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Abstract We discuss flavor symmetries in left–right sym-
metric theories. We show that such frameworks are a differ-
ent environment for flavor symmetry model building com-
pared to the usually considered cases. This does not only
concern the need to obey the enlarged gauge structure, but
also more subtle issues with respect to residual symmetries.
Furthermore, if the discrete left–right symmetry is charge
conjugation, potential inconsistencies between the flavor and
charge conjugation symmetries should be taken care of. In
our predictive model based on A4 we analyze the correlations
between the smallest neutrino mass, the atmospheric mixing
angle and the Dirac CP phase, the latter prefers to lie around
maximal values. There is no lepton flavor violation from the
Higgs bi-doublet.

1 Introduction

Despite the huge and continued success of the Standard
Model (SM) in the last several decades, the flavor structure
of the three generations of fermions in the SM leaves a big
puzzle that remains to be understood. In particular, lepton
mixing is so drastically different from quark mixing that the
field of flavor symmetry model building is among the busi-
est ones in flavor physics. To avoid Goldstone bosons and to
unify at least two different generations one typically chooses
discrete non-Abelian groups as flavor symmetry [1–4].

Apart from the unusual lepton mixing structure, the second
big puzzle introduced by neutrino physics is the smallness of
neutrino mass. An attractive approach is to link this smallness
to the parity violation of the SM. This is in fact achieved in
left–right symmetric models [5–9] where the gauge group of
the SM is extended to SU(2)L × SU(2)R ×U (1)B−L .

Linking the two aspects mentioned so far, we aim in this
paper at building a flavor symmetry model in a left–right sym-
metric model (LRSM). As Grand Unified Theories (GUTs)
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based on SO(10) can be broken down with an intermediate
left–right symmetry to the SM, it may be possible to extend
such LRSM flavor models in a bottom-up strategy to GUT
flavor models. Our approach could be considered as a first
modest step to unify particle and chirality species.

The constraints that are imposed by left–right symmetry
modify some of the well-known features of usually consid-
ered flavor symmetry models. For instance, a typical example
[10] based on the most often used flavor group A4, assigns
the left-handed lepton SU(2)L doublets as well as the right-
handed neutrinos to the three-dimensional irreducible rep-
resentation of A4. Right-handed charged fermions instead
transform as the three different one-dimensional represen-
tations. This is incompatible with the fact that right-handed
neutrinos and charged fermions are part of the same gauge
doublet. In general, models that unify the different particle
or chirality species are rarely considered and are in general
challenging to construct.

Another issue concerns residual symmetries. Usually a
discrete flavor symmetry group G is broken to two subgroups
G� and Gν , which constrain the form of the mass matrices
M� and Mν for charged leptons and neutrinos, respectively.
The mixing matrix is thus essentially determined by the sym-
metry group. The lepton mixing is then independent of the
neutrino masses. In the minimal left–right symmetric mod-
els under study, however, typically this direct correlation of
subgroups with lepton mixing does not exist. The reason is
that the neutrino Dirac and the charged lepton mass matrices
contain in general two contributions as a consequence of the
Higgs bi-doublet. As a result, even though there are in prin-
ciple conserved subgroups of the flavor group, they do not
translate in invariance of the mass matrices. Therefore lep-
ton mixing will depend on neutrino masses. Another issue
concerns the discrete left–right symmetry in such models.
If it is charge conjugation, one may encounter (depending
on the chosen flavor symmetry group) potential inconsisten-
cies between this discrete symmetry and the flavor symmetry.
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This is then similar to the situation when flavor and CP sym-
metries are combined, see e.g. Ref. [11].

In this paper we will construct a flavor symmetry model
based on A4 within a left–right symmetric context. We dis-
cuss carefully the general and specific model building aspects
of such scenarios and analyze several predictive solutions for
the neutrino sector. We show that flavor changing currents
in the lepton sector generated by the Higgs bi-doublet are
absent.

The paper is organized as follows. In Sect. 2 we dis-
cuss left–right symmetric models and outline aspects of their
impact on flavor symmetry model building. In Sect. 3 we
present a model based on A4 that is compatible with left–
right symmetry and analyze it numerically and analytically
in Sect. 4, in order to demonstrate that it is compatible with
current data. We conclude in Sect. 5.

2 The impact of LRSM on flavor symmetry

In this section we first review the aspects of minimal left–
right symmetric models (LRSM) that we need in this paper
and then discuss their impact on building flavor symmetry
models.

