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Abstract We study a self-interacting scalar ϕ4 theory on
the d-dimensional noncommutative torus. We determine, for
the particular cases d = 2 and d = 4, the counterterms
required by one-loop renormalization. We discuss higher
loops in two dimensions and two-loop contributions to the
self-energy in four dimensions. Our analysis points toward
the absence of any problems related to the ultraviolet/infrared
mixing and thus to renormalizability of the theory. However,
we find another potentially troubling phenomenon which is
a wild behavior of the two-point amplitude as a function of
the noncommutativity matrix θ .

1 Introduction

One of the motivations for considering quantum field theo-
ries on noncommutative spaces was the hope that they may be
ultraviolet (UV) finite. It was shown, however, that UV diver-
gences persist on the noncommutative (NC) Moyal plane
[1,2]. Moreover, though certain Feynman diagrams are less
UV divergent than in the commutative case, they develop sin-
gularities at some special, typically zero, value of the exter-
nal momenta. When such diagrams appear as subgraphs of
higher-order diagrams, the latter diagrams become divergent
in a nonrenormalizable manner. This phenomenon [3–5],
called the UV/IR mixing [4], is the main obstacle to renor-
malization of NC field theories.

It was believed for some time that the UV/IR mixing
appears exclusively in Euclidean signature spaces. How-
ever, it was demonstrated [6] that similar problems exist in
Minkowski spacetime as well.

Various methods were proposed to deal with this prob-
lem. Of course, the supersymmetry helps to achieve renor-
malizability of noncommutative theories [7,8]. Grosse and
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Wulkenhaar [9,10] motivated by the Langmann–Szabo dual-
ity [11] proposed to add to the action an oscillator term which
breaks translation invariance but ensures renormalizability.
Modifications of the momentum dependence of the kinetic
term were considered in [12]. Taking the noncommutativ-
ity parameter nilpotent [13] also improves renormalization.
It has been shown [14] that spontaneous symmetry breaking
softens the UV/IR mixing. A fairly recent review is Ref. [15].

In this work, we take a different path. We consider a non-
commutative ϕ4 theory on a torus. Sensitivity of UV diver-
gences in NC theories to the presence of compact dimension
(and even eventual disappearance of such divergences) has
been stressed already in [2]; see also [16]. Note, however,
that, due to a different implementation of noncommutativity,
the existence of a compact dimension in the two-dimensional
case considered in [2] guarantees the finiteness of tadpole
contributions. This is not the case in the model considered
in the present article, where quantum corrections are UV-
divergent and must be properly renormalized.

One may get an idea on the structure of counterterms,
singularities of the propagators etc. by looking at the heat
kernel expansion (see, e.g. [17]). Roughly speaking, the rel-
evant operators1 on noncommutative spaces are generalized
Laplacians that contain gauge fields and potentials (as usual
Laplacians), but these gauge fields and potentials act by left
or right Moyal multiplications on the fluctuations δϕ. If the
generalized Laplacian contains only left or only right Moyal
multiplications, the structure of corresponding heat kernel
coefficients is very simple on both NC torus [18] and NC
plane [19]—they look almost as their commutative counter-
parts with star products instead of usual products. For inter-
esting theories, however, the relevant operators contain both
left and right multiplications. For such operators on the NC
plane the structure of heat kernel coefficients is very compli-

1 For bosonic theories, these are the operators L appearing in the second
variation of classical action, S2 = ∫

(δϕ)L(ϕ)(δϕ), with δϕ being a
fluctuation and ϕ—a background field.
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cated [20,21] thus reflecting the presence of the UV/IR mix-
ing. The situation changes drastically on NC torus [22]. If
the noncommutativity parameter satisfies the so-called Dio-
phantine condition or is rational, the heat kernel coefficients
(and thus the one-loop counterterms) assume a very simple
form if written in terms of a suitably defined trace operation
on the algebra of smooth functions on the torus. We shall use
this observation to formulate our proposal for a (presumably)
renormalizable ϕ4 theory on NC torus.

Let us stress that the notion of locality does not make much
sense in noncommutative theories since the star product itself
is nonlocal. Instead of local polynomial actions one has to
use traces of polynomials constructed from the fields and
their derivatives. There are more different traces on T

d
θ than

on R
d
θ . This observation will be crucial for our construction

of admissible counterterms.
Here we like to mention several papers that considered

quantum field theories on NC torus. In Ref. [7] it was demon-
strated that supersymmetric Yang–Mills theory on T

3
θ with

rational θ is one-loop renormalizable. Pure Yang–Mills the-
ories were considered in [23] at one loop. Some arguments
regarding the higher-order behavior were also presented.
Relations between NC theories on T

d
θ with rational θ and

matrix models were studied in [24,25].
The purpose of this paper is to set up the stage for renor-

malization on NC torus and to discuss basic features of this
process. First, we write down the model and introduce new
counterterms for Diophantine and rational θ . We analyze in
detail two- and four-point functions at one loop. In d = 2, the
only superficially divergent diagrams are the one-loop two-
point functions. We demonstrate that the insertion of these
diagrams (together with counterterms) into internal lines of
other diagrams does not lead to any divergences, so that there
is no UV/IR mixing (at least in its classical formulation [4])
on T

2
θ . In d = 4, we analyze the two-loop self-energy dia-

grams. All our findings, though do not contain a complete
proof, strongly suggest that the introduction of new coun-
terterms does make the ϕ4 theory on NC torus in d = 2 and
d = 4 renormalizable.

