The corresponding state |o) is defined as follows:

lo) = lox) @ |w) @ 10)gn, (56)

where |w) = w(0)|0)y—1. The variation of this state with
respect Q* is

Q*lo) = Zc_nw* ) ® |@) ® cnl0) g

+Z|a

= E_lla*) ® |w) ® c110)gn

® LOw) ® ¢u10) gn

1
+ 1glox) ® o) ® col0)gn

+low) ® L) w) ® ¢110) g1

— —loy) ®

16
= L1]04) @ |®) @ c1|0)gn + [0%)

® LY |w) ® ¢1(0)gn

lw) ® col0)gn

Translated into the BRST variation of the primary operator
o (s), this is written as
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0% (5) = c(5)004(5)w(s) + c(5)04(s)dw (s) = c(s)do (5).

A similar relation also holds for ¢.

So the actions of Q and Q™ on the relevant vacua are well
defined. But it is easy to see that distinguishing between H
and H*, K and K* is not enough. Expressions like (19) are
products of string states belonging to different Hilbert spaces

WNNWND YDD YDN NN (57)

The first, third, and fifth state belong to spaces of type H,
the remaining ones to spaces of type H.. But to be accurate
we must introduce four Hilbert spaces HnnN, Hpp, HNp, and
‘Hpn. We tensor them with the remaining matter and ghost
sectors and give them the same name. The corresponding Q
and K will be labeled in the same way, while ¢ and B are uni-
versal. In particular Onn and Opp are (on zero momentum
states) of type Q, and Onp and Qpy are of type Q*.

This poses several problems we have not considered so
far.

e What is the star product between string states belonging
to different Hilbert spaces?

e The SFT BRST operator Q = QNN acts as a derivation
on any expression like (57): why is it that it may change by
taking the form appropriate to different Hilbert spaces?

The answer to the first question does not seem to be unsur-
mountable in view of the definition of star product in terms of
a three-strings vertex [40,41]. The second problem is more
complicated. For instance, how is it possible that Q becomes
of type Q* whenever it comes across a factor belonging to
‘H* and returns back to Q if the subsequent factor belongs to
‘H? To justify it we have envisaged two possible alternatives.

First alternative. A way to realize this is by introducing
intertwining operators between the different Hilbert spaces.
Let us call them XNN,NDs XND,DD, XDD,DN>s and XDN,NN
(we think the names are self-explanatory). Next we rewrite
(57) as follows:

WNN X NN, ND WND XND, DD WDD X DD, DN WDN X DN, NN UNN
(58)

and the relation among the different BRST operators is
assumed to be

ONNXNN,ND = XNN,ND OND,

ONpXND.DD = XND.DD ODD;, (59)
OppXpp,DN = XpD,DN ODN;s

OpNXDN,NN = XDN,NNONN-
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Since any state K is generated by the corresponding Q acting
on B we have also to assume

KNNXNNND = XNN,NDKND,
K~Np XNp,DD = XND,DDKDD.
KppXpp,pNn = Xpp,DNKDN,
KpNXDN.NN = XDN NNKNN- (60)

If these relations are valid and we have the following modified
version of the OPE (14):

(Xpp,DN & XDN,NN) (XNN,ND 0 XND,DD) = 1, (61)

some of the issues raised in Sect. 3 are resolved, and we can
prove the equation of motion and also compute the energy,
provided that the X are pure matter operators (see Appendix
A).

Of course all the above works if the intertwining X oper-
ators exist. Do they? The possibility of an intertwining oper-
ator is envisaged in [31], accompanied by the sentence “The
operator so constructed is rather unwieldy”. But let us see
what these authors refer to. The construction goes back to
the 1970s and is due to Corrigan and Fairlie [32], but see
also [33-39] for the environment (the search for off-shell
dual amplitudes) where such an idea was born. Bcc opera-
tors are not mentioned, but they are precisely what Ref. [32]
deals with. More precisely that paper is concerned with the
relation between what we call |0) = |0)5 and |o,), and it
defines an intertwining operator for the vertex operators in
the two pictures (integer- and half-integer mode oscillators),
say V (k, z) constructed with «;, and 1% (k, z) constructed with
the half-mode ones (k is the momentum). The basic formula
is

(O] exp F(w)|ox) V(k, 2)
= de R0V (k, z — w) (0] exp F(w]oy) (62)

where the quadratic form F is given by

Fz) = 1 1 7{ dxdyp( VA )P
(z _5(2711')2 CF X)A(x, y,2)P(y)

n 1 ‘(ﬁdxdyp Bix. 1 1)
IR A (xX)B(x, 1/y,2)S(y

where P(z) = —z(f—ZXNN(z) and S(z) = —z JNp(z), while

o
Ax,y, )= Y X" Apm(@y"

n,m=0
=2log(v/x — 2+ Yy —2),
A =28, (63)
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and

B(x,1/y,2) = Z Zx”Bn,r(z)y_r

n:0r=%
\/_—«/x—z)
=log (YY) 64
Og(ﬁ+m 9

The integration contours must be such that for C |x| and
|yl < |z|, while for C’ |x| < |z| but |y| > |x — z|. The
intertwining operator (0| exp F(w)|oy) works very well for
vertex operators, but it is easy to see that, unfortunately, it
cannot work for expressions like K 1L and Q. This example
gives an explicit idea of what we mean by an intertwining
operator in the present context. We do not know whether
this construction can be improved, so as to intertwine also
Knn and Onn with Knp and Onp, and to intertwine the star
products in the two sector. We think it should be possible,
but our attempts in this direction have failed.

The idea of considering two different Fock spaces ‘H and
H* with an intertwining operator between them, if viable,
would solve the problem. However, such a construction
would make explicit use of DD, ND, and DN oscillators,
beside the NN ones. The former appear in strings attached to
a D24-brane. In fact they define the D24-brane (the dynam-
ics of a brane is defined by the strings attached to it). This
means that the information we want the solution to contain,
i.e. the description of the D24-brane, is already contained
in the initial data. This implies that the solution is back-
ground dependent. There is nothing wrong, of course, in
trying to describe D-branes in a background dependent way.
Background dependence is standard in ordinary string theory
approaches, for instance in [29]. But here we are in SFT and,
as explained above, the ambition of this theory is background
independence, which means that we can derive all the other
possible backgrounds as analytic solutions of its equation of
motion. It goes without saying that any such solution must be
formulated in the original SFT background (the NN string).