2.1 The minimal LRSM

In the minimal LRSM [5–9] the gauge group is SU(2)L ×
SU(2)R × U (1)B−L . Right- and left-handed leptons �R ,
�L are doublets under SU(2)R and SU(2)L , respectively.
Three Higgs multiplets �L ∼ (3, 1, 2), �R ∼ (1, 3, 2), and
� ∼ (2, 2, 0) are introduced to break SU(2)L × SU(2)R ×
U (1)B−L to SU(2)L ×U (1)Y and further toU (1)em, respec-
tively. We choose here the left–right parity transformation as

�L ↔ �R, � ↔ �†, �L ↔ �R . (1)

The Yukawa interactions of the lepton sector are

L ⊃ Yi j �̄Li��Rj + Ỹi j �̄Li �̃�Rj

+(YLi j�
T
Li�L�L j + YRi j�

T
Ri�R�Rj ) + h.c. (2)

The above discrete left–right symmetry leads to1 Y = Y †,
Ỹ = Ỹ †, and YL = YR . This can be seen in particular
by comparing the term Yi j �̄Li��Rj and its hermitian con-
jugate (Y †)i j �̄Ri�

†�L j with the parity-transformed terms
Yi j �̄Ri�†�L j and (Y †)i j �̄Li��Rj .

1 If the discrete parity was related to charge conjugation (cf. the dis-
cussion below Eq. (8) in [12]), the transformation properties would be
�L ↔ (�c)L = iσ2�

∗
R,� ↔ �T ,�L ↔ �∗

R , where iσ2 is for Weyl
spinors. In this case, the Yukawa matrices would obey the relations
Y = Y T , Ỹ = Ỹ T , and YL = Y ∗

R .

The scalar fields acquire the following vacuum expecta-
tion values

〈�〉 =
(

κ 0
0 κ ′

)
, 〈�L〉 = (0, 0, vL), 〈�R〉 = (0, 0, vR).

From now on we will assume that vL is sufficiently small to
be neglected. The neutrino Dirac mass matrix mD and the
charged lepton mass matrix M� are given as

mD = κY + κ ′Ỹ , M� = κ ′Y + κỸ . (3)

which implies that for given mD and M� one can always find
the associated Y and Ỹ as long as κ2 	= (

κ ′)2. The relative
contribution to the mass matrices is determined by the ratio

tan β ≡ κ/κ ′. (4)

The right-handed neutrinos have a Majorana mass matrix

MR = vRYR, (5)

which generates the light neutrino masses via the type I see-
saw

Mν = −mDM
−1
R mT

D. (6)

With the simple and straightforward assumption of mD lying
around the weak scale, MR lies around 1015 GeV, which
implies that the scale of parity restoration and thus also the
right-handed gauge boson masses lie around that scale.

2.2 Left–right symmetry and flavor symmetries

We mention here some aspects that are connected to left–right
symmetry and flavor symmetry model building. We focus on
A4 here, but our statements will hold for many other groups
as well.

Note first that the left- and right-handed lepton doublets, as
well as the left- and right-handed Higgs triplets have to trans-
form in the same representation of the flavor symmetry group.
As right-handed fermions live in a gauge group doublet now,
the right-handed neutrinos and the charged fermions of a
given generation transform together. This means that popu-
lar A4 models with the left-handed doublets as triplet and the
right-handed charged fermions as singlets are not possible.
Also models in which the right-handed neutrinos transform
as triplet and the right-handed charged fermions as singlets
are forbidden.

In typical flavor symmetry models, the Yukawa terms are
effective in the sense that apart from Higgs, left- and right-
handed fermion fields in addition scalar flavon fields are
present. The full Yukawa term (keeping the bi-doublet �
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as trivial singlet of the flavor group) can be written in the
usual compact form as

Yi j �̄Li��Rjφ, (7)

where φ is the flavon field. If �L ,R are multiplets and φ is
a trivial singlet of the flavor group, then as usual Y = Y †.
Consider now the case when �L ,R and φ are non-trivial mul-
tiplets of the flavor group. In this case Yi j �̄Li��Rjφ should
be written as

∑
k Y

k
i j �̄Li��Rjφ

k , which means that there will
be several Yukawa coupling matrices. For instance, in A4 the
full Yukawa term could be a triple-triplet term, i.e. �L ,R and
φ are all triplets. Then, because the product of two triplets
contains two triplets according to 3 × 3 = 3 + 3 + 1 + 1 + 1,
we have two different Yukawa matrices Y1 and Y2. Following
the steps as given after Eq. (2), one finds that

∑
k

Yk =
(∑

k

Yk

)†

. (8)

Actually we have here assumed real flavon fields, but the
same results applies for complex fields. As a physical result
of Eq. (8), the PMNS matrix of the left-handed leptons will
be equal to its right-handed analog.

