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Abstract Electroweak radiative corrections to the produc-
tion of high-multiplicity final states with several intermediate
resonances in most cases can be sufficiently well described by
the leading contribution of an expansion about the resonance
poles. In this approach, also known as pole approximation,
corrections are classified into separately gauge-invariant fac-
torizable and non-factorizable corrections, where the former
can be attributed to the production and decay of the unstable
particles on their mass shell. The remaining non-factorizable
corrections are induced by the exchange of soft photons
between different production and decay subprocesses. We
give explicit analytical results for the non-factorizable pho-
tonic virtual corrections to the production of an arbitrary
number of unstable particles at the one-loop level and, thus,
present an essential building block in the calculation of next-
to-leading-order electroweak corrections in pole approxima-
tion. The remaining virtual factorizable corrections can be
obtained with modern automated one-loop matrix-element
generators, while the evaluation of the corresponding real
photonic corrections can be evaluated with full matrix ele-
ments by multi-purpose Monte Carlo generators. Our results
can be easily modified to non-factorizable QCD corrections,
which are induced by soft-gluon exchange.

1 Introduction

With very few exceptions, all interesting fundamental parti-
cles are unstable and can only be reconstructed after collect-
ing their decay products in detectors. In the Standard Model
(SM), this most notably concerns the gauge bosons W and Z
of the weak interaction, the top quark, and the Higgs boson,
for which a candidate was found at the LHC in 2012. In
extensions of the SM, typically more heavy, unstable parti-
cles are predicted, such as additional Higgs bosons or gluinos,
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charginos, neutralinos, and sfermions in supersymmetric the-
ories. After the first period of data taking at the LHC, the SM
is in better shape than ever in describing practically all phe-
nomena in high-energy particle physics. The search for new
physics, thus, has to proceed with precision at the highest
possible level, in order to reveal any possible deviation from
SM predictions. To this end, both QCD and electroweak cor-
rections have to be included in cross-section predictions.

Production processes of unstable particles notoriously
lead to many-particle final states where the bulk of cross-
section contributions results from phase-space regions where
the intermediate unstable particles are resonant, i.e. near their
mass shell. In the usual perturbative evaluation of scatter-
ing amplitudes in quantum field theory, a particle propaga-
tor develops a pole at the resonance point, i.e. a proper res-
onance description requires at least a partial resummation
of self-energy corrections to the propagator near the reso-
nance. Since this procedure mixes perturbative orders, such
Dyson summations potentially lead to violations of identi-
ties (Ward, Slavnov–Taylor, Nielsen identities) that mani-
fest gauge invariance order by order in perturbation theory.
A more detailed discussion of this issue can be found in
Ref. [1] and in references therein. The two most prominent
procedures to avoid the gauge breaking are the so-called pole
scheme [2,3] and the complex-mass scheme [4,5]. Both make

use of the fact that the complex pole location p2 = M
2

of
an unstable particle’s propagator with momentum transfer p
is a gauge-invariant quantity which can serve for a proper
mass and decay width definition [6,7]. In the complex-mass
scheme the complex masses are consistently introduced as
input parameters, so that all coupling parameters derived
from the masses, like the electroweak mixing angle in the SM,
become complex. Being a consistent analytical continuation
to complex parameters, this scheme fully maintains gauge
invariance.1 The scheme reaches the same level of accuracy

1 The complex-mass scheme introduces spurious unitarity violation,
which is, however, always beyond the level of completely calculated
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in resonant and non-resonant regions in phase space. How-
ever, if one is only interested in the resonance regions, which
is typically the case in many-particle processes with low cross
sections, the scheme leads to a proliferation of terms induced
by the numerous Feynman diagrams contributing only in off-
shell regions.

The pole scheme suggests to isolate the gauge-invariant
residues of the resonance poles and to introduce propaga-
tors with complex masses M only there, while keeping the
remaining parts untouched. Restricting this general proce-
dure to resonant contributions defines the pole approximation
(PA), which is adequate if only the off-shell behavior of cross
sections near resonances is relevant, but contributions deep in
the off-shell region are negligible. The corrections to the res-
onance residues comprise the corrections to the production
and decay subprocesses with on-shell kinematics for the res-
onant particles. Since these contributions to matrix elements

