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Abstract Using the Newman–Janis method to construct
the axion–dilaton coupled charged rotating black holes, we
show that the energy extraction from such black holes via the
Penrose process takes place from the axion/Kalb–Ramond
field energy responsible for rendering the angular momen-
tum to the black hole. Determining the explicit form for the
Kalb–Ramond field strength, which is argued to be equiva-
lent to spacetime torsion, we demonstrate that at the end of
the energy extraction process, the spacetime becomes torsion
free with a spherically symmetric non-rotating black hole
remnant. In this context, applications to physical phenom-
ena, such as the emission of neutral particles in astrophysical
jets, are also discussed. It is seen that the infalling matter
gains energy from the rotation of the black hole, or equiva-
lently from the axion field, and that it is ejected as a highly
collimated astrophysical jet.

1 Introduction

The energy extraction process from the black hole follow-
ing the Penrose process gave rise to a new understanding of
black hole mechanics. Thermodynamic principles associated
with black hole geometry gained enormous interest in recent
times in the context of string theory where different kinds of
black holes have been investigated in the light of this princi-
ple. Newman and Janis [1,2] showed that different kinds of
inequivalent black holes can be obtained from known solu-
tions; for example, from the Schwarzschild black hole, the
Kerr solution can be obtained, while the Kerr–Newman met-
ric emerges from the Reissner–Nordstrom geometry using
the Newman–Janis prescription.

In an alternative approach in string theory, Sen [3,4]
showed that, using T-duality in the low energy string effec-
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tive action, one can generate inequivalent black hole solu-
tions such as charged black hole solutions from uncharged
black hole solutions. After the development of dilaton and
axion–dilaton solutions [5–7], it was shown by [8] that the
Newman–Janis method can be used to develop the charged
axion–dilaton solutions from a pure dilaton coupled solution,
where the axion field plays the role of the angular momentum
parameter of the black hole.

It is well known in a string inspired scenario that in four
space-time dimensions, the massless axions are dual to the
third rank field strength of a second rank antisymmetric ten-
sor field (known as Kalb–Ramond field) which appears in the
massless sector of closed bosonic string theories. While this
KR field can be interpreted as an external gauge field defined
on a Riemannian manifold, there is an alternative viewpoint
where the third rank antisymmetric field strength correspond-
ing to the second rank KR field can also be identified with
space-time torsion [9–13] implying a non-Riemannian geo-
metric structure where the torsion field is completely anti-
symmetric in all its three indices. Either of these interpreta-
tions leads to the same action for the low energy supergravity
sector of string theory. It is therefore interesting to study the
role of the dilaton (whose vacuum expectation value deter-
mines the string coupling) as well as the role of the axion
in the energy extraction process from the black hole via the
Penrose process.

In this work we try to address this question in the context of
string inspired axion–dilaton scalar coupled black hole solu-
tion obtained via the Newman–Janis prescription. We shall
show that, starting from a space-time endowed with non-
vanishing KR-energy density (in other words non-vanishing
torsion), the energy extraction process eventually results into
a static non-rotating dilaton coupled black hole where, at
the end of the energy extraction process, the axion/KR field
strength becomes zero, leading to a static Riemannian space-
time.

We then establish a connection between our findings and
experimental results regarding the emission of neutral parti-
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cles in astrophysical jets, believed to be from rotating black
holes.

2 Axion–dilaton coupled gravity

The equations of motion for the Einstein–Maxwell axion–
dilaton coupled gravity can be obtained from the action,

S = − 1

16π

∫
d4x

√−g

(
R − 2∂μ�∂μ� − 1

2
e4�∂μ�∂μ�

+ e−2�FμνF
μν + �Fμν F̃

μν

)
, (1)

where R is the Ricci scalar with respect to the space-time
metric gμν while Fμν and ˜Fμν are the Maxwell tensor and its
dual. Here � and � represent the axion and the dilaton fields,
respectively. Such an action has its origin in the low energy
string effective action in four dimensions. There have been
well-known methods like O(d)XO(d) duality symmetry to
generate charged black hole solutions from uncharged black
hole solutions [3,4,14]. Here we adopt a different solution
generating technique, following Newman and Janis to obtain
a rotating solution from a non-rotating black hole solution
[1,2].

Without trying to obtain the solution from the action
directly, we first focus on pure dilaton coupled gravity.