We also note that the definition of the discrete left–right
symmetry is not unique in LR symmetric models. One could
also choose charge conjugation, which would replace in
Eq. (8) the † with T . However, this choice of discrete left–
right symmetry would bring along the complications that
the flavor symmetry group transformations are potentially
incompatible with the charge conjugation, similar to the sit-
uation of combining flavor symmetry with CP symmetry, see
e.g. Ref. [11]. In particular, for different flavor groups one
would need to introduce different non-trivial charge conju-
gations in the LRSM. In this paper we only focus on parity
as discrete left–right symmetry, leading to Eq. (8). In more
general models with different definitions of the discrete left–
right symmetry a careful check of the consistency would need
to be performed.

Another point we wish to make concerns residual sym-
metries. Typical models break A4 in such a way that in the
neutrino and charged lepton sector subgroups of A4 remain
intact.2 In general, a flavor group G breaks to different sub-
groups G� and Gν in the charged lepton and neutrino sector,
respectively:

G →
{
G� : {T | T †M�M�†T = M�M�†}
Gν : {S| ST MνS = Mν}. (9)

The eigenvectors of T are just the columns of the mixing
matrixU�, which diagonalizes the charged lepton sector, and

2 Sometimes those residual symmetries are also accidental.

likewise in the neutrino sector S determines Uν . Thus, the
PMNS matrix given by U †

�Uν is essentially determined by
Gν , G�, irrespective of the dynamical realization within a
model [13–15]. This implies in particular that mixing is inde-
pendent of masses. It is thus possible to reconstruct the flavor
group G from the mixing matrix U , or vice versa to break
G into proper subgroups to obtain U . Both the U ⇒ G and
the G ⇒ U procedures have been well understood and there
are many studies on this subject [16–24,24,25,25–27]. If in
a given model with a seesaw mechanism the right-handed
Majorana mass matrix is assumed to be proportional to the
unit matrix, or ifmD and MR share the same residual symme-
tryGν (hence can be diagonalized simultaneously), the above
game can again be played and with identifying the residual
symmetries of Mν and M�, information on the original flavor
symmetry group could be obtained.

What concerns left–right symmetric models is that the
Dirac and charged lepton mass matrices are given by con-
tributions of two fundamental terms, Y and Ỹ , see Eq. (3).
Their relative contribution is governed by tan β in Eq. (4).
Only in the limit tan β → ∞ the minimal LR model is similar
to the SM, as in this case only Y contributes to Dirac neu-
trino masses and Ỹ to charged lepton masses. In this limit of
κ ′ � κ the symmetry of mD is the one of Y . Once κ ′/κ is
non-zeromD has neither the symmetry of Y nor of Ỹ . Similar
statements hold for tan β → 0.

In left–right symmetric models mD and MR cannot share
the same residual symmetry Gν and hence cannot be diag-
onalized simultaneously: the fact that in Eq. (3) two contri-
butions to M� and mD are present, means that there is no
non-trivial symmetry basis in which this can happen, unless
tan β → ∞ or tan β → 0.

If neutrino mass would be given by a dominating type
II seesaw term, i.e. the contribution of type I seesaw which
involvesmD is suppressed, then in principle the residual sym-
metries can be well separated.

One can therefore conclude: if we introduce a flavor group
and intend to break it into two parts for neutrinos and charged
leptons respectively, then within left–right symmetric models
this is impossible unless tan β takes on extreme values or the
contribution of type I seesaw to neutrino masses is absent.
If this is not the case, the simple connection between the
flavor symmetry subgroups and U no longer applies. To put
it in another way, if some VEV alignment would lead to
simple residual symmetries and a simple mixing structure
in a model without left–right symmetry, the presence of a
left–right symmetry leads to deviations.