This is a good point to recall that the non-analytic or
approximate lump solutions one finds in the literature do
not make use of bcc operators or half-integer modes. This is
the case for numerical solutions based on level truncations,
[42—45], but also for the lump solutions in vacuum SFT (see,
for instance [46]) and for those in boundary SFT (see, for
instance [47]). In analogy we expect that an analytic lump
solution should not contain any built-in information about D-
branes, but rather a D-brane description should emerge from
the physical content of the solution. A comparison with the
BMT proposal below may help to understand the difference.

Second alternative. A radically different and more
appealing alternative could be inspired by the example of
marginal deformation to the TV solutions. To this end let us
recall the KOS solutions [12].

5.1 The KOS bcc operator

In the case of the KOS solution for marginal deformations,
the bec operators o and ¢ are such that

0(0)o (a) = exp |:/a dtV(t):| (65)
0

where V is a matter primary operator of conformal dimension
1 and it belongs to the original Hilbert space. Therefore, the
bce operators belong to the same Hilbert space. V has the
following properties:
[B,V]=1[c,V]=0, QV =I[K,cV]. (66)
The wedge states with the modified boundary condition are
given by

A EKHY) — 50K (67)

The BRST variation of the deformed wedge state is

Qea(K+V) — /a dtet(K+V)Q(K + V)e(ot—t)(K+V)
0

= KTV (V) — (V) EHY),
On the other hand using (67) we can write
Qea(K-F V) — (QO,)eOlKO—_ + O,eOtK(Qa,)

Comparing the last two equations the authors of [12] con-
clude that

Kt (V) =0e*¥(05), —(cV)er* TV

= (Q0)e*% 5.

Setting @« = 0 and multiplying the first relation by ¢ from
the left and the second one by o from the right we obtain
Qo =coV, o=-cVo. (68)
We see that the original BRST operator operates effectively
on the bcc operators of the KOS solutions, because they
belong to the original Hilbert space.

The KOS solutions are based essentially on Eq. (65).
Returning to the EM ansatz, the first difference we notice
is that in the latter the field analogous to V does not exist (in
the relevant case it is singular [18]). Thus we have to pro-
ceed in another way. In [27] the half-integral-mode sector is
called ‘Ramond’. This is an unconventional terminology, but
it is reminiscent of the Ramond sector in superstring theo-
ries and suggests a parallel with that situation. We recall that
in open superstring theory we have two vacua, the NS one,
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analogous to the usual vacuum in bosonic string theory, and
the Ramond vacuum (which is made of spinor states forming
a representation of the gamma matrix algebra in 10D). It is,
however, possible to define a primary operator that, applied
to the usual vacuum, creates the Ramond vacuum under the
state-operator correspondence. This primary is constructed
using (matter and ghost) fields in the theory (with fermion
and superghost fields in bosonized form).

Applying this analogy to the EM proposal we may ask
whether the |o,) (and |64)) vacuum can be created in an anal-
ogous way starting from the ordinary vacuum and applying
a primary operator formed with the fields in the theory. In
such a case all Q’s and K’s would collapse to the same oper-
ator and the previous difficulties would disappear, because
there would be no need to distinguish between string states
belonging to the four different Hilbert spaces. This scheme
is certainly most appealing, in particular it would guarantee
background independence. But it is not easy to implement. It
cannot be done straight away, because we have at our disposal
only the bosonic NN field X (which has no charge at infin-
ity, and thus does not offer any chance to use the Coulomb
gas method?). At page 5 of [28] we find the peremptory sen-
tence: “In open strings there is no such thing as a twisted
state”, where ‘twisted state’ refers to |o,). Perhaps this is
too strong a statement, but, certainly, there seems to be no
straightforward way to implement this scheme.

In conclusion we have not been able to implement the EM
prescriptions in a concrete 2D field theory formalism, con-
sistent with 2D CFT on which SFT is defined, while avoiding
background dependence. But, since ours is not a mathemati-
cal theorem, we cannot completely exclude that it is possible.

The parallel with the KOS solution suggests one more
consideration. When one tries to translate the KOS solution
into the EM scheme one comes across a singularity (in the
analog of V). This may be an indication that lump solutions
are inevitably, in some sense, singular. A similar peculiarity is
met in numerous classical field theory solutions and, in itself,
is not really important. What is important in these cases is
that the physical quantities related to the solutions can be
computed. This is what happens also for the BMT solution.

6 The BMT proposal

In [15] a general method has been proposed to obtain new
exact analytic solutions in open string field theory, and in par-
ticular solutions that describe inhomogeneous tachyon con-
densation. The method consists in translating an exact renor-
malization group (RG) flow generated in a two-dimensional
world-sheet theory by a relevant operator, into the language
of OSFT. The so-constructed solution is a deformation of the

> . . 1 . . .
3 Needless to say e7X where X is as in (33), is not what we need.
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ES solution. It has been shown in [15] that, if the operator has
suitable properties, the solution will describe tachyon con-
densation only in specific space directions, thus representing
the condensation of a lower dimensional brane. In the fol-
lowing, after describing the general method, we will focus
on a particular solution, generated by an exact RG flow first
analyzed by Witten [48]. On the basis of the analysis car-
ried out in the framework of 2D CFT in [47], we expect it to
describe a D24-brane, with the correct ratio of tension with
respect to the starting D25-brane.

Let us see first the general recipe to construct such kind of
lump solutions. To start with we enlarge the K, B, c algebra
by adding a (relevant) matter string field ¢, where

= ! 1 = ! 1
omo(Din eme()in

with the properties

[c.¢]1=0, [B,¢]1=0, [K, ¢]=2039,
Q¢ =cip + 0cdo. (69)
It can easily be proven that
1
Yy =cp — ————(¢p — ¢p)Bcac (70)

K+¢
does indeed satisfy (in the sense specified below) the OSFT
equation of motion
Oy + Yy = 0. (71)

It is clear that (70) is a deformation of the Erler—Schnabl
solution, which can be recovered for ¢ = 1.
After some algebraic manipulations one can show that

Qs = Oms Vo s | =1
“K+e “K+o " K+o]
So, unless the string field KL_Q) is singular, it defines a homo-

topy operator and the solution has trivial cohomology, which
is the defining property of the tachyon vacuum [2]. On the
other hand, in order for the solution to be well defined, the
quantity K++¢ (¢ — 8¢) should be well defined. Moreover, in
order to be able to show that (70) satisfies the equation of
motion, one needs K + ¢ to be invertible.