The solution to the pure dilaton coupled gravity has been
obtained in [5–7]. It resembles the Reissner–Nordstrom solu-
tion with dilaton scalar and is spherically symmetric. This can
be written

ds2 =
(

1 − r1
r

1 + r2
r

)
dt2 −

(
1 − r1

r

1 + r2
r

)−1

dr2 − r2
(

1 + r2

r

)

×(dθ2 + sin2 θdφ2); (2)

r1 and r2 can be expressed in terms of the mass and charge
of the dilaton black hole as

r1 + r2 = 2M (3)

and

r2 = Q2

M
. (4)

The dilaton field � is given by

e2� = 1

1 + r2
r

(5)

where the asymptotic value of the dilaton �0 above and in
all other computations in this paper is taken to be zero. The
electrostatic potential is

A = − Q
r

1 + r2
r

. (6)

In analogy to the work done by Newman and Janis [1,2] in
obtaining the axisymmetric rotating black hole Kerr solu-
tion from the spherically symmetric Schwarzschild solution,
we can now construct the axisymmetric black hole solution
from the spherically symmetric solution obtained from dila-
ton coupled gravity. This algorithm works by first transform-
ing the metric to the outgoing Eddington–Finkelstein coor-
dinates, given by

dt = du +
(

1 − r1
r

1 + r2
r

)−1

dr. (7)

The metric in these coordinates then becomes

ds2 =
(

1 − r1
r

1 + r2
r

)
du2 + 2dudr − r2

(
1 + r2

r

)
d	2. (8)

We then express the metric in terms of the null tetrad vectors
in the following form:

gμν = lμnν + lνnμ − mμmν − mνmμ. (9)

The null tetrad vectors which would give back the correct
metric are

lμ = δ
μ
1 , (10)

nμ = δ
μ
0 − 1

2

(
1 − r1

r

1 + r2
r

)
δ
μ
1 , (11)

mμ = 1
√

2r
√

1 + r2
r

(
δ
μ
2 + i

sin θ
δ
μ
3

)
. (12)

We then allow r to take complex values and write the tetrad
vectors in the following manner:

lμ = δ
μ
1 , (13)

nμ = δ
μ
0 − 1

2

(
1 − r1

2

( 1
r + 1

r̄

)
1 + r2

2

(
1

r
+ 1

r̄

))
δ
μ
1 , (14)

mμ = 1
√

2r̄
√

1 + r2
2

( 1
r + 1

r̄

)
(

δ
μ
2 + i

sin θ
δ
μ
3

)
. (15)

The null tetrad thus obtained is then made to undergo the
complex transformation which introduces a parameter ’a’.
This transformation is such that the resulting metric is a real
function of complex arguments r and u, which are given as

r → r + ia cos θ, (16)

u → u − ia cos θ, (17)

θ → θ, φ → φ. (18)

We require that r ′ and u′ remain real, and we consider the
null vectors under this coordinate transformation. They take
the following form:

l ′μ = δ
μ
1 , (19)
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n′μ = δ
μ
0 − 1

2

(
1 − r1r

�

1 + r2r
�

)
δ
μ
1 , (20)

m′μ = 1√
2(r ′ + ia cos θ)

1√
1 + r2r ′

�

×
(
ia sin θ(δ

μ
0 − δ

μ
1 )δ

μ
2 + i

sin θ
δ
μ
3

)
(21)

where � = r ′2 + a2 cos2 θ .
Putting these forms of the null tetrad vectors into the form

of the metric using (9), and then transforming back from the
Eddington–Finkelstein coordinates, we get

ds2 = −
(

1 − 2Mr

�̃

)
dt2

−4aMr

�̃
sin2 θdtdφ − �̃

�
(dr2 + �dθ2)

+
{
r(r + r2) + a2 + 2Mra2 sin2 θ

�̃

}
sin2 θdφ2

(22)

where � = r(r + r2) − 2Mr + a2 and �̃ = r(r + r2) +
a2 cos2 θ . Comparing with the solution obtained from [4],
we have the electromagnetic potential:

A = −Qr

�̃
(dt − a2 sin θdφ). (23)

The dilaton field � is

e2� = r2 + a2 cos2 θ

r(r + r2) + a2 cos2 θ
. (24)

The axion field � is given by

� = Q2

M

a cos θ

r2 + a2 cos2 θ
. (25)

Here r2 = Q2

M e2�0 . Thus we see that with the aid of a coor-
dinate transformation we are able to arrive at a solution with
non-vanishing axion field. This field is given by the param-
eter of the transformation ‘a’ and its effect is to render the
black hole with non-zero angular momentum and thereby
making it a rotating black hole.