As is well known, the presence of the Higgs bi-doublet and
thus two Dirac Yukawa contributions in Eq. (3) implies poten-
tially dangerously rates for lepton flavor violation (LFV), see
[28] for a compilation. While the Higgs triplets and processes
involving the right-handed gauge bosons and neutrinos also
lead to LFV, their contributions are naturally suppressed if
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the scale of parity restoration lies above, say, 10 TeV. This
is in fact expected from simple neutrino mass constraints,
where the mass scale of the right-handed neutrinos is almost
GUT scale, see Eq. (6). Already in the very early Ref. [9]
the dangerous LFV generated by the bi-doublet was noted
and taken care of by imposing a simple Z2 symmetry to sup-
press μ → eγ and μ → 3e. Hence, a flavor symmetry can
be very useful and important in order to avoid LFV. Gen-
erally speaking, if Y and Ỹ in Eqs. (2) and (3) cannot be
simultaneously diagonalized, LFV processes generated by
the bi-doublet Dirac Yukawas are not suppressed. If Y and
Ỹ can be made simultaneously diagonal, such processes are
absent. As we will see in the next section, our model has this
feature.

3 A4-LRSM model

The flavor symmetry in this model is A4×Z2 and the particle
content with its transformation properties is given in Table
1. Note that the left- and right-handed lepton doublets, as
well as the left- and right-handed Higgs triplets transform
in identical representation of the flavor symmetry group. In
addition to the standard LRSM particles we only introduce
two A4 triplets (φ�, φν) and one A4 singlet ξ . The Lagrangian
of all Yukawa interactions can be written as

L ⊃ �̄L(Yξ ξ + Y�1φ
� + Y�2φ

�)��R

+ �̄L(Ỹξ ξ + Ỹ�1φ
� + Ỹ�2φ

�)�̃�R

+ �TR(Y 0
R + Y ν

Rφν)�R�R

+ �TL (Y 0
R + Y ν

Rφν)�L�L . (10)

Note the presence of two terms with �̄Lφ��R , as it is a triple-
triplet product, see the discussion around Eq. (7). In contrast,
there is only one term with �TLφν�L (or �TRφν�R ), because
such a coupling generates a Majorana mass term. Since a
Majorana mass matrix should be symmetric so any anti-
symmetric contributions to it would vanish. Thus we only
need to consider the symmetric combination in the triplet

Table 1 Particle content of the model

A4 SU(2)L SU(2)R U (1)B−L Z2

�L 3 2 1 −1 0

�R 3 1 2 −1 0

� 1 2 2 0 1

φ� 3 1 1 0 1

φν 3 1 1 0 0

ξ 1 1 1 0 1

�L 1 3 1 2 0

�R 1 1 3 2 0

product. For simplicity, we suppress all flavor indices in
the Lagrangian. Choosing for convenience the real three-
dimensional representation of A4, it follows that Yξ , Ỹξ , and
Y 0
R are proportional to the unit matrix. The terms involving

Y�1 are governed by

y

⎛
⎝ 0 φ�

3 0
0 0 φ�

1
φ�

2 0 0

⎞
⎠ . (11)

Identical flavor structure holds for Ỹ�1. The terms involving
Y�2 are, obeying the consistency relation from Eq. (8), pro-
portional to

y∗
⎛
⎝ 0 0 φ�

2
φ�

3 0 0
0 φ�

1 0

⎞
⎠ (12)

with again identical flavor structure of Ỹ�2. We assume here
symmetry breaking of the flavor symmetry according to the
usual vacuum expectation value alignment

〈φ�〉 ∝ (1, 1, 1), 〈φν〉 ∝ (0, 1, 0). (13)

Combining Yξ with the structure of Y�1 and Y�2 gives

Y =
⎛
⎝ α β γ

γ α β

β γ α

⎞
⎠ (14)

with the constraint α = α∗ and β = γ ∗. Also Ỹ has this struc-
ture. Therefore, Y and Ỹ can be simultaneously diagonalized
which implies that the Dirac mass matrices of charged lep-
tons and neutrinos can be simultaneously diagonalized. Note
that this feature implies the absence of potentially danger-
ous LFV processes generated by the Higgs bi-doublet, as
discussed at the end of Sect. 2.