The counterterms depend in a very essential way on the
number theory nature of θ . But not only this, we show that
also renormalized two-point functions (too) strongly depend
on θ . More precisely, we compare the two-point functions in
d = 2 for two close values θ1 and θ2 of the noncommutativ-
ity matrix, one being rational, and the other irrational (Dio-
phantine). We find that the typical variation of the two-point
function is ∼ln ||θ1 −θ2||. However, this does not necessarily
mean that the theory has no prediction power. We discuss the
implications and possible ways out in the Conclusions of the
article.

The paper is organized as follows. The next section con-
tains the definitions that will be used throughout the text. In
Sect. 3 we consider the two-point functions at one-loop order

and analyze their renormalization and variation with θ . Sec-
tion 4 is dedicated to four-point functions at one loop. Higher
loops in d = 2 are considered in Sect. 5 and two-loop two-
point functions in d = 4 in Sect. 6. Our results are discussed
in Sect. 7. The behavior of some double sums is analyzed in
Appendices A and B.

2 The model

As a base manifold we take the d-dimensional noncommu-
tative (NC) torus T

d
θ with unit radii; see [26]. The algebra

Aθ of smooth functions on T
d
θ is formed by the Fourier-type

series

ϕ =
∑

p∈Zd

ϕp Up, (1)

where the Fourier coefficients ϕp ∈ C vanish at |p| → ∞
faster than any power of p. The unitary Up satisfy

Up Uq = eiπ pθq Up+q , (2)

where θ is a constant and non-degenerate skew-symmetric
d×d matrix. Expressions such as pθq represent the quadratic
form θμν pμqν . One may think ofUp’s as of plane waves ei px .
Then the well-known Moyal product

(ϕ � ψ)(x) = exp
(−iπ θμν∂x

μ∂ y
ν

)
ϕ(x)ψ(y)|y=x (3)

reproduces (2),

ei px � eiqx = eiπ pθq ei(p+q)x . (4)

One should keep in mind, however, that the Moyal star prod-
uct has to be understood as a formal expansion in the non-
commutativity parameter, i.e., it is not convergent.

There is a trace on the algebra C∞(Td
θ ) defined through

τ(ϕ) =
∫

dd x

(2π)d
ϕ, (5)

which can be implemented in Aθ by τ(Up) = δp.2

To proceed, we need some number theory preliminaries
concerning the matrix elements of θ . Let us define the set

Zθ = {q ∈ Z
d/ θq ∈ Z

d}. (6)

Clearly, Zθ is a Z-linear space whose dimension is the rank
of the rational part of θ . As we will see, field modes ϕp

with momentum p ∈ Zθ present a distinct renormalization

2 We use δp to denote 1 if p = 0, and 0 otherwise.
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behavior in the sense that they are affected differently by
quantum corrections.

On the other hand, it has been demonstrated in [22] that
the heat kernel expansion and thus the one-loop divergences
in a wide range of quantum field theories on the NC torus
are well under control if the “irrational” part of θ satisfies a
certain Diophantine condition; namely, there should be two
positive constants, C and β, such that

inf
k∈Zd

|θq − k| ≥ C

|q|1+β
(7)

for all q ∈ Z
d\Zθ . In the last section of this article, we will

see that this Diophantine condition becomes crucial for the
determination of the divergences of the double sums corre-
sponding to some two-loop Feynman diagrams.

Our starting point is then the following action for a self-
interacting scalar particle on the NC torus:

S[ϕ] = 1
2 τ(∂ϕ ∂ϕ) + 1

2 m
2 τ(ϕ2) + λ τ(ϕ4). (8)

All products in (8) are in the noncommutative algebra, i.e.,
they are star-products. Since these will be the only products
used in this work, we shall never write the symbol � explicitly.
The scalar field ϕ undergoes a self-interaction given by the
four-point vertex which in Fourier space can be written as

λ
∑

k1,...,k4

δk1+···+k4 eiπ(k1θk2+k3θk4) ϕk1ϕk2ϕk3ϕk4 . (9)

The free propagator is given by

〈ϕpϕp′ 〉free = δp+p′

p2 + m2 . (10)

The heat kernel analysis of [22] suggests that the theory
may be renormalized by adding the counterterm action3

Sc.t. =
∑

p∈Zθ

(
μ2

2
(ϕ)p (ϕ)−p + λ1 (ϕ)p (ϕ3)−p

+ λ2 (ϕ2)p (ϕ2)−p

)

(11)

(in addition to counterterms for the couplings in (8) and even-
tual renormalization of the field ϕ).

3 One-loop renormalization of self-energy diagrams

In this section we analyze the one-loop two-point functions.
Quantum corrections generate a full propagator

3 These terms are certain (Dixmier-type) traces on the NC torus; see
[22]. In these sense, they generalize the trace terms in (8). They may also
be interpreted as usual traces after projecting the fields to a subalgebra
[27].

〈ϕpϕp′ 〉 = δp+p′

p2 + m2 + 
(p)
, (12)

where 
(p)—the self-energy of the scalar particle—is given
by the contributions of one-particle irreducible (1PI) two-
point functions,

1PI diagrams = − δp+p′

(p2 + m2)2 
(p). (13)

We will analyze the perturbative structure of the self-energy,


(p) = h̄ 
1(p) + h̄2 
2(p) + · · · , (14)

with particular emphasis in d = 2 and d = 4, in order to
determine the kind of counterterms required by renormaliza-
tion.