In full generality we thus have a new nontrivial solution
if, roughly speaking,

1. # is in some sense singular, but
2. the RHS of (70) is regular and
3w (K +¢)=1.

These conditions seem hard to satisfy and even contradictory.
It is indeed so without adequate specifications. This problem
was discussed in [16,54], where it was shown that the right
framework for a correct interpretation is distribution theory,
which guarantees not only regularity of the solution but also
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its ‘non-triviality’, in the sense that if these conditions are
satisfied, it cannot fall in the same class as the ES tachyon
vacuum solution. These questions will be discussed further
on.

For concreteness the world-sheet RG flow, referred to
above, is represented by a parameter u#, where u = 0 cor-
responds to the UV and u = oo to the IR (in 2D), and ¢ is
labeled by ¢,,, with ¢,,—¢ = 0. Then we require for ¢, the fol-
lowing properties under the coordinate rescaling f;(z) = 7:

froou@ = ou (%), (72)

In [15] a specific relevant operator ¢, and the correspond-
ing SFT solution was considered. This operator generates an
exact RG flow and it was studied by Witten in [48], see also
[47], and is based on the operator (defined in the cylinder Cr
of width T in the arctan frame)

Gu(s) = u(X*(s) +2 Inu + 2A) (73)

where X = X2 is the NN open string field and A is a con-
stant. On the unit disk D we have

T
Pul@) = (Xz(e) 2 z_u + 2A> ' (74)
T
If we set
gau) = (e_ﬁ o™ a0 u(x2©)+21n ﬁ+2A)>
D
we get
ga(u) = ZQu)e 240 5z +4) (75)

where Z (u) is the partition function of the system on the unit
disk computed by [48]. Requiring finiteness for u — oo one
gets A = y — 1 4 In4sw, which implies

1
ga(u) = g(u) = ﬁ«QuF(Zu)eZ“(]_ln(z“)),
A, 80 = 1. (76)

Moreover, as it turns out, ¢, — §¢,, = ud, P, (s).

The ¢, just introduced satisfies all the requested proper-
ties. According to [47], the corresponding RG flow in BCFT
reproduces the correct ratio of tension between D25- and
D24-branes. Consequently v, = v, is expected to repre-
sent a D24-brane solution.

In SFT the most important gauge invariant quantity is of
course the energy. Therefore in order to make sure that ¥, =
Vg, 1s the expected solution we must prove that its energy
equals a D24-brane energy.

The energy expression for the lump solution was deter-
mined in [15] by evaluating a three-point function on the
cylinder Cr. It equals —% times the following expression:

(Yuutry) = —/0 dydndn oty t, t3)u’ g(uT)
{( azuTg(uT>)3 1( 32uTg(uT)>
X - +t = - ——
gT) 2 gT)
X <G%uT <2LTtl) + G%uT <2]T(tlT+ t2))
()
+G2uT<?>G2uT<M)G2uT<ZnTt2>}~

(77)

Here T = t1 + 1t + 13 and g(u) is as above, while G, (6) rep-
resents the boundary-to-boundary correlator first determined
by Witten [48]:

cos(k6)
k4+u '

1 o0
Gu®) = —+2"
k=1

Finally, &y (1, 12, t3) represents the ghost three-point function
in C T,

Eo(t1, 12, 13) = (Bcdc(ty +12)0c(11)3c(0)) ¢,

4 . mn  w(ti+1n) . wh
—— S —S1In —— S1In ——.
T T T T

A remarkable property of (77) is that it does not depend on
u. In fact u can be absorbed in a redefinition of variables
t; — ut;, i = 1,2, 3, and it disappears from the expression.

The integral in (77) is well defined in the IR (s very large,
setting s = 2u7T) but has a UV (s ~ 0) singularity, which
must be subtracted away.* Once this is done, Eq. (77) can be
numerically computed, the result being ~0.069. This is not
the expected result, but this is not surprising, for the result
depends on the UV subtraction. Therefore one cannot assign
to it any physical significance. To get a meaningful result we
must return to the very meaning of Sen’s third conjecture,
which says that the lump solution is a solution of the theory
on the tachyon condensation vacuum. Therefore we must
measure the energy of our solution with respect to the tachyon
condensation vacuum. Simultaneously the resulting energy
must be a subtraction-independent quantity because only to
such a quantity can a physical meaning be assigned. Both
requirements have been satisfied in [16] in the following way.

First a new solution to the EOM, depending on a parameter
&, has been introduced

Yy =c(@u +e) — (u + & — 8¢u)Bcdc  (78)

K+¢u+e

4 Of course this singularity is present also in the ES solution, it is

represented by the infinite volume. The difference here is that the infinite

volume appears in the form of a zero mode which generates a singularity
1 .

~7 in g(u).
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in the limit & — 0. This limit will be mostly understood from
now on. The energy of (78) (after the same UV subtraction
as in the previous case’) is (numerically) 0. Since (unlike the
previous case) the presence of the parameter ¢ prevents the IR
transition to a new critical point, it seems sensible to assume
that lim,_, ¢ v, represents the tachyon condensation vacuum
solution. In other words we assume it is gauge equivalent
to the ES solution (we will justify this further on). Using it,
a solution to the EOM at the tachyon condensation vacuum
has been obtained. The equation of motion at the tachyon
vacuum is

QP+ ®P =0, where QP = QP+ y; P + dyY;. (79)
One can easily show that

Qo =Yu— Y, (80)

is a solution to (79). The action at the tachyon vacuum is
—1(Q®, ®) — L(d, ®). Thus the energy of @y is

1
E[®g] = —g(q’o, Do Do)

1
= _6 [(%, Yuu) — (%f, 1#5%5)
=3, Yu) + 3, YEVE)] . (81)

The UV subtractions necessary for each correlator at the RHS
of this equation are the same in all cases, therefore they cancel
out and the final result is subtraction-independent. A final
bonus of this procedure is that the final result can be derived
purely analytically and E[®¢] turns out to be precisely the
D24-brane energy. With the conventions of [16], this is

1
Tpyu = —. 82
DU =53 (82)

In [17] the same result was extended to Dp-brane lump solu-
tions for any p. All these solutions are background indepen-
dent.

Before we pass to a closer scrutiny of this solution and
its properties, we need a discussion of the relations between
various solutions of the SFT EoM provided by gauge trans-
formations. What we would like to stress is that gauge equiv-
alent solutions may take very different (even singular) forms.
To this end we make a detour about identity based (IB) solu-
tions.