The remaining symmetric Yukawa matrix resulting from
Y ν
R is proportional to

⎛
⎝ 0 φν

3 φν
2

φν
3 0 φν

1
φν

2 φν
1 0

⎞
⎠ , (15)

leading to

YR =
⎛
⎝a 0 b

0 a 0
b 0 a

⎞
⎠ . (16)

Towards an explicit form of the light neutrino mass matrix
we first perform the transformation

�L → �′
L ≡ U †

W�L , �R → �′
R ≡ U †

W�R (17)
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with the Wolfenstein matrix UW (here ω = e2π i/3)

UW = 1√
3

⎛
⎝ 1 1 1

1 ω2 ω

1 ω ω2

⎞
⎠ . (18)

As a result of this transformation, Y , Ỹ , and YR are trans-
formed to Y ′, Ỹ ′, and Y ′

R where Y ′, Ỹ ′ are diagonal matrices
and

Y ′
R = UT

WU13diag(a + b, a, a − b)UT
13UW. (19)

Inverting this expression,

(Y ′
R)−1 = U †

WU13diag

(
1

a + b
,

1

a
,

1

a − b

)
UT

13U
∗
W. (20)

Here we have defined the matrix

U13 =
⎛
⎜⎝

1√
2

0 −1√
2

0 1 0
1√
2

0 1√
2

⎞
⎟⎠ . (21)

As common in many A4 models,U †
WU13 gives tri-bimaximal

mixing, to be more specific:

U †
WU13 = U ′UTBMU ′′, (22)

where U ′ = diag(1, ω,−ω2), U ′′ = diag(1, 1, i), and

UTBM =

⎛
⎜⎜⎝

√
2
3

1√
3

0
−1√

6
1√
3

1√
2

1√
6

−1√
3

1√
2

⎞
⎟⎟⎠ . (23)

Therefore Eq. (20) can also be written as (Y ′
R)−1 ∝

U ′XTBMU ′, where we have defined

XTBM ≡ UTBM

⎛
⎝

1
1+z 0 0
0 1 0
0 0 −1

1−z

⎞
⎠UT

TBM. (24)

Here z ≡ b/a is in general a complex number. Since in
the type I seesaw the light neutrino mass matrix is Mν =
−mDM

−1
R mT

D , where mD is diagonalized with the transfor-
mation (17), we can write Mν as

Mν = m

⎛
⎝ 1 0 0

0 r2 0
0 0 r3

⎞
⎠ XTBM

⎛
⎝ 1 0 0

0 r2 0
0 0 r3

⎞
⎠ . (25)

Only m has the dimension of mass while the other quanti-
ties are all dimensionless. Note that the re-phasing Mν →

PMν P† with P = diag(eiθ1 , eiθ2 , eiθ3) does not have phys-
ical meaning so we can always assume m and r2, r3 in Eq.
(25) to be real numbers.

Finally, we can give the final form of the light neutrino
mass matrix in the charged lepton basis:

Mν = m

3(1 + z)

⎛
⎜⎝

3 + z zr2 −zr3

· z(2+z)r2
2

z−1

(
3+z−z2

)
r2r3

z−1

· · z(2+z)r2
3

z−1

⎞
⎟⎠ . (26)

Note that in the limit r2 = r3 = 1, Mν = mXTBM leads
to TBM and the neutrino mass sum-rule 1/m̃1 − 1/m̃3 =
2/m̃2 (here the masses are understood to be complex, see
e.g. [29]) since the three neutrino masses are proportional to
1/(1 + z), 1, −1/(1 − z), respectively.

4 Numerical and analytical results

In our left–right symmetric A4 model the light neutrino mass
matrix is given by Eq. (26) while the charged leptons are
diagonal with enough parameters to fully fit their masses.
First we will numerically diagonalize Mν in order to find all
possible parameter values. Analytical diagonalization of the
general mass matrix turns out to be rather complicated, so
we will only give one example. Note that, in the spirit of the
discussion in Sect. 2.2, the VEV alignment in Eq. (13) breaks
A4 to subgroups, but they do not end up in the mass matrices.
Hence, the mixing will depend on the values of the masses.

4.1 Numerical solutions

Varying all five free parameters (r2, r3,m and complex z) in
Eq. (26) and comparing the mixing angles and masses with
the 3σ global fit results from Ref. [30] reveals that there are
several disconnected ranges of parameters. The eight differ-
ent cases for the normal ordering and the ten cases for the
inverted ordering can be seen in Fig. 1, where we plot them in
the parameter space of θ23, δ, and the smallest massmL . Note
that some solutions overlap, but this happens only because of
the three-dimensional plot. The space of solutions is actually
five-dimensional and the areas in that parameter space do not
overlap.