One-loop contributions 
1(p) to the self-energy 
(p)
arise from all (connected) contractions between two exter-
nal fields and the fields in the vertex (9). In the commutative
case all such contractions would give the same contribution
because the vertex is invariant under any permutation of the
internal momenta k1, . . . , k4. However, this invariance is lost
in the presence of the twisting factor exp iπ(k1θk2 + k3θk4),
which is only invariant under cyclic permutations of the inter-
nal momenta so there are three sets of four equivalent con-
tractions. Since there are only two external fields, two of these
sets of contractions give the same contribution due to momen-
tum conservation. There are thus eight contractions which
give the same contribution and a different type of contribu-
tion from the other four contractions. In terms of Feynman
diagrams, the former are related to planar diagrams (Fig. 1)
whereas the latter correspond to nonplanar ones (Fig. 2). It is
well known in noncommutative theories that the distinction
between planar and nonplanar contributions plays a crucial
role in the description of quantum corrections to any n-point
function; the NC torus is not an exception to this fact.

As a consequence, 
1(p) can be written as


1(p) = 8λ S1(0) + 4λ S1(p), (15)

Fig. 1 One-loop planar
contribution to the self-energy

Fig. 2 One-loop nonplanar
contribution to the self-energy
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where S1 represents the sum

S1(p) =
∑

k∈Zd

e2π i kθp

k2 + m2 . (16)

One can easily see that S1(p) is divergent for certain values
of p—determined by the numerical character of θ—so we
need an appropriate definition of this series that provides a
regularization of its divergences.

In this article we regularize the divergencies of Feynman
diagrams by introducing an arbitrary complex power ε of the
free propagators [with Re(ε) large enough],

1

k2 + m2 → 1
(
k2 + m2

)1+ε
, (17)

and then performing the analytic extension to ε = 0; eventual
divergencies then emerge as poles of this analytic extension.
At some point, this technique can be related to dimensional
regularization.

Let us study, in general, the sum

Sn(p, ε) =
∑

k∈Zd

e2π i kθp

{(k2 + m2)n}1+ε
, (18)

whose analytic extension to ε = 0 for n = 1 defines the
expression S1(p)given in (16). If we introduce the Schwinger
proper time representation we obtain

Sn(p, ε)

= 1

�(n + nε)

∫ ∞

0
dt tn+nε−1 e−tm2 ∑

k∈Zd

e−tk2
e2π i kθp

= π
d
2

�(n + nε)

∫ ∞

0
dt tn(1+ε)−1− d

2 e−tm2 ∑

k∈Zd

e− π2
t |k+θp|2 .

(19)

In the last line of this expression we have used Poisson resum-
mation,
∑

k∈Zd

f (k) = (2π)d
∑

k∈Zd

f̃ (2πk), (20)

for f (k) = exp (−tk2 + 2π ikθp) and f̃ its Fourier trans-
form. It is convenient to consider separately the case in which
p ∈ Zθ , as defined in (6); recall that for rational θ this set
is infinite, whereas for irrational θ the set Zθ is trivial. For
p /∈ Zθ each term in the sum of expression (19) decreases
exponentially for t → 0 so the integration can be performed
in the vicinity of ε = 0 and the result reads

Sn(p, ε) = 2πn

(n − 1)! m
d
2 −n

∑

k∈Zd

K d
2 −n(2πm|k + θp|)

|k + θp| d2 −n

+ O(ε), (21)

where K represents the modified Bessel function. The sum
S1(p), originally defined in (16), is then given—for n = 1

and any p /∈ Zθ —by the convergent series in the r.h.s. of
(21).

On the contrary, if the external momentum p belongs to
the set Zθ , then the term in the series (19) with k = −θp
does not present the exponential decrease for small t so the
integration must be performed for Re(ε) > −1 + d/2n. If
we separate this term we get, after integration in t ,

Sn(p, ε)

= �(n + nε − d
2 )

�(n + nε)
π

d
2 md−2n−2nε

+ 2πn+nεm
d
2 −n−nε

�(n + nε)

∑

k 
=−θp

Kn+nε− d
2
(2πm|k + θp|)

|k + θp| d2 −n−nε
.

(22)

This expression shows that, for p ∈ Zθ , the analytic exten-
sion of Sn(p, ε) has a simple pole at ε = 0 if n ≤ d/2. In
particular, for n = 1 we obtain

S1(p, ε) = −1

2
(−1)

d
2 Vd md−2 1

ε
+ 1

2
(−1)

d
2 Vd md−2

×
{

logm2 − ψ
( d

2

) − γ
}

+ 2π m
d
2 −1

∑

k 
=−θp

K d
2 −1(2πm|k + θp|)

|k + θp| d2 −1

+ O(ε), (23)

where Vd is the volume of the sphere Sd−1. Therefore, the
original sum (16) can be written, for p ∈ Zθ , as

S1(p) = −1

2
(−1)

d
2 Vd md−2 1

ε
+ (finite terms). (24)

In conclusion, S1(p) is conditionally convergent for p /∈ Zθ

but diverges as ∼ md−2/ε otherwise, in particular for p = 0.
The divergent contribution of S1(0) to 
1(p) (see (15))

can be removed by an ordinary mass redefinition (see (12)),

m2 → m2

(

1 + 8λ
(−π)

d
2

�
( d

2

)
md−4

ε

)

. (25)

However, due to the term S1(p) in (15), 
1(p) might still be
divergent if the external momentum p belongs to Zθ so we
need to introduce new mass terms in the action

1
2 μ2

∑

p∈Zθ

∣
∣ϕp

∣
∣2

, (26)

with

μ2 = 4λ
(−π)

d
2

�
( d

2

)
md−2

ε
, (27)

for those field components ϕp such that p ∈ Zθ . This is one
of the counterterms present in expression (11).