5 The parameter ¢ is originally a gauge parameter, but due to the UV
subtraction such a gauge nature is broken and the energy functional
depends softly on the value of & [49].

@ Springer

7 A detour: TV solution as gauge transformation of IB
solutions

Letus introduce the following family of IB solutions [50-53],
depending on a parameter «:

Vo =cla — K), (83)
which can also be written as a pure gauge solution as follows:
Vo = U, ' QUa, (84)
where

1 a—K
U, =1+¢cB z

1
Uy=1——cBlex — K),
o

We note that for the o = 0 case the gauge transformation is
singular. The homotopy field is Ay = éB. The problem with
IB solutions is in the computation of the physical observable.
For example, the direct evaluation of the energy using the
K, B, c algebra gives zero:

E~ (y2) = —(cKcKcK)
= —(cKcdcK) = —(cK(3¢)’K) = 0.
However, if we use a different regularization method we will

get different results. The most obvious regularization is the
following:

(W3) = — lim (cKQ"cKQPcK Q")

o
ti—0

lim0 31, 01, Og, (c Qe Q2 QB). (85)
ti—

The answer in this case depends on the way we take the
limits, therefore this regularization is ambiguous. Another
procedure is to connect this solution to the class of ES TV
solutions by a regular gauge transformation [51-53]. This
way we generate from the IB solutions the following two
parameters family of solutions:

Woi =V, ' (Yo + OV

1
Xc(l + LK Bc) (

ra— 1
11K T ) (86)

where

V,' =14+ xcBK, Vi=1-xcBK (87)

1+ 1K

If we set A = a = 1, we obtain the ES TV solution. Since all
the known solutions can formally be written as a pure gauge,
for any solution ¥ = Uy, 'OUy we can write

W =Uy'QUy = Vy' (Y + Q) Vu
=V, (U1 0Us + 0V, (88)
where

Vo = U, 'Uy. (89)
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For the TV solutions this gauge transformation is regular,
which means they are gauge equivalent to the IB solutions.

The energy for these class of solutions in (87) is indepen-
dent of both @ and A and it is equal to the energy of the ES TV
solution. The same is true for the closed string overlap. Since
the original Schnabl’s TV solution is also gauge equivalent
to the ES solution, we see that all the known TV solutions
are regular gauge transforms of the IB solutions.

Whatis interesting about the generalized TV solution Wy 5,
is related to its homotopy field. The homotopy field is given
by
1 B
«T1IK
which is a well-defined field for « # 0 and A > 0. However,
the solution itself and the corresponding physical observables
are well defined for « = 0 as well. We cannot tell if the coho-
mology of the corresponding BRST operator is vanishing for
a = 0. We know that the existence of the homotopy field is
a sufficient condition for the vanishing of the cohomology,
but is it a necessary condition? We will return to this point
later on.

Agi =V, ALV = (90)

7.1 BMT lump solution as gauge transformation of IB
solutions

Let us apply the previous formalism to the BMT lump solu-
tion. In particular we write the gauge transformation which
relates the BMT lump solution to the identity based solution.
Since the parameter A has no significance we set it to 1,

Vg0 =U, ' QUy =V (Yo + Q) Vy, 1)
where V,, = U, 'Uy is given by
ngl =1+c¢BK+¢—1),

1

After some simplifications we obtain

V¢=l—cB<1—

Vg o =agc+ (o — 1)cKBc—cKcB(¢p — 8¢)%—|—¢'

93)

We note that for o = 1 this gives the ¥y BMT lump ansatz.
The new thing here is that this time the gauge transformation
is not regular (see below for an additional comment on reg-
ular and singular gauge transformations). Therefore, we can
claim that the lump solution is a genuine new solution. The
calculation of a physical observable will follow the standard
procedure. For example the first two pieces in (93) do not
contribute to the energy, so that the energy is « independent
and the same as that of the BMT lump solution. Let us focus
on the homotopy field. It is given by

1 B
a9+ K
which is singular even for o # 0.

In [16] another regularized solution was used (see above).
It was obtained via the replacement ¢ — ¢ + ¢. Replacing
this in the above formulas gives

Apa =V, AV = (94)

Vo =1+cB(K+¢+e—1),

1
vil=tl—cB(1-—— ), 95
¢ ‘ ( K+¢+e> ©)

and the solution becomes
Vs oe=0a(p+e)c+ (a—1)cKBc
1
—cKcB(p+¢e—06¢p) ———. 96
(¢ P Tote (96)
The regularized solution is obtained with « = 1. In [16] it
was identified with the TV solution (see also the previous sec-
tion). The gauge transformation this time is regular because

of the ¢ parameter, and the solution will reproduce the TV
observables. In this case the homotopy field is

1 B
o K+¢o+¢’
which is regular as expected (see further comments below on

this issue). The regularized solution is also gauge equivalent
to the ES solution. Setting « = 1 we can write

Ad)ﬂ o)

Wy =X '(Wps + O)X (98)
where
1
X '=1-¢cBl-9¢-—
cB(l—¢ —&) .
X=14+cB(l—-—¢p—8)———, 99
cB(1—¢ >K+¢+E (99)

so it has precisely the same energy as the ES solution.

8 Discussion of BMT solution

This section is devoted to discussing the critical aspects of the
BMT proposal. Let us start with the conditions 1, 2, and 3 of
Sect. 6. We have already anticipated there that these, seem-
ingly contradictory, requirements can be satisfied with an
appropriate mathematical interpretation. String states such as
K+r¢ or, similarly, % may be singular. This is so because the
operators that act on |I) in the definition of both are expected
to have a nontrivial kernel. In such a case the Schwinger rep-
resentations

1 1

o0 o0
- = / dre K1, = / dre=K+O1(100)
K 0 K+ ¢ 0

are bound to diverge, due the zero modes of the corresponding
operators. To obtain well-behaved Schwinger representations
we have to find a way to remove such singularities.

@ Springer
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As was repeatedly noticed in [ 16, 17,54], this is analogous
to the procedure of removing singularities, or defining dis-
tributions, in ordinary function theory. In [54] a first attempt
was made to do the same for K;-'F(P A space F of test string
states or regular states with a definite topology was intro-
duced. The dual of it, F', with the appropriate topology was
defined. The state K+r¢ belongs to the latter, i.e. it is a distri-
bution. As such the condition 2 and 3 of Sect. 6 are satisfied
and the SFT equation of motion is verified (on the other hand,
in a common-sense approach, a simple continuity argument
would be enough to prove the latter; see [16]). Moreover, as
was shown above, the procedure to compute the energy is
well defined.