The non-vanishing components of the third rank antisym-
metric dual Kalb–Ramond (KR) field strength Hμνα can now
be determined from the expression of the axion field � using
the duality relation which is given by

Habc = 1

2
e4�εabcd∂

d�. (26)

This is actually a closed string mode. These turn out to be

H023 = {r(r + r2) + a2 cos2 θ − 2Mr}[{r(r + r2) + a2 cos2 θ}{r(r + r2) + a2} + 2Mra2 sin2 θ ] − (2Mra sin2 θ)2

{r(r + r2) + a2 cos2 θ}2

× 2Q2ra cos θ

M(r2 + a2 cos2 θ)2

[
r(r + r2) − 2Mr + a2 cos2 θ − 2aMr sin2 θ

r(r + r2) + a2 cos2 θ

]−1

×
[(

r(r + r2) + a2 cos2 θ

r(r + r2) − 2Mr + a2

)
× {(r(r + r2) +a2 cos2 θ)(r(r + r2) + a2) + 2Mra2 sin2 θ}

]−1

and

H031 = {r(r + r2) + a2 cos2 θ − 2Mr}[{r(r + r2) + a2 cos2 θ}{r(r + r2) + a2} + 2Mra2 sin2 θ ] + (2Mra sin2 θ)2

{r(r + r2) + a2 cos2 θ}2

×Q2

M

[
a sin θ

r2 + a2 cos2 θ
+ a2 sin 2θ cos θ

(r2 + a2 cos2 θ)2

] [
r(r + r2) − 2Mr + a2 cos2 θ − 2aMr sin2 θ

r(r + r2) + a2 cos2 θ

]−1

×
[(

r(r + r2) + a2 cos2 θ

r(r + r2) − 2Mr + a2

)
× {(r(r + r2) + a2 cos2 θ)(r(r + r2) + a2) + 2Mra2 sin2 θ}

]−1

.

These expressions of the KR field strength determine the
energy density of the KR field which acts is the source of
the rotational energy of the black hole. It is to be noted that
the KR field vanishes when the parameter a vanishes. As the
parameter a is a measure of the angular momentum of the
black hole, as shall be seen later, it can be concluded that
a non-vanishing KR field in this scenario is related to the
rotational energy of the black hole.

Thus we arrive at the existence of non-spherically sym-
metric solutions for the Kalb–Ramond field strength corre-
sponding to this class of rotating black hole solutions where
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the axion and therefore the Kalb–Ramond field acts as the
source of rotation of the black hole and thus generates an
axisymmetric solution from a spherically symmetric dilaton
solution. As discussed earlier, this can also be interpreted
as the torsion in the background spacetime and thus from a
Riemannian spacetime we generate an Einstein–Cartan-like
spacetime.

3 Horizon structure

As we have seen in the previous section, the metric obtained
from the Einstein–Maxwell axion–dilaton gravity resembles
the Kerr rotating black hole metric with a modification caused
by the term r2. This is actually the asymptotic value of the
dilaton along with a multiplicative constant. Thus we have a
Kerr solution modified by the presence of the dilaton field.
We now study the horizon structure of this metric.

We begin with the coordinate singularity arising from � =
0,

r(r + r2) − 2Mr + a2 = 0. (27)

The event horizons are then at

r± =
(
M − r2

2

)
±

√(
M − r2

2

)2 − a2. (28)

The metric shows time translation symmetry as well as axial
symmetry, due to the independence of t and φ in the metric
components. This gives rise to a timelike Killing vectors τμ

and a Killing vector arising out of the axial symmetry ημ.
The inner product of the timelike Killing vector gives us,

τμτμ = 1 − 2Mr

r(r + r2) + a2 cos2 θ
. (29)

This quantity becomes positive at the event horizon and like
the case of the Kerr black hole it becomes zero at a hypersur-
face at a distance greater than the radius of the event horizon.
Let this radius be re and given by

re =
(
M − r2

2

)
±

√(
M − r2

2

)2 − a2 cos2 θ. (30)