In consequence, after appropriate O(λ) mass renormal-
izations, 
1(p) is finite for any value of p. Note that, upon
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quantum corrections, the mass of the field takes a different
value for field components with momentum in Zθ . In partic-
ular, for irrational θ the new term (26) in the action can be
written as

1
2 μ2 τ(ϕ) τ(ϕ), (28)

so only the zero-momentum component ϕ0 of the field gets
a different mass.

Although the one-loop correction to the self-energy for
any value of the external momentum is rendered finite by the
mass renormalizations, the sum of all these contributions—
implicit in the effective action—can be seen to be convergent,
for irrational θ , only under the Diophantine condition [22].

Having computed these corrections, we want to analyze
the dependence of two-point functions with the numerical
character of θ . Let us then consider two noncommutativ-
ity matrices, θ1 and θ2, one being rational while the other -
irrational. Even though the difference ||θ1 −θ2|| may be arbi-
trarily small, the counterterms vary drastically from θ1 to θ2.
This large variation is pretty harmless if it can be removed
from the amplitudes by a finite renormalization of couplings.
Let us see if this is the case at the example of the one-loop
two-point function in d = 2. Let θ1 be rational, and θ2 be a
Diophantine noncommutativity matrix very close to θ1. The
planar diagram does no depend on θ , so that we shall con-
sider nonplanar contributions only. Let us take p ∈ Zθ1\{0}.
If apart from the pole term in (27) one allows for a finite
renormalization of μ2, the finite part of S1(p, ε) may be
shifted to an arbitrary p-independent value. Therefore, the
renormalized two-point function reads

SR
1 (p)θ1 = s1 + 2π

∑

k 
=−θ1 p

K0(2πm|k + θ1 p|), (29)

where s1 has to be fixed by a suitable normalization condition.
Since θ2 is Diophantine, S1(p, ε)θ2 is not divergent, and its
renormalized value is just the ε → 0 limit of (21),

SR
1 (p)θ2 = 2πK0(2πm|(θ1 − θ2)p|)

+ 2π
∑

k 
=−θ1 p

K0(2πm|k + θ2 p|), (30)

where we separated one of the terms in the infinite sum in
(21). Consider SR

1 (p)θ1−SR
1 (p)θ2 in the limit ||θ1−θ2|| → 0.

The contributions of k 
= −θ1 p cancel in this limit, as one
can easily see. s1 may depend on θ1, but definitely not on θ2.
Therefore,

SR
1 (p)θ1 − SR

1 (p)θ2 = −2πK0(2πm|(θ1 − θ2)p|) + O(1)

= 2π ln |(θ1 − θ2)p| + O(1). (31)

Hence, the variation of two-point function grows indefinitely
as θ2 approaches θ1. Some implications of this result will be

discussed below in Sect. 7. Note that since θ1 
= θ2 both
two-point functions, SR

1 (p)θ1 and SR
1 (p)θ2 , are always finite.

One may find some similarities between this situation and
the one in the matrix model approach to noncommutivity,
where the effective action behaves quite irregularly for some
relations between parameters of the theory [28].

4 One-loop renormalization of four-point functions

In order to complete the analysis of one-loop divergencies
we consider the four-point function with external momenta
p1, p2, p3, p4. The contributions of the different Feynman
diagrams to the s-channel (p1, p2 entering the same vertex)
are given by

64 λ2 eπ i(p1θp2+p3θp4) L(p1 + p2, 0), (Fig. 3) (32)

64 λ2 eπ i(p1θp2+p3θp4) L(p1 + p2, p1 + p2), (Fig. 4) (33)

32 λ2 eπ i(p1θp2+p3θp4) [L(p1+ p2, p2)+L(p1+ p2, p4)] ,

(Fig. 5) (34)

32 λ2 eπ i(p1θp2+p3θp4) [L(p1+ p2, p1)+L(p1+ p2, p3)] ,

(Fig. 6) (35)

16 λ2 eπ i(p1θp2+p3θp4) L(p1 + p2, p1 + p4), (Fig. 7)

(36)

16 λ2 eπ i(p1θp2−p3θp4) L(p1 + p2, p1 + p3), (Fig. 8).

(37)

In these expressions L(p, q) is defined as the analytic exten-
sion to ε = 0 of

L(p, q, ε) =
∑

k∈Zd

e2π i kθq

{[(k + p)2 + m2](k2 + m2)}1+ε
. (38)

The two terms in (34) and (35) correspond to the cases
where the incoming momentum p1 + p2 enters the diagrams
from the left or from the right.