As for point 1 of Sect. 6 it is self-evident, but a comment

. . 1 .

is in order. The string state X Must be singular so that the
B

would-be homotopy operator yers (understood as the star-

multiplication operator by the string state KL_Q) is not well
defined, otherwise the perturbative spectrum on the brane
would be trivial. A true homotopy operator is supposed to
map normalized states (annihilated by the BRST operator)
into normalized states. The state K+F¢ is singular and it has
to be regularized. As was shown in [54] this can be done in
a weak sense (in physical language, for correlators), while
the previous requirement would require an operator topology
argument, which does not seem to exist. For this reason we
conclude that KL_Q) does not exist as a homotopy operator.

Let us illustrate this with an example. In the concrete BMT
solution in Sect. 7, defined by the relevant perturbation (73),
the inhomogeneous tachyon condensation takes place in the
limit u — oo. Now it is easy to see that

1
=cK— (¢, —2u)Bcoc

Q(C¢u) K + ¢,

(101)
and, naively,

lim ——
u—oo K + ¢u

Therefore c%” is a closed state for Q in the limit u — oo, but

it is infinite due to the presence of log u in ¢,. On the other
hand one can easily show in the same way that lim,,_, o, Q¢ =
0. So the (non-singular) state

(pu —2u) = 1.

(102)

u—>00

¢(m‘) = lim ¢ <¢_u —2u log M)
u

is annihilated by Q (at least to this naive level of manipu-
lation). Therefore, provided it is nontrivial, it is a candidate
to represent a (zero momentum) state in the spectrum of the
D24-brane. Now, while it is not hard to imagine a procedure
to define a norm for this state, it is impossible to do the same
for the state KL;qbqb(”) .

The previous conclusions have important consequences
for the themes discussed in this paper. For instance, it is
debated what the allowed gauge transformations are in SFT.

@ Springer

Based on the above we propose the following distinction: a
gauge transformation is allowed if it is regular in the above
sense, thatis, if it does not need to be regularized; otherwise it
is not allowed. In other words, an allowed gauge transforma-
tion cannot be a true distribution. Once this is established, we
can return to the end of the previous section: the state m
for ¢ # 0 is not a distribution (it does not need a regulariza-
tion), it is a regular state. So the states X and X —1 which
lead from the ES solution to the Wy . solution (98), (99), are
regular. Therefore the corresponding gauge transformation
is a genuine one, and the Wy . solution is equivalent to the
ES one. This implies in particular that they have the same
energy.

We can now reconsider one of the unsatisfactory aspects
of the energy calculation in [16]. As pointed out above, the
energy of (96) was calculated only numerically and turned
out to be 0. It was remarked in [16] and repeated above that
this value is only conventional, because it is obtained via
a UV subtraction which introduces an arbitrariness in the
absolute result. Consequently it was stressed in [ 16] that only
quantities that are independent of such subtractions can be
assigned a physical meaning, and it was precisely in this way
that the lump energy was calculated. From what we have just
argued (see also the end of Sect. 7.1) we are now able not
only to confirm all this, but also that the energy of Wy . is
precisely the TV energy, thus confirming the intuition in [16].

8.1 A comment about homotopy operators

In the previous section we have presented a family of ana-
lytic solutions of the OSFT EoM that are gauge equivalent to
identity based solutions. They split into two subsets: o 7~ 0
and @ = 0. The first set is gauge equivalent to the ES solu-
tion and has a regular homotopy operator. The second set,
although modeled on the ES solution, although regular and
with the same energy as the ES solution, is in no obvious way
gauge equivalent to it. The latter case is puzzling because, in
addition, it does not admit a homotopy operator as a function
of K, B, c. We recall again that the existence of a homo-
topy operator, in correspondence with a tachyon condensa-
tion vacuum solution vy, implies that the vacuum has a trivial
cohomology, i.e. no perturbative open string spectrum; for
Qyo® = 0 implies

¢ = (Quy AP = Oy (AP) — A(Qy,d)
= Q‘/fOXv x = Ag.

This condition is also necessary: if any state annihilated by
Qy, is trivial, i.e. if Qy,¢ = 0 implies that ¢ = Oy, x for
some state y, it means that there exists a map whose domain
is the kernel of Qy,, and whose image lies in the complement



Eur. Phys. J. C (2016) 76:203

Page 15 0f 18 203

of the kernel. This map is linear and is precisely the homotopy
operator.’

This is puzzling and we face two possibilities: (1) either
Y=o is truly not equivalent to the ES solution though degen-
erate in energy with it, in which case it may well be that
the perturbative spectrum supported by this solution is not
empty; but the physical interpretation would be obscure: what
is this vacuum degenerate with the TV supposed to be? or (2)
Y=o is truly equivalent in some non-evident way to the ES
solution, but in this case a homotopy operator should exist.
Then we are again faced with two possibilities. The first pos-
sibility is that the homotopy operator for ¥,—o exists, but
cannot be expressed as a function K, B, c. Although unlikely,
because the solution 4 —g is a simple function of K, B, ¢, we
cannot completely exclude this exotic possibility. A second,
more likely, alternative is that the homotopy operator exists
as a limit of a sequence of homotopy operators of analogous
solutions. This of course requires the existence of a topology
in the space of solutions, that is, in the space of string states.
Such a topology should not be confused with the Hilbert
space norm, because most of the string states that enter this
game have infinite Hilbert space norm. An attempt in this
direction has been initiated in [54].