The region in between re and r+ is known as the ergosphere.
The maximum angular velocity that a particle can travel

with, due to the rotation of the black hole, is that of a photon
on the event horizon r+, moving along an equatorial orbit.
We define the angular velocity of this photon to be the angular
velocity of the black hole. In this case, as the photon is moving
along the event horizon, we have the condition

� = 0. (31)

Therefore we have

r(r + r2) + a2 = 2Mr. (32)

Considering a light ray that is being emitted in the φ direction
in the θ = π/2 equatorial orbit, we have the condition for it
to be null:

ds2 = gttdt
2 + 2gtφdtdφ + gφφdφ2 = 0. (33)

This yields,

dφ

dt
= − gtφ

gφφ

±
√(

gtφ
gφφ

)2

− gtt
gφφ

. (34)

Using this equation,we find the angular velocity of the photon
to be

dφ

dt
= 0 (35)

and

dφ

dt
= a

2Mr+
= 	H . (36)

The zero solution indicates that the photon is not moving at
all in this frame. The non-zero solution shows the angular
velocity with which the photon is being dragged around is in
the same direction as the hole’s rotation. The angular velocity
of the event horizon itself is defined as the maximum angular
velocity of a particle at the horizon. This quantity is given by

ωH = a

2Mr+
. (37)

4 Energy extraction and the Penrose process

A calculation of the conservation of energy and angular
momentum for a particle in the ergosphere can lead to an
energy extraction process demonstrated by Penrose in the
case of a Kerr black hole. Here we consider the procedure
followed in [15]. Briefly, this shows that a particle, in the
ergosphere breaks up into two parts such that one part falls
into the event horizon of the black hole and the other escapes
into the external universe, in a manner in which, the escaping
particle can be shown to have more energy than the origi-
nal particle before it breaks apart into two fragments. This
excess energy is said to be gained from the rotational energy
of the black hole. By repeating this process again and again
the black hole slows down gradually until the rotation stops
altogether and the Kerr black hole becomes a Schwarzschild
black hole.

Estimation of energy extraction Assume that a particle on
entering the ergosphere breaks up into two particles A and
B. Before breaking up, the four momentum of the whole
particle was p(0)μ, and the energy was E = −τμ p(0)μ. This
energy is positive and conserved along its geodesic. When
the particle breaks up into smaller particles, then the four
momentum and energy are conserved.
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p(0)μ = p(A)μ + p(B)μ, (38)

E (0) = E (A) + E (B). (39)

Here p(A)μ and p(B)μ are the four momentums of the two
constituent particles and E (A) and E (B) are the corresponding
energies. From the above equations the following analysis
can be made. If the momentum of the second particle be such
that its energy is negative, Penrose showed that the initial
momentum can be arranged so that afterwards a geodesic
trajectory can be followed from the Killing horizon back into
the external universe. Energy still remains conserved along
this path and we have

E (A) > E (0). (40)

This implies that the energy with which the first particle
leaves the Killing horizon is more than the energy with which
it entered. This energy extraction has come from the rota-
tional energy of the black hole, which in effect originates
from the energy density of the axion/KR field.

We now define a new Killing vector, taking into account
the modification caused by the dilaton field, by

χμ = τμ +
(

1 − r2

4M

)−1
	Hημ. (41)

For a particle B which crosses the event horizon moving
forward in time

p(B)μχμ < 0. (42)

Using the definitions of E and L as E = −τμ pμ and L =
ημ pμ, we get

L(B) <
(

1 − r2

4M

) E (B)

	H
. (43)

As E (B) is taken to be negative and 	H , the black hole’s
angular momentum, is positive, the particle must have a neg-
ative angular momentum. In other words it must be moving
against the hole’s rotation. Once the particle A escapes into
the external universe and the particle B falls into the event
horizon, the energy and angular momentum of the black hole
are changed by the negative contributions of the particle B
that has fallen into it. Thus we have

δM = E (B), (44)

δ J = L(B). (45)

The total angular momentum of the black hole J is given by

J = Ma. (46)

Thus Eq. (43) becomes

δ J <
(

1 − r2

4M

) δM

	H
. (47)

To find the limit of energy extraction in the case of a Kerr
black hole, a quantity known as the irreducible mass is
defined as follows:

M2
irr = A

16π
(48)

where A is the area of the event horizon. δ(M2
irr) can be shown

to be always greater than zero.
We find the area of the black hole at the event horizon by

defining a constant-time hypersurface at r = r+. The metric
of this hypersurface is

d�2 = �̃2+dθ2 +
(

2Mr+
�̃

)2

sin2 θdφ2. (49)