In order to study the analytic extension of the sum (38) we
introduce Feynman parameters u, v to collect both propaga-
tors into a single denominator, we use the Schwinger proper
time representation and then the Poisson resummation for-
mula; the result reads

L(p, q, ε) =
∑

k∈Zd

e2π i kθq �(2 + 2ε)

�2(1 + ε)

∫ 1

0

∫ 1

0
du dv

× δ(u + v − 1) (uv)ε

{k2 + 2ukp + up2 + m2}2+2ε

= π
d
2

�2(1 + ε)

∫ 1

0
du [u(1 − u)]ε

∫ ∞

0
dt

× t1− d
2 +2ε e−t[m2+u(1−u)p2]

×
∑

k∈Zd

e− π2
t |k+θq|2−2π iup(k+θq). (39)
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As before, if q /∈ Zθ then each term in the series is exponen-
tially decreasing for small t so it can be integrated in some
neighborhood of ε = 0; L(p, q) is thus finite for q /∈ Zθ .
On the other hand, for q ∈ Zθ , integration in t gives

L(p, q, ε) = (−π)
d
2

�
( d

2 − 1
)

∫ 1

0
du [m2 + u(1 − u)p2] d2 −2

×
{

1

2ε
− log [m2 + u(1 − u)p2]

+ log
√
u(1 − u) + γ + ψ

( d
2 − 1

)
}

+ 2π2
∫ 1

0
du [m2 + u(1 − u)p2] d4 −1

×
∑

k 
=−θq

e−2π iup(k+θq)

|k + θq| d2 −2

Kd/2−2

(

2π |k+θq|
√
m2+u(1−u)p2

)

+O(ε).

(40)

The sums L(p, q) that determine the contributions of the
diagrams displayed in Figs. 3, 4, 5, 6, 7, and 8 can then be
written, for q ∈ Zθ , as

L(p, q) = (−π)
d
2

�
( d

2 − 1
)

∫ 1

0
du (m2 + u(1 − u)p2)

d
2 −2

× 1

2ε
+ (finite terms). (41)

This expression is finite for d = 2 (with a branch cut at
p2 = 4m2) and diverges as π2/2ε (independently of p) for
d = 4. In higher dimensions the residue depends on p.

Fig. 3 Planar contribution to the four-point function

Fig. 4 Nonplanar contribution to the four-point function

Fig. 5 Nonplanar contribution to the four-point function

Fig. 6 Nonplanar contribution to the four-point function

Fig. 7 Nonplanar contribution to the four-point function

Fig. 8 Nonplanar contribution to the four-point function

Let us therefore analyze the counterterms that are needed
in four dimensions in order to remove the resulting diver-
gencies of the four-point functions. The contribution (32)—
corresponding to the planar diagram in Fig. 3—contains an
UV divergence, which can be removed by a renormalization
of the self-coupling constant,

λ → λ

(

1 + 4π2λ
1

ε

)

. (42)

Besides, contributions (34) and (35)—corresponding to the
diagrams in Figs. 5 and 6—together with the t- and u-
channels are also divergent if any of the incoming momenta
belongs to the setZθ . This type of divergence can be removed
by introducing the following self-interaction, corresponding
to the second term in (11):

λ1

∑

k∈Zθ

ϕk

∑

k1,k2,k3∈Zd

δk+k1+k2+k3 ϕk1ϕk2ϕk3

× eiπ k1θk2+iπ k3θk, (43)

with

λ1 = 8π2λ2 1

ε
. (44)

For irrational θ , this new interaction reads

λ1 τ(ϕ) τ(ϕ3). (45)

Lastly, contributions (33), (36) and (37)—corresponding to
the diagrams in Figs. 4, 7 and 8—present a divergence when-
ever the sum of two incoming momenta belongs toZθ whose
cancellation requires the following self-interaction, corre-
sponding to the third term in (11):

λ2
∑

k∈Zθ

∑

k1,...,k4

δk1+k2−k δk1+···+k4 ϕk1ϕk2ϕk3ϕk4 eiπ k1θk2+iπ k3θk ,

(46)

with

λ2 = 6π2λ2 1

ε
. (47)

For irrational θ , the counterterm (46) reads

λ2 τ(ϕ2) τ (ϕ2). (48)
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After the introduction of these counterterms four-point func-
tions in T

4
θ are rendered finite for any value of the external

momenta. Note that all β-functions associated with the cou-
pling constants λ, λ1, λ2 are positive.

5 Higher loops at two dimensions

Before analyzing higher order of perturbation series on T
2
θ

let us briefly recall the UV/IR mixing problem on noncom-
mutative plane R

d
θ . The nonplanar diagrams on R

d
θ behave

better in the ultraviolet than their commutative counterparts
since (pθ)−1 (with p being an external momentum) serves
as an effective ultraviolet cutoff. However, the divergences
are restored in the commutative limit, θ → 0, implying also
a singularity at p → 0. According to Ref. [4], these singular-
ities cause troubles with the convergence of loop integrals at
zero momenta if nonplanar diagrams are inserted into inter-
nal lines of other diagrams. Note that in two dimensions 1PI
diagrams are at most logarithmically divergent, so that the
IR singularity may also be at most ln |p|. This singularity is
rather mild. Thus one does not expect much troubles with the
UV/IR mixing in d = 2. For this reason, our consideration
of the two-torus will also be rather sketchy.