9 Conclusions

In this paper we have pointed out the problems connected
with the proposal of [18] to construct analytic lump solutions
in OSFT. We have remarked that for it to become effective (in
a background independent way) one must show that it is pos-
sible to implement it in the very same language (2D CFT) in
which OSFT is formulated. We have made some attempts in
this direction without succeeding. However, we do not com-
pletely exclude that such an implementation be possible. We
have also made some additional improving remarks on the
BMT proposal for analytic lump solutions. This proposal too
has a problem of a different nature related to its mathemati-
cal background: a formulation of a well-defined distribution
theory for string fields that generalizes the approach of [54].
We hope anyhow we have at least brought enough evidence,
with this and other examples in Sect. 8.1, that it is time to
face the problem of the topology in the space of string fields.
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Appendix A: EoM and energy with intertwining opera-
tors

In this appendix we verify the equation of motion and energy
of the EM solution, rewritten in terms of intertwining oper-
ators as in Sect. 5. Equation (16) can be written

1
Pg=——————c(1+ Knn)X10X2
A1+ KnN
1
X ———X30X4(1 + KNN)C—F——=——=, (103)
1 + Kpp 1+ KnN
where we used X1 = XNNND, X2 = XNDDD, X3 =

Xpp.pN, and X4 = Xpn nn for simplicity. Using (59), the
BRST variation of @ is written as

ONNDo = _\/%TNN(QNNC)O + KnN)
XIUXZm
x X360 X4(1 —i—KNN)c\/%TNN
+\/%7KNNC(I + KnN)
Xl(QNDU)sz
x X306 X4(1 + KNN)C\/%TNN
+\/%TNNC(1 +KNN)XIUX2%
x X306 X4(1 —i—KNN)c\/%TNN
—ﬁc(l + KNN)chsz%
x X3(QpNo)X4(1 + KNN)C«/%TNN
—\/%TNNC(I +KNN)X10X3ﬁ
x X306 X4(1 +KNN)(QNNC)«/%7KNN.

Unlike what we see in Eq. (31), now the switching of the
BRST charge from one Hilbert space to the other when it
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acts on different components of the solution is justified by
(59). Using the K, B, c, o, ¢ algebra of Sect. 3 we can write

ONNDo = — cKnne(l

1
V1 + KnN

+ K, Xio0Xy————
NN) X1 21+KDD

X X306 X4(1 + KnN)C

1
1+ KnN

+ c(1+ Knn)eX 1 (Knpo —

1
v 1+ KnN

oK X)——
ND) 21+KDD

1
X X30X4(1 + KNnN)C————
1+ KnN

K
c(1 4+ Kxn) X0 Xy — 2

1
+ [ —
1+ KnN 1+ Kpp
- 1
X X36X4(1 + KNN)CJH—T
NN

1
— ——=c(1 + Knn)X10X2

v 1+ KnN

x X3(KpNno — KpNno)Xac(l

B
1 + Kpp

+ KnN)ce

1
14+ KnN
1 B
————c(l+ Knn) X0 X3———

V1T+ KnN 1+ Kpp
1

X X306 X4(1 + KNN)CKNNC—F/——=,
V14 KnN

where we have used the assumption that the X;s are pure
matter operators. Now with the help of (60), we can convert
the K;; to K;; to obtain

1 B
ONNDP) = ————=cKnnc(l + Knn) X 10Xy ———
V' 1+ Knn 1 + Kpp
1
x X365 X4(1 + KnN)C—e—ee—
1+ KnN

B
c(1+ Knn)eKnnX10 Xy ———

1
+—
1+ KnN 14+ Kpp

X X30 X4(1 + KnN)C

1
v 1+ KnN

1
— ———¢(1 + Knn)eX10X2Kpp

1+ KnN

X X306 X4(1 + KnN)C

1+ Kpp

1
1+ KnN

K
c(1 4+ Knn)X 0 Xy —2

1
S — 00
v 14+ KnN 1+ Kpp
1
/14 KnN

x X30 X4(1 + KnN)C
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1 B
— ——c(l + Knn)X10Xo———Kbpp
1+ KnN 1 + Kpp
x X360 X4c(1 + KnN)C
KnN
P (1 + Knn) X106 Xp— 2
——c NN X0 Xy ———
1+ KnN 1+ Kpp
1
x X35 X4Knne(l + KnN)e——
v 1+ KnN
1 B
— (1 + KN X0 X3 ————
1+ Knn I+ Kpp
1
X X30X4(1 + KnN)CKNNC—0mn—.
1+ KnN
After some simplification this gives
ONN D ! KnneX1oX
NPy = —————=cKnneXjo Xp———
1+ KnN 1 + Kpp
1
X X36 X4(1 + KnN)C——
1+ KnN
1 B
— ———cKnne X0 X Kpp———
v 14+ KnN 1+ Kpp
1
X X30X4(1 + KNnN)C———
/14 KnN
+ ! (14 Knn)X10X Koo
——c NN X0 Xpg——
1+ KnN 1 + Kpp
1
x X30 X4(1 + KNN)C——
V14 KnN
1 B
— ———c(l + Knn) X0 X, ————Kpp
1+ KnN 1+ Kpp
1
X X30 X4 KNNC——
V1 + KnN
1
— (1 + KN X0 X ———
14+ Knn I+ Kpp
1
X X30 X4cKNNC———. (104)
1+ KnN

Similarly, using again the assumption that the X are pure
matter and also employing the OPE in (61) we can write

{Wo, o} = cKnneXio X,

1
V1 4+ KnN 1+ Kpp
X X306 X4(1 + KnNn)e

1
1+ KnNN
1 B
+ ———c(1+ Knn)Xjo Xo——
m( NN) X 277

Kpp
x X35 X4cKnne (105)

1
VI+ K
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1 1
Cbzz—cl—f—K X0 XoBc——
0 «/1+KNN( W) X1 X 1+ Kpp
x X30X4(1 + KnN)c
KNN
: (I+ Knn)X10X !
- ——c NN)X10X)——F—
1+ KNN 1+ Kpp
1
X BeX30X4c(l + KNN) ——. (106)
/14 KnN

Substituting the results in Eqs. (103), (105), and (106), into
the equation of motion of (30) and simplifying, we see that
it is satisfied.

Since the equation of motion is satisfied, the energy is
proportional to Tr[<I>(3)]. Next, we calculate this trace. Let us
replace Knn by K and Kpp by K.