The area is then calculated from the relation

dA = √
gθθgφφdθdφ, (50)

which gives

A = 2Mr+
∫ π

0
sin θdθ

∫ 2π

0
dφ = 8πMr+. (51)

When the Kerr parameter ‘a’ goes to zero, we get the area of
the event horizon of a charged dilaton black hole

Adilaton = 16πM
(
M − r2

2

)
. (52)

The square of the irreducible mass gives us

M2
irr = A

16π
= Mr+

2
, (53)

which turns out to be

M2
irr = 1

2

⎡
⎣

(
M2 − Mr2

2

)
+

√(
M2 − Mr2

2

)2

− J 2

⎤
⎦ .

(54)

Thus,

δ(M2
irr) = a

2
√(

M − r2
2

)2 − a2

[(
1 − r2

4M

)
	−1

H δM − δ J
]
.

(55)

The right hand side is greater than zero by the inequality (33)
and thus we can say that Mirr is the limit to which the energy
of the black hole can be extracted.

The maximum amount of energy extraction can be defined
by taking into consideration the energy of the black hole that
remains after the energy of the axion from the KR field has
been exhausted. In the absence of the axion, we are left with
pure dilaton coupled gravity and the energy that remains is
the energy of the charged non-rotating dilaton black hole.

From the entropic definition of the irreducible mass (as
the black hole entropy is proportional to the area of its event
horizon) we can define a quantity similar to the irreducible
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Fig. 1 Variation of energy extraction with dilaton

mass of the charged axion–dilaton black hole. Let the square
of this quantity Mdilaton be defined by

M2
dilaton = Adilaton

16π
= M

(
M − r2

2

)
. (56)

The maximum amount of energy extracted before the rotation
of the black hole stops can now be found as follows:

�M = Mdilaton − Mirr. (57)

This quantity becomes

�M =
√
M

(
M − r2

2

)

−
√√√√M

2

{(
M − r2

2

)
+

√(
M − r2

2

)2 − a2

}
. (58)

Thus the ratio of the energy extracted to the dilaton mass can
be written as

�M

Mdilaton
= 1 −

√√√√1

2

{
1 +

√
1 − a2

(
M − r2

2

)−2
}

. (59)

Remembering that r2 = Q2

M the variation of the energy
extraction with the dilaton parameter r2 is plotted, taking
M = 2 and r2 = 1, as follows. From the above expression
we have Q2 = 2 (see Fig. 1).

As can be seen from the figure the amount of energy
extraction as well as the rate of change of energy extracted
increases with the increase in the charge Q and decreases
with increase in mass M (Fig. 2).

Here too, the value of energy extraction reduces with
the decrease in the value of the axion as does the rate of
energy extraction with respect to the axion field. When the
axion parameter goes to zero, the ergosphere vanishes and
the energy extraction stops, as expected.

Astrophysical black holes The Penrose process of energy
extraction has been gaining increasing relevance in recent

Fig. 2 Variation of energy extraction with axion for M = 2 and r2 = 1

times, explaining the production and nature of astrophys-
ical jets that have originated from black holes. The most
common process describing these is usually the Blandford
and Znajek [16] mechanism or some allied models [17–19].
The main problem with such theories is that they are limited
to charged particles and do not explain the neutral particles
such as neutrons, neutrinos, photons, which are believed to
be responsible for very long and thin gamma ray bursts. In
this context, purely gravitational models were considered and
the Penrose process of energy extraction was used to obtain
a very energetic, perfectly collimated jet in a Kerr black hole
spacetime without making use of magnetic fields [20]. It has
been seen that there are two possible classes of geodesics in
this spacetime. One with vertical asymptotes parallel to the
z-axis which can form perfectly collimated jets and the other
with horizontal asymptotes along the radial coordinate. The
Penrose process takes place at the points of intersection of
these geodesics inside the ergoregion, producing outgoing
particles of greater energy than the energy of the particles
that came in. These incoming particles could have originated
from counter-rotating parts of the accretion disk surrounding
the black hole, which gave rise to viscosity-induced instabil-
ities which led to the infall of matter into the black hole. This
model of the origin of the astrophysical jets as being via an
energy extraction process from the black hole does not take
recourse to the presence of charged particles and can explain
the emission of neutral particles, such as very high energy
neutrinos [21,22], as coming from the collimated inner jet.
Massless particles such as photons [23–28] can be produced
by charged particles accelerated along the collimated inner
jet.