For the normal ordering there are four curves in the shape
of a “J” and another four in the shape of an “U”. All require a
smallest neutrino mass above zero, the ones in U-shape have
a larger minimal value than the ones of J-shape. We name the
solutions AN±± and BN±±. The subscript ±± denotes the signs
of θ23 −π/4 and δ (lying in our convention between −π and
π ). Interestingly, solutions of type A have values of the CP
phase very close to ±π/2, where −π/2 seems to be preferred
by current data [31]. The type A solutions always keep the
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AN
−−

AN
+−

AN
++BN

++

BN
+−

m
L
/
eV

θ23/◦

δ/
π

AI
−−

BI
−−

CI
−

m
L
/
eV

θ23/◦

δ/
π

Fig. 1 The eight solutions for normal (left) and ten for inverted ordering (right) in θ23 − δ − mL space

Table 2 Examples of numerical solutions. The names of the five types of solutions are introduced in the text

Type Input parameters Output parameters

r2, r3 z m/eV (θ23, θ13, θ12, δ)/
◦ (105 δm2, 103 �m2)/eV2 mL/eV

AN −0.439428, 2.58285 −0.0409371 + 0.0171862i 0.0725532 42.5, 9.2, 33.9, −88.2 7.46, 2.42 0.074

BN 1.10094, 1.16147 −0.152655 + 0.422545i 0.0625143 43.9, 9.0, 33.9, −60.7 7.33, 2.42 0.065

AI −2.27434, 0.399492 0.0325321 − 0.0126102i 0.10147 43.1, 9.2, 34.7, −89.6 7.75, −2.42 0.087

BI 1.04956, −0.947632 −0.00592698 − 0.144104i 0.223795 42.5, 9.5, 33.5, 80.1 7.33, −2.42 0.22

C I 0.400877, 0.369437 0.9466 + 0.208355i 0.0723235 42.7, 9.0, 34.2, −57.7 7.31, −2.42 0.0079

signs of θ23 −π/4 and δ, those of type B only for most of the
parameter space. While the lower limit on the smallest mass
is 0.034 eV for type A, it is 0.046 eV for type B.

There are similar types of solutions for the inverted mass
ordering, denoted AI±± and BI±± (having smallest masses of
at least 0.034 and 0.053 eV, respectively). In addition, there is
a different type of solution denoted C I±, where the subscript
denotes the sign of θ23 −π/4. These two cases are special in
the sense that they allow only a smallest mass between 0.004
and 0.013 eV. Example solutions are given in Table 2. Note
that some of the solutions with δ → −δ are connected by
complex conjugation of the mass matrix.

The correlation between the interesting parameters θ23,
δ, and mL are given in Figs. 2 and 3, respectively. Finally,
Fig. 4 summarizes the prediction of the model for neutrino-
less double beta decay [32]. We see in particular that for the
inverted ordering it always holds that the effective mass takes
essentially its largest possible values and that for the normal
mass ordering the effective mass is non-zero.

4.2 Analytical calculation

Now we try to analytically find approximate expressions for
one of the many possible solutions. From Table 2 we see that

there are solutions with r2 and r3 close to one. Focusing on
this case, we introduce the small parameters

δ2 ≡ r2 − 1, δ3 ≡ r3 − 1 (27)

in Eq. (26). In this case the neutrino mixing should be close
to tri-bimaximal mixing (TBM) because if δ2, δ3 = 0 the
neutrino mixing is TBM. We further assume for simplicity
that the neutrino mass sum-rule as discussed at the end of
Sect. 3 holds, which is approximately true in this case as
well.

The deviation from TBM can be computed perturbatively
under the assumption δ2, δ3 � 1. The result turns out to be

U ≈ UTBM+
⎡
⎣ (δ2 + δ3) f11(z) (δ2 + δ3) f12(z) f13(z)(δ2 − δ3)

. . f23(z)(δ2 − δ3)

. . f33(z)(δ2 − δ3)

⎤
⎦ ,

(28)

where z first appears in Eq. (24) and the f -functions are
complex and of order one but their explicit forms are lengthy
and not needed. The elements not given are not important
here.