Turning to T
2
θ , we first note that there are only two dia-

grams, Figs. 1 and 2, which are superficially divergent. By
using the expression (23) and basic properties of K0, one can
easily show that after adding the counterterm from (26) the
nonplanar diagram Fig. 2 with p ∈ Zθ becomes a bounded
function of p. For p /∈ Zθ , there may be a growing contribu-
tion to S1(p), which comes from the momentum kp in (22)
that minimizes |k + θp|. It reads

2πK0(2πm|kp + θp|) � −2π ln |kp + θp|. (49)

By the Diophantine condition (7), this contribution is
restricted by 2π(1 + β) ln |p| at large |p|. Therefore, the
renormalized 2-point function on T

2
θ has a logarithmic sin-

gularity, but in contrast to R
2
θ this singularity is UV rather

than IR. The UV singularities on the quantum plane, dis-
cussed in [29], were found more severe than on the commu-
tative plane. However, the singularities on T 2

θ are very mild.
Indeed, if one inserts the renormalized diagram of Fig. 2 into
an internal line with the momentum p of some other diagram
one gets (at large |p|) a multiplier of ln |p| from the diagram
itself and (p2 +m2)−1 from an extra propagator. The overall
contribution behaves as ln |p| · (p2 + m2)−1 and does even
improve the convergence of larger diagram.

We saw that in the ϕ4 theory on T
2
θ (i) all superficially

divergent diagrams can be renormalized by the counterterms
that we have proposed, and (ii) the insertion of renormalized
superficially divergent diagrams does not lead to any prob-
lems with convergence. Hence, there is no UV/IR mixing in
this model, and it is likely renormalizable.

6 Two-loop self-energy at four dimensions

In this last section we describe the diagrams that contribute
to 
2(p)—the second order correction to the self-energy—
in the four-dimensional torus. For corresponding analysis on
R

4
θ one may consult Ref. [30]. In this section we restrict our-

selves to the case of a pure irrational (Diophantine) noncom-
mutativity parameter. Therefore, Zθ = {0}. We analyze the
divergences of two-loop diagrams and point out the main dif-
ficulties one finds in computing the remaining double sums;
in the course of this analysis we will see the importance
of the Diophantine condition on the matrix θ . Let us also
remark that, since we are interested in the renormalizability
of two-point functions, we will neglect divergent contribu-
tions which are either independent or quadratic in the exter-
nal momentum p for they can be removed by mass and field
renormalizations of order O(λ2).

Before considering two-loop diagrams, we analyze the
O(λ2) contributions of the counterterms already introduced
in the previous sections, i.e. one-loop diagrams built with the
leading quantum corrections to the parameters m2, λ, as well
as with the new parameters μ2, λ1, λ2. In the first place, the
nonplanar tadpole in Fig. 2 gives an O(λ2) contribution,

− 32 λ2m2 S2(p)
π2

ε
, (50)

from the insertion of the mass correction (25) into its internal
propagator, as well as another O(λ2) contribution,

16 λ2 S1(p)
π2

ε
, (51)

from the insertion of the λ correction (42) into its vertex. In
(50) S2(p) is defined as the analytic extension to ε = 0 of
(18) (for n = 2 and d = 4). Second, a planar tadpole of the
type shown in Fig. 1 at the vertex λ2 gives

48 λ2 1

p2 + m2

π2

ε
. (52)

Equations (50)–(52) represent nonlocal (and not trace-
like) divergencies introduced in the self-energy by the renor-
malization of the parameters in the action; contributions of
μ2 and λ1 are not taken into account for they are either p-
independent or quadratic in p.

The two-loop diagrams can be built in two different ways:
either by inserting the one-loop self-energy 
1(p) into the
internal propagator of a planar or a nonplanar tadpole (see
Figs. 9, 10, respectively), so that both external legs enter the
same vertex, or by attaching each external leg to a differ-
ent vertex so that the two loops share a common internal
momentum, as in Figs. 11, 12, 13, and 14.

For the first type of diagrams, the insertion into a planar
tadpole, Fig. 9, gives a contribution which, though divergent,
does not depend on the external momentum. As we have
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Fig. 9 Planar diagram with a

1(p) insertion

Fig. 10 Nonplanar diagram
with a 
1(p) insertion

Fig. 11 Planar diagram
contributing with
−16λ2 U (p, 0) to 
2(p)

Fig. 12 Nonplanar diagram
contributing with
−32λ2 U (p, p) to 
2(p)

Fig. 13 Nonplanar diagram
contributing with
−32λ2 V (p, 0) to 
2(p)

Fig. 14 Nonplanar diagram
contributing with
−16λ2 V (p, p) to 
2(p)

already explained above, such contributions are harmless and
will be discarded. The contributions corresponding into the
insertion into a nonplanar tadpole, Fig. 10, are given, up to
O(λ2), by

− 4λ
∑

k∈Z4

e2π i kθp

(k2 + m2)2 
1(k). (53)

Replacing (15) into this expression we obtain

− 32λ2 S1(0)S2(p) − 16λ2 T (p), (54)

where T (p) is defined as the analytic extension to ε = 0 of
the series

T (p, ε) =
∑

k,l∈Z4

e2π i kθl

{[(k + p)2 + m2](l2 + m2)2}1+ε
. (55)

Note that the first term in (54), though p-dependent, is exactly
canceled by (50).

Lastly, the contributions of diagrams which contain over-
lapping divergencies read (see Figs. 11, 12, 13, 14),

−16λ2 U (p, 0) − 32λ2 U (p, p)

− 32λ2 V (p, 0) − 16λ2 V (p, p), (56)

where the sums U, V are defined as the analytic extensions
to ε = 0 of the series

U (p, q, ε)

=
∑

k,l∈Z4

e2π i lθq

{[(k+ p)2+m2](l2+m2)[(l+k)2+m2)]}1+ε
,

(57)

V (p, q, ε)

=
∑

k,l∈Z4

e2π i kθq e2π i kθl

{[(k+ p)2+m2](l2+m2)[(l+k)2+m2)]}1+ε
.