Thus the fact that the Penrose process is believed to be
responsible for the emission of massive and massless neutral
particles in astrophysical jets, along with our understanding
of the Penrose process being a process of energy extraction
from the axion field, opens up a new perspective to the process
of astrophysical jet formation. It can be said now that the
infalling matter from the accretion disk gains energy from
the axion field and is ejected, to be observed as a collimated
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astrophysical jet. This is because the main body of results
of this paper suggests that the axion field is responsible for
the rotation of the Kerr axion dilaton black hole.The energy
which the infalling, accreting matter gains can be said to be
from the rotation of the black hole, or equivalently, from the
axion field itself.The presence of these jets could be taken
thus as evidence of the existence of the axion field.

5 Conclusion

The Newman–Janis prescription, going from the spherically
symmetric charged dilaton coupled gravity solution to the
axisymmetric charged axion–dilaton coupled solution [8],
has been used to generate inequivalent black hole solu-
tions. The axion in four dimensions is dual to the Kalb–
Ramond field strength, which can equivalently be inter-
preted as a space-time torsion and thus as an axisymmet-
ric charged axion–dilaton metric, which resembles the Kerr
metric. Hence it is a black hole solution in a string inspired
torsioned space-time. We have explicitly constructed vari-
ous components for the torsion from the axion field, which
in turn is responsible for rendering angular momentum to the
black hole. We therefore expect an energy extraction process
in a manner similar to the well-known Penrose process. The
presence of the dilaton also influences the space-time geom-
etry and the energy extraction process. We show that at the
end of the energy extraction, when the energy from the rota-
tional energy of the black hole (or equivalently the energy
of the axion or the Kalb–Ramond field) has been used up,
we are left with a pure charged non-rotating dilaton black
hole. This is, as already mentioned, a spherically symmetric
geometry of spacetime, and hence we cannot expect any fur-
ther energy to be extracted from the dilaton energy by means
of the Penrose process.

As the black hole entropy is proportional to the area of its
event horizon, we can define a quantity known as the irre-
ducible mass for the axion–dilaton black hole proportional to
the area of its outer event horizon. The change in this quantity
for the axion–dilaton black hole can be shown to always be
positive by defining the inner product of the four momentum
of a test particle with a Killing vector which is actually a
linear combination of the timelike and axial Killing vectors
in the charged axion–dilaton black hole spacetime. When the
energy of the axion is fully extracted, we are left with a pure
charged dilaton black hole with a remnant entropy propor-
tional to the area of the event horizon of the dilaton black
hole. The difference between these two quantities measures
the maximum amount of energy that can be extracted before
the rotation of the black hole finally stops and the energy of
the axion is fully extracted. The amount of energy extracted
is plotted against the parameter measuring the dilaton and
the axion field strength. The amount of energy extracted as

well as the rate of extraction are found to decrease with the
decrease in the dilaton and the axion field strength.

In this work, we have thus shown that, by an energy extrac-
tion process similar to the Penrose process, the geometry of
the spacetime is being altered. The energy is being extracted
from the axion/Kalb–Ramond field (or equivalently the rota-
tional energy of the black hole). In the presence of the axion,
we have an Einstein–Cartan-like spacetime, due to the equiv-
alent description of the axion as a torsion of spacetime. When
the energy of the axion is extracted fully, we are left with a
charged pure dilaton black hole, described via torsionless
geometry. This picture is, however, a matter of interpretation
depending on whether one would like to interpret the KR
field or the equivalent axion as an external tensor field or
through the antisymmetric connection of space-time geom-
etry. In light of current investigations regarding the origin
of observed neutral emissions in astrophysical jets, a Pen-
rose process acting on infalling matter from the surrounding
accretion disk into the black hole, leading to the emission of
highly energetic collimated jets, has been hypothesized [20].
In this regard, with reference to the main conclusion of this
paper, it is possible to conclude that the energy of these neu-
tral particle emissions is derived from the axion field, which
is responsible for the rotational energy of the Kerr black hole.
If this is so, then the origin of these astrophysical jets actu-
ally lies in the presence of the axion field as it derives its
energy from it. This would perhaps shed new light on the
little understood origin of these highly energetic cosmic jets.
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