1
Tr[@?] = —Tr|:c(1 + K)XlO'Xgl <
1
cl+K)Xi0Xy——

X35 X4(1 + K)B
X X30 Xa(L+ K)Beq—— 1+ K

X X306 X4(1 + K)Bc

1
1+ K)X10Xo——
T T OXio X

1
1+K |

If we replace c(1 + K) = (1 + K)c — dc we obtain

X X306 X4(1 + K)Bc

1
T[CI>3]:T JeX 10X
Ir r[cla 21+K

x X35 X4(1 + K)Bc

deX10X
[ A IS

1
1+K |

(107)

X X306 X4(1 + K)Bc dc

1+ K

1 _
X X]Ule +ICX3OX4(1 + K)Bc

where we have used ¢ = 0. Using Bc+cB = 1, repeatedly,
this can be further simplified as

B 1
X35 X4X 10 X20
TR

Tr [@3] - TrI:X]aXzac

X X306 X4X10X20¢
30 X4X10 X2 1K

1
X306 X4(14+ K . 108
x X30X4(1 + )C1+K] (108)
Recalling that X30 X4 X10 X2 = 1 we obtain
Tr[d>3] | B g1 _pc !
= C C
1+ 14K 14K
1
X306 X4(14+ K XioXpdc |, 109
><304(+)CH_K1026’] (109)

where we have also applied cyclic property of the trace.
Replacing (1 + K)c = ¢(1 + K) + dc we obtain

B 1 1
dc dc coc

1+ 1+K 14K

B 1 1

9 9
1+ KT+ KT K

Tr[@%] = Tr[

—|—Tr|:

_ 1
X X3(7X43C1 TK X10X236‘] ,

o0
= / dtldtzdt3ei(tl+t2+t3)
0
X (Bac(0)dc(t1)cdc(tt + 12)) 4 41,445 ({010 matter)
o0
-l—/ dzleth3dt4e_(”+’2+t3+’4)
0

x (Boc(0)dc(r)dc(tr + 12)0c(tt + 12 4+ 13)) 1y 41y 413-+14

X (X30 Xa(t1 + 02)X10 Xo(t1 + 12 + 13)) 4y 41y413414 »
(110)

where we have assumed that the wedge states defined in terms
of I are the same as those of K. The ghost part of the second
integrand is zero, while the first gives

00 —(ti+n+13) 27(t + ¢t
Tr [cpg] :g*/ dx; & [Sin( iU 2))
0 s H+bn+1
2wt

. . 27ty
-Sin{— ) —-Sin| ——— .
H+n+n n+n+n

Making the following usual change of variables:

31 15

X = , = , T=n+n+1,
hH+n+n Y n+n+n

(111)

we can write

g 00 1 1—x
Tr @] = - dTT2e_T/ dx/ dy
T Jo 0 0

3
x [Sin (27x) + Sin (27y) — Sin 27 (x + )] = — .
T
(112)
Therefore,
. 1 31 _ 8«
E=—Tr [d)o] =5 (113)

References

1. M. Schnabl, Analytic solution for tachyon condensation in open
string field theory. Adv. Theor. Math. Phys. 10, 433 (2006).
arXiv:hep-th/0511286

2. 1. Ellwood, M. Schanabl, Proof of vanishing cohomology at the
tachyon vacuum. JHEP 0702, 096 (2007)

@ Springer


http://arxiv.org/abs/hep-th/0511286

203 Page 18 of 18

Eur. Phys. J. C (2016) 76:203

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

E. Witten, Noncommutative geometry and string field theory. Nucl.
Phys. B 268, 253 (1986)

Y. Okawa, Comments on Schnabl’s analytic solution for tachyon
condensation in Witten’s open string field theory. JHEP 0604, 055
(2006). arXiv:hep-th/0603159

T. Erler, M. Schnabl, A simple analytic solution for tachyon con-
densation. JHEP 0910, 066 (2009). arXiv:0906.0979 [hep-th]

M. Kiermaier, Y. Okawa, L. Rastelli, B. Zwiebach, Analytic
solutions for marginal deformations in open string field theory.
arXiv:hep-th/0701249

Y. Okawa, Real analytic solutions for marginal deformations in
open superstring field theory. arXiv:0704.3612 [hep-th]

M. Schnabl, Comments on marginal deformations in open string
field theory. arXiv:hep-th/0701248

E. Fuchs, M. Kroyter, R. Potting, Marginal deformations in string
field theory. arXiv:0704.2222 [hep-th]

B.H. Lee, C. Park, D.D. Tolla, Marginal deformations as
lower dimensional D-brane solutions in open string field theory.
arXiv:0710.1342 [hep-th]

M. Kiermaier, Y. Okawa, Exact marginality in open string field
theory: a general framework. arXiv:0707.4472 [hep-th]

M. Kiermaier, Y. Okawa, P. Soler, Solutions from boundary con-
dition changing operators in open string field theory. JHEP 1103,
122 (2011). arXiv:1009.6185 [hep-th]

C. Maccaferri, A simple solution for marginal deformations in open
string field theory. JHEP 1405, 004 (2014). arXiv:1402.3546 [hep-
th]

A. Sen, Universality of the tachyon potential. JHEP 9912, 027
(1999). arXiv:hep-th/9911116

L. Bonora, C. Maccaferri, D.D. Tolla, Relevant deformations in
open string field theory: a simple solution for lumps. JHEP 1111,
107 (2011). arXiv:1009.4158 [hep-th]

L. Bonora, S. Giaccari, D.D. Tolla, The energy of the analytic lump
solution in SFT. JHEP 1108, 158 (2011). arXiv:1105.5926 [hep-th]
L.Bonora, S. Giaccari, D.D. Tolla, Analytic solutions for Dp branes
in SFT. JHEP 1112, 033 (2011). arXiv:1106.3914 [hep-th]

T. Erler, C. Maccaferri, String field theory solution for any open
string background. JHEP 1410, 29 (2014). arXiv:1406.3021 [hep-
th]

E. Fuchs, M. Kroyter, Analytical solutions of open string field the-
ory. Phys. Rep. 502, 89 (2011). arXiv:0807.4722 [hep-th]

M. Schnabl, Algebraic Solutions in Open String Field Theory—A
Lightning Review. arXiv:1004.4858 [hep-th]

Y. Okawa, Analytic methods in open string field theory. Prog.
Theor. Phys. 128, 1001-1060 (2012)

L. Bonora, String field theory: a short introduction. PoS ICMP
2013, 001 (2014)

T. Erler, C. Maccaferri, Maccaferri connecting solutions in open
string field theory with singular gauge transformations. JHEP 1204,
107 (2012)

L. Cardy, Conformal invariance and surface critical behavior. Nucl.
Phys. B 240, 514 (1984)

L. Cardy, Effect of boundary conditions on the operator content
of two-dimensional conformally invariant theories. Nucl. Phys. B
275, 200 (1986)

L. Cardy, Boundary conditions, fusion rules and the Verlinde for-
mula. Nucl. Phys. B 324, 581 (1989)

A.B. Zamolodchikov, Conformal scalar field on the hyperelliptic
curve and critical Ashkin—Teller multipoint correlation functions.
Nucl. Phys. B 285, 481 (1987)