(58)

Since U (p, 0) corresponds to the diagram of the ordinary
commutative case, its divergence is a quadratic polynomial
in p. According to Appendix A, the sum U (p, p, ε) behaves
as

− 32λ2 U (p, p, ε) = −16 λ2 S1(p)
π2

ε
+ quad. pol. + O(ε), (59)

where we have represented by “quad. pol.” terms which,
though eventually divergent, are quadratic expressions4 in
p. Therefore, the nonlocal non-trace-like divergence intro-
duced by U (p, p) completely cancels (51).

In consequence, two-loop renormalization of the self-
energy demands that the remaining nonlocal divergencies
(given by (52), the second term in (54) and the last two terms
in (56)) cancel among each other. In other words, the remain-
ing potentially divergent terms read

48 λ2 1

p2 + m2

π2

ε
− 16λ2 T (p, ε)

−32λ2 V (p, 0, ε) − 16λ2 V (p, p, ε). (60)

The divergences of this expression at ε = 0 must repeat the
structure of quadratic (in ϕ) counterterms. I.e., they have to
be of the form of a quadratic polynomial in p plus a term
proportional to δp.

The double sums in (60) can all be treated in a unified way.
The divergences of these sums in Z

8 at ε = 0 arise from the
fact that the denominator increases only with a sixth power at
infinity. Nevertheless, the twisting factor e2π i kθl contributes
to regularize the series. This certainly happens in the contin-
uum case where the corresponding integration in R

8 is finite.
However, in the discrete case there exist four-dimensional
subspaces—with null measure in R

8—for which the twist-
ing factor vanishes.

4 More precisely, “quad. pol.” should have the form a + bp2, i.e. the
coefficient in front of pμ pν has to be proportional to the unit matrix.
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Therefore, the divergencies of T (p, ε) can be attributed to
the subseries in the subspaces for which kθl = 0 and, simul-
taneously, the denominator increases at infinity with a power
which is less or equal than four. Such subseries correspond
to l = 0 and k = 0. Thus,

T (p, ε) =
∑

l∈Z4

1

{(l2 + m2)2(p2 + m2)}1+ε

+
∑

k∈Z4

1

{((k + p)2 + m2)2m4}1+ε
+ O(1). (61)

The second sum in (61) does not depend on p, while the first
one is proportional to S2(0, ε); see (18). We conclude that

T (p, ε) = 1

p2 + m2

π2

2ε
+ quad. pol. + O(1). (62)

The same formula is reobtained in Appendix B, by using
mathematically rigorous methods.

To analyze V (p, q, ε), let us first change the summation
variables, so that

V (p, q, ε)

=
∑

k,l∈Z4

e2π i kθl

{[(k+ p)2+m2][(l−q)2+m2][(l+k−q)2+m2)]}1+ε
.

(63)

Using the same argument as above, potentially divergent
terms come from the subsets k = 0, l = 0, and k + l = 0,
which contribute as

1

(p2 + m2)1+ε
S2(0, ε) + 1

(q2 + m2)1+ε
L(p + q, 0, ε)

+ 1

(q2 + m2)1+ε
L(p − q, 0, ε). (64)

The remaining terms in the series (63) are expected to
decrease for large k, l as long as |k − θl| does not decrease
too fast, which is guaranteed by the Diophantine condition
on θ . This implies in particular

V (p, 0, ε) = 1

p2 + m2

π2

2ε
+ quad. pol. + O(1), (65)

V (p, p, ε) = 3
1

p2 + m2

π2

2ε
+ quad. pol. + O(1). (66)

Unfortunately, we cannot reconfirm (65) and (66) by more
rigorous methods.

From Eqs. (62), (65), and (66) one concludes that (60)
does not contain any divergences except for the ones that can
be removed by a renormalization of couplings in the action

S[ϕ] = 1

2
τ(∂ϕ ∂ϕ) + 1

2
m2 τ(ϕ2) + λ τ(ϕ4)

+ 1

2
μ2 τ(ϕ) τ(ϕ) + λ1 τ(ϕ) τ(ϕ3)

+ λ2 τ(ϕ2) τ (ϕ2). (67)

Let us recall that in this section we assumed that θ is irra-
tional.

Although our analysis is far from being exhaustive, we
believe it strongly suggest that the ϕ4 theory on T

4
θ is renor-

malizable.

7 Conclusions

In this paper, we analyzed the renormalization of a scalar
field theory on T

d
θ with a quartic self-interaction after the

introduction of a new type of nonlocal (but trace-like) inter-
actions suggested by the previous heat kernel calculations
[22]. At one loop our analysis is complete. We also argued
that in two dimensions no problems appear at higher orders
as well. In four dimensions, we checked the renormalization
of self-energy at two-loop order relying on our understand-
ing of the behavior of double sums, which we were able
to reconfirm by rigorous methods for all diagrams but one.
Our findings strongly suggest that the ϕ4 theory on T

2
θ and

T
4
θ is renormalizable. The renormalization always strongly

depends on the Diophantine character of the noncommutativ-
ity matrix θ . We cannot exclude completely that some more
elaborate multiple-trace counterterms will be needed, though
their algebraic nature is less clear than that of the ones listed
(11). To check this, one has to calculate the two-loop four-
point functions.