The important point is that the deviations of Ue1 and Ue2

are proportional to (δ2 + δ3) while the deviations of Ue3,
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Fig. 2 Predicted relations from our model for the normal mass ordering

Uμ3, and Uτ3 are proportional to (δ2 − δ3). Note that Ue1

and Ue2 determine the value of θ12, which should not be too
far away from the TBM value sin θ12 = 1/

√
3. At the same

time, Ue3 ∝ δ2 − δ3 should be relatively large compared to
the deviation of θ12. Thus, we simplify the analysis further
by taking δ3 = −δ2. Another assumption to make our life
simpler is that |1 + z| ≈ 1, which implies

z ≈ e2iα − 1.

The reason for this assumption is as follows: as men-
tioned above, we use the fact that the actual mass spectrum
(m1,m2,m3) is still very close to the leading order one which
is proportional to ( 1

1+z , 1, −1
1−z ). With δm2/�m2 � 1 it fol-
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Fig. 3 Predicted relations from our model for the inverted mass order-
ing. The black curves represent analytical results (see Eqs. (31) and
(32) for explicit expressions) obtained from an approximate calcula-
tion, being well compatible with the numerical result

lows (1 − | 1
1+z |2)/(1 − | 1

1−z |2) � 1, which implies |1 + z|
should be very close to 1. Note that if we assume z ≈ e2iα−1,
we are limited to the inverted ordering because | 1

1−z |2 is
always less than 1.

With the above assumptions (first taking δ3 = −δ2 and
then z ≈ e2iα − 1), Eq. (28) can be simplified to

U ≈

⎛
⎜⎜⎝

√
2
3

1√
3

g13(α)δ2

. . g23(α)δ2 + 1√
2

. . g33(α)δ2 + 1√
2

⎞
⎟⎟⎠ , (29)
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the isolated red points corresponding to the C I± solutions). The green
shaded area represents the currently allowed parameter space

where

g13,23,33(α) ≡ 3 − i cot α

3
√

2
,
−3 + 2i cot α

3
√

2
,

3 − 2i cot α

3
√

2
.

(30)

Note that with |g13(α)|δ2 = sin θ13 we can replace δ2 with
s13/|g13(α)| and then extract tan θ23 and sin δ from Eq. (29).
They can be expressed in terms of θ13 and α,

tan θ23 ≈
∣∣∣∣∣
−2s13z2 + i

√
2|z1|

2s13z2 + i
√

2|z1|

∣∣∣∣∣ ,

sin δ ≈ Im

⎡
⎣ z1

(√
2i z2s13+|z1|

) (√
2z3s13+2i |z1|

)
2|z1|3

⎤
⎦ ,

(31)

where

z1 ≡ cot α − 3i,

z2 ≡ 2 cot α + 3i,

z3 ≡ 3 cot α + 3i.

Now we have derived approximate expressions for θ23 and
δ in terms of α. The value of α can be related to the lightest
neutrino mass mL via

mL(α) ≈
√

1

8
�m2 csc2 α (32)

because the mass spectrum is (m2
1,m

2
2,m

2
3) ≈ m2(1, 1, |1 +

z|−2) in our approximation. From Eq. (31) we can extract the

following limit:

lim
α→0

tan θ23 = lim
α→0

1 − 6
√

2s13

8s2
13 + 1

| tan α| = 1, (33)

which implies α should be a small angle to make θ23 close to
45◦. The limits of Eqs. (31) and (32) can also be computed,
resulting in

lim
α→0± sin δ = ±(3 cos 2θ13 − 4) ≈ ±1 (34)

and

lim
α→0

mL(α) ∝
√

�m2

|α| . (35)

Note the limit of | sin δ| in Eq. (34) is larger than 1 since
4 − 3 cos 2θ13 = 1 + 6θ2

13 + O(θ3
13). This is due to the

inaccuracy of our approximate calculation where we omit all
second-order corrections of δ2. The limit (35) implies that
small α results in large mL , i.e. mL → ∞ ⇐⇒ α → 0.
Therefore, for small |θ23 − 45◦| the smallest mass mL is
large. Furthermore, the larger α the larger is the devia-
tion of θ23 from π/4, which means that there should be a
lower bound on mL . The above expressions also imply that
limmL→∞ | sin δ| = 1, i.e. as neutrino mass increases the CP
phase approaches one of its maximal values.

Those features can be identified from the plots in Fig. 3,
showing the accurateness of the analytical study.

4.3 Phenomenological summary

Let us summarize the phenomenological consequences of the
model.