A. Hashimoto, Dynamics of Dirichlet—-Neumann open strings on
D-branes. Nucl. Phys. B 496, 243 (1997). arXiv:hep-th/9608127
E. Gava, K.S. Narain, M.H. Sarmadi, On the bound states
of p- and (p+2)-branes. Nucl. Phys. B 504, 214 (1997).
arXiv:hep-th/9704006

@ Springer

30

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

. J. Frohlich, O. Grandjean, A. Recknagel, V. Schomerus, Funda-
mental strings in Dp-Dq brane systems. Nucl. Phys. B 583, 381
(2000). arXiv:hep-th/9912079

L. Dixon, D. Friedan, E. Martinec, S. Shenker, The conformal field
theory of orbifolds. Nucl. Phys. B 282, 13 (1987)

E. Corrigan, D.B. Fairlie, Off-shell staes in dual resonance theory.
Nucl. Phys. B 91, 527 (1975)

D. Olive, J. Scherk, Towards satisfactory scattering amplitudes for
dual fermions. Nucl. Phys. B 64, 334 (1973)

J.H. Schwarz, Off-mass-shell dual amplitudes without ghosts.
Nucl. Phys. B 65, 131 (1973)

D. Olive, P. Goddard, R.A. Smith, D.J. Olive, Evaluation of the
scattering amplitude for four dual fermions. Nucl. Phys. B 67, 477
(1973)

J.H. Schwarz, Dual quark-gluon theory with dynamical color. Nucl.
Phys. B 68, 221 (1974)

E.F. Corrigan, The scattering amplitude for four dual fermions.
Nucl. Phys. B 69, 325 (1974)

J.H. Schwarz, C.C. Wu, Off-shell dual amplitudes. II. Nucl. Phys.
B 72,397 (1974)

M.B. Green, Locality and currents for the dual string. Nucl. Phys.
B 103, 333 (1976)

A. LeClair, M.E. Peskin, C.R. Preitschopf, String field theory on
the conformal plane. 1. Kinematical principles. Nucl. Phys. B 317,
411 (1989)

A. LeClair, M.E. Peskin, C.R. Preitschopf, String field theory on
the conformal plane. 2. Generalized gluing. Nucl. Phys. B 317, 464
(1989)

J.A. Harvey, P. Kraus, D-branes as unstable lumps in bosonic open
string field theory. JHEP 0004, 012 (2000). arXiv:hep-th/0002117
R. de Mello Koch, A. Jevicki, M. Mihailescu, R. Tatar, Lumps and
p-branes in open string field theory. Phys. Lett. B 482, 249 (2000).
arXiv:hep-th/0003031

N. Moeller, A. Sen, B. Zwiebach, D-branes as tachyon lumps in
string field theory. JHEP 0008, 039 (2000). arXiv:hep-th/0005036
R. de Mello Koch, J.P. Rodrigues, Lumps in level trun-
cated open string field theory. Phys. Lett. B 495, 237 (2000).
arXiv:hep-th/0008053

L. Rastelli, A. Sen, B. Zwiebach, Classical solutions in string field
theory around the tachyon vacuum. Adv. Theor. Math. Phys. 5, 393
(2002). arXiv:hep-th/0102112

D. Kutasov, M. Marino, G.W. Moore, Some exact results on
tachyon condensation in string field theory. JHEP 0010, 045 (2000)
E. Witten, Some computations in background independent off-shell
string theory. Phys. Rev. D 47, 3405 (1993)

L. Bonora, S. Giaccari, D.D. Tolla, Lump solutions in SFT. Com-
plements. arXiv:1109.4336 [hep-th]

1. Kishimoto, T. Takahashi, Vacuum structure around identity based
solutions. Prog. Theor. Phys. 122, 385 (2009). arXiv:0904.1095
[hep-th]

S. Zeze, Tachyon potential in KBc subalgebra. Prog. Theor. Phys.
124, 567 (2010). arXiv:1004.4351 [hep-th]

S. Zeze, Regularization of identity based solution in string field
theory. arXiv:1008.1104 [hep-th]

E.A. Arroyo, Comments on regularization of identity based solu-
tions in string field theory. arXiv:1009.0198 [hep-th]

L. Bonora, S. Giaccari, Generalized states in SFT. EPJC 73, 2644
(2013)


http://arxiv.org/abs/hep-th/0603159
http://arxiv.org/abs/0906.0979
http://arxiv.org/abs/hep-th/0701249
http://arxiv.org/abs/0704.3612
http://arxiv.org/abs/hep-th/0701248
http://arxiv.org/abs/0704.2222
http://arxiv.org/abs/0710.1342
http://arxiv.org/abs/0707.4472
http://arxiv.org/abs/1009.6185
http://arxiv.org/abs/1402.3546
http://arxiv.org/abs/hep-th/9911116
http://arxiv.org/abs/1009.4158
http://arxiv.org/abs/1105.5926
http://arxiv.org/abs/1106.3914
http://arxiv.org/abs/1406.3021
http://arxiv.org/abs/0807.4722
http://arxiv.org/abs/1004.4858
http://arxiv.org/abs/hep-th/9608127
http://arxiv.org/abs/hep-th/9704006
http://arxiv.org/abs/hep-th/9912079
http://arxiv.org/abs/hep-th/0002117
http://arxiv.org/abs/hep-th/0003031
http://arxiv.org/abs/hep-th/0005036
http://arxiv.org/abs/hep-th/0008053
http://arxiv.org/abs/hep-th/0102112
http://arxiv.org/abs/1109.4336
http://arxiv.org/abs/0904.1095
http://arxiv.org/abs/1004.4351
http://arxiv.org/abs/1008.1104
http://arxiv.org/abs/1009.0198

	Comments on lump solutions in SFT
	Abstract 
	1 Introduction
	2 Short review of the Erler–Schnabl solution
	3 The EM proposal
	4 The bcc operator
	5 Two alternatives
	5.1 The KOS bcc operator

	6 The BMT proposal
	7 A detour: TV solution as gauge transformation of IB solutions
	7.1 BMT lump solution as gauge transformation of IB solutions

	8 Discussion of BMT solution
	8.1 A comment about homotopy operators

	9 Conclusions
	Acknowledgments
	Appendix A: EoM and energy with intertwining operators
	References