On the technical side, it is important to develop the theory
of regularized multiple sums with twisting factors. To the
best of our knowledge, such sums have not been considered
in the mathematics literature so far (see, e.g. [31]).

While calculating the renormalized two-point functions
we encountered a potentially troubling phenomenon: these
functions depend too strongly on the noncommutativity
matrix. In other words, an arbitrarily small error in θ may
cause an arbitrarily large variation in the two-point func-
tions. Or, the value of two-point functions cannot be pre-
dicted unless we know θ with an infinite precision. This does
not necessarily mean, however, that the theory is meaning-
less. We can suggest the following explanations and ways to
overcome the difficulty.

1. Since the plane waves Up do not commute even classi-
cally, see (2), they probably do not form a good basis.
Therefore, the correlation functions of plane waves may
be of little physical relevance by themselves. The prob-
lem is then to find a physically motivated basis of states
that will ensure a kind of “smooth” dependence of the
correlation functions on θ .

2. One can try to achieve a meaningful answer by smearing
the correlation functions over a small vicinity of a given
θ . The key issue is to find an appropriate measure.

3. Finally, perhaps one can extend the model to fix θ sharply
to certain value, e.g. by some topological considerations.
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Although we cannot offer much details of any of the items
above, we believe that these directions deserve further study.
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Appendix A: The double sum U( p, p)

Let us consider the analytic extension to ε = 0 of the sum

U (p, p, ε)

=
∑

k,l∈Z4

e2π i lθp

{[(k+ p)2+m2](l2+m2)[(l+k)2+m2)]}1+ε

=
∑

l∈Z4

e2π i lθp

[(l + p)2 + m2]1+ε
L(l, 0, ε). (A.1)

Using (39) at d = 4, this expression reads

U (p, p, ε) = π2

�2(1 + ε)

∑

l∈Z4

e2π i lθp

[(l + p)2 + m2]1+ε

×
∫ 1

0
du [u(1 − u)]ε

×
∫ ∞

0
dt t−1+2ε e−t (m2+u(1−u)l2)

×
∑

k∈Z4

e− π2
t k2−2π iulk . (A.2)

If we separate the term corresponding to k = 0, integrate in
t and expand about ε = 0 we obtain

U (p, p, ε) = π2 �(2ε)
∑

l∈Z4

e2π i lθp

{(l + p)2 + m2}1+ε

×
∫ 1

0
du

(u(1 − u))ε

(m2 + u(1 − u)l2)2ε

+ 2π2
∑

l

e2π i lθp

(l+ p)2+m2

∑

k 
=0

∫ 1

0
du e−2π iulk

× K0(2π |k|
√
m2 + u(1 − u)l2) + O(ε).

(A.3)

Note that for p /∈ Zθ the only nonlocal divergence in this
expression is contained in the first term, so that

U (p, p, ε) = π2

2ε
S1(p) + quad. pol. + O(ε). (A.4)

In particular, for irrational θ this expression holds for any p 
=
0 and its divergent part is canceled by (51); the contribution
U (0, 0) is, of course, regularized by the renormalization of
the parameter μ2.

Appendix B: The double sum T ( p)

The double sum

T (p, ε) =
∑

k,l∈Z4

e2π i kθl

{[(k + p)2 + m2](l2 + m2)2}1+ε
(B.5)

can be written as

T (p, ε) = 1

(p2 + m2)1+ε
S2(0, ε)

+
∑

k 
=0

∑

l

e2π i kθl

{[(k + p)2 + m2](l2 + m2)2}1+ε
.

(B.6)

We will show that the divergent part of the second term in
this expression does not depend on p or, equivalently, that
the expression

∑

k 
=0

∑

l

e2π i kθl

(l2 + m2)2(1+ε)

×
(

1

[(k + p)2 + m2]1+ε
− 1

(k2 + m2)1+ε

)

(B.7)

is finite at ε = 0. In order to do that, we expand (B.7) in
Taylor series in p keeping potentially divergent terms only,

∑

k 
=0

∑

l

e2π ikθl

(l2 + m2)2(1+ε)

×
(

− (1 + ε) p2

(k2 + m2)2+ε
+ 2(1 + ε)(2 + ε) (k · p)2

(k2 + m2)3+ε

)

. (B.8)

Assuming θ is proportional to the standard four-dimensional
symplectic matrix times a constant5 we can replace (k · p)2

by 1
4 p

2k2, which makes (B.8) convergent.
Finally, we show that the difference between expressions

(B.7) and (B.8) is finite at ε = 0. In fact, after Poisson inver-
sion this difference reads

5 In other words, we assume that the NC torus has two sets of noncom-
muting coordinates with the same noncommutativity parameter.
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2π2
∑

k 
=0

∑

l

K0(2π |l + θk|)

×
[

1

(k + p)2 + m2 − 1

k2 + m2 + p2

(k2 + m2)2

− 4(k · p)2

(k2 + m2)3

]

, (B.9)

where the expression in square brackets is O(|k|−6) for large
|k|. Now, for any given k one can separate in the l-sum the
term corresponding to the smallest value of |l+θk|. Under the
Diophantine condition, this term decreases as |k|−6 log |k|,
whereas the remaining terms are bounded by e−2π |l+θk|, due
to the behavior of K0 for large arguments. The subsequent
sum in k is therefore absolutely convergent.
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