First of all, the lightest neutrino mass cannot be zero or too
small, quantitatively summarized from the previous results
as follows:

normal : mL � 0.034 eV,

inverted : mL ∈ (0.004, 0.013) or mL � 0.034 eV.

The lower bound ofmL for normal ordering has an important
implication as the effective mass Mee is always non-zero. One
finds

normal : Mee � 0.036 eV,

inverted : Mee ∈ (0.0482, 0.0493) or Mee � 0.059 eV.

We also note that for large mL (�0.1 eV),

mL ≈ Mee. (36)

This is due to the (approximately valid) sum-rule 2m−1
2 +

m−1
3 = m−1

1 , which will give the above relation for a quasi-
degenerate spectrum [29].
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Another important feature of our model is the maximal
CP violation. As we can see from the top plots in Figs. 2 and
3, both the AN and the AI types of solution (green and blue
points) always have maximal | sin δ| with very little uncer-
tainties. For the BN and BI types of solution, if mL is large
enough, | sin δ| also approaches its maximal value. This can
be understood e.g. from our previous analytic computation
which gives limmL→∞ | sin δ| = 1.

The C I solution in general do not have maximal CP vio-
lation. However, from the lower plot in Fig. 3 we see that
δ and θ23 are strongly correlated (black dots). If θ23 turns
out to deviate significantly from 45◦ such as θ23 < 42◦ or
θ23 > 48◦, then theC I solutions also predict maximal | sin δ|.

The two bottom plots in Figs. 2 and 3 show that if large
|θ23 − 45◦| is observed in the future, then | sin δ| must be
close to its maximal value. For the inverted ordering this
requires |θ23 − 45◦| � 3◦, as just discussed, while for the
normal ordering it requires |θ23−45◦| � 1.5◦. It is interesting
to note that such a deviation of θ23 and a maximal | sin δ|
are simultaneously (still rather mildly) preferred by current
global fit as the best-fit of (θ23, sin δ) is (41.4◦,−0.94) for
normal ordering and (42.4◦,−0.83) for inverted ordering
[30].

Finally, since in the large mL limit θ23 goes to 45◦, a
significant deviation of θ23 from 45◦ implies an upper bound
onmL . For example if |θ23−45◦| � 3◦ in the normal ordering
then from Fig. 2 we get mL � 0.06 eV, which constrains mL

to a very narrow region (0.034, 0.06) eV.
It is also possible to rule out a mass ordering in this model

due to the different structures of solutions. For example, if the
future bound on mL is pushed below 0.034 eV, then only the
C I solutions survive. Also, since (θ23, δ) shown in the bottom
plots in Figs. 2 and 3 have very different distributions for both
possible mass orderings, it is also possible to distinguish them
with precise measurements on θ23 and δ.

In summary, if mL is large, we have clear predictions on
δ, θ23, and Mee, which should be close to their large mL limit

lim
mL→∞(| sin δ|, θ23, Mee) = (1, 45◦,mL). (37)

If mL is small, then we have some more interesting predic-
tions among these parameters, such as large deviations from
θ23 = 45◦, correlations between θ23 and δ as well as with the
mass ordering.

5 Conclusion

We presented in this model a flavor symmetry model based on
A4 within a left–right symmetric framework. Various aspect
exist that make this environment different from the usual
model building. This includes the necessity to treat the par-

ticles in left- and right-handed doublets, but more crucially
the fact that residual symmetries from breaking the full fla-
vor group do not make it in the mass matrices and hence do
not determine the mixing. Furthermore, the discrete left–right
symmetry should be parity rather than charge conjugation, in
order to avoid inconsistencies between the flavor and charge
conjugation symmetries.

Taking all this into account, we were discussing a left–
right symmetric model with A4 flavor symmetry and ana-
lyzed its predictions. No flavor changing neutral currents
from the Higgs bi-doublet are present. Several distinct solu-
tions for the neutrino sector were possible, many of which
preferring maximal CP violation as currently preferred by
data. Various other predictions and correlations exist which
would allow for tests of the model.

The various constraints that left–right symmetric theories
impose on flavor symmetry models will allow for further
analyses, both conceptual as well as phenomenological. The
possibility to use left–right symmetry as a first bottom-up
step to approach GUT flavor symmetries is another attrac-
tive option to study. Such endevours will be left for future
studies.
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