contain explicit resonance factors ∝ 1/(p2 − M
2
), they are

called factorizable corrections. The remaining resonant con-
tribution in the PA furnish the non-factorizable corrections.
They result from the fact that the infrared (IR) limit in loop
diagrams and in real emission contributions and the proce-
dure of setting particle momenta on their mass shell do not
commute with each other if the on-shell limit leads to soft IR
singularities. This is the case if a soft (real or virtual) mass-
less gauge boson bridges a resonance. The fact that only the
soft momentum region of the massless gauge boson leads to
resonant contribution simplifies the calculation of the non-
factorizable corrections, because factorization properties of
the underlying diagrams can be exploited. The terminol-
ogy “non-factorizable”, thus, does not refer to factorization
properties of diagrammatic parts, but to the off-shell behav-
ior of the corrections, which apart from resonance factors

1/(p2 − M
2
) contain non-analytic terms like ln(p2 − M

2
).

The complex-mass and pole schemes were successfully
used in many higher-order calculations, both for electroweak
and QCD corrections. Here we just mention the two examples
of single and pair production of the weak gauge bosons W
and Z, where results of the two schemes have been compared
in detail. For W-pair production at LEP2, e+e− → WW →
4 fermions, the double-pole approximation (DPA) for the two
W resonances was worked out in different next-to-leading-
order (NLO) variants [9–12], which were numerically com-
pared in detail [13]. Later the comparison to the full off-shell
NLO calculation [5,14] within the complex-mass scheme
confirmed both the expected accuracy of the DPA in the res-
onance region and the limitation in the transition region to
the off-shell domains. The situation is expected to be sim-
ilar for W-pair production at hadron colliders, where up to

Footnote 1 continued
orders [8], i.e. the spurious terms are of next-to-next-to-leading order
in next-to-leading order calculations, etc.

now only results in DPA are known [15,16]. For the concep-
tionally simpler Drell–Yan process of single W/Z produc-
tion at hadron colliders, detailed comparisons between PA
and complex-mass scheme are discussed in Refs. [17,18].
In Ref. [18] the concept of a PA was carried to the next-to-
next-to-leading-order level and applied to the mixed QCD-
electroweak corrections of O(αsα). Applications of the PA
to processes with more than two resonances only exist for
leading-order (LO) predictions (see, e.g., [19]).

The concept of the PA can be carried out both for virtual
and real radiative corrections, however, care has to be taken
that the approximations are set up in such a way that the can-
cellation of IR (soft and/or collinear) singularities between
virtual and real corrections is not disturbed. If both virtual and
real corrections are treated in PA, the sum of virtual and real
non-factorizable corrections forms a closed gauge-invariant,
IR-finite subset of corrections that can be discussed sepa-
rately. For single and double resonances it has been shown
that these completely cancel at NLO [20,21] (i.e. up to the
level of non-resonant contributions) if the virtuality of the
resonances is integrated over, as done in integrated cross sec-
tions or most of the commonly used differential distributions.
For invariant-mass distributions of resonating particles, non-
factorizable corrections are non-vanishing, but turn out to
be numerically small as, e.g., discussed in the literature for
single W/Z production [18], even to O(αsα), or for the pro-
duction of W-boson pairs [22–24] or Z-boson pairs [25].

The smallness of the sum of virtual and real non-
factorizable corrections poses the question about their rel-
evance. Apart from the fact that there is no guarantee that
those effects are negligible unless they are calculated, the vir-
tual non-factorizable corrections alone represent an impor-
tant building block in the ongoing effort of the high-energy
community in automating NLO QCD and electroweak cor-
rections to multi-particle processes. On the side of real NLO
corrections, the required evaluation of full LO amplitudes,
together with an appropriate subtraction of IR singularities,
is under control for up to 8–10 final-state particles by auto-
mated systems such as Sherpa [26,27],Madgraph [28,29],
or Helac- NLO [30,31]. On the other hand, the much more
complex evaluation of virtual one-loop amplitudes is con-
fined to lower multiplicities in spite of the great progress in
recent years reached by the one-loop matrix-element gen-
erators such as BlackHat [32], GoSam [33], Helac-
NLO [30], Madloop [34], NJet [35], OpenLoops [36], and
Recola [37]. A promising approach to driving automation
to higher multiplicities in production processes with several
unstable particles in resonances – in particular in view of
electroweak corrections – is, thus, to make use of full matrix
elements in LO and on the side of the real corrections, but
to employ the PA for the virtual parts. The factorizable vir-
tual corrections can then be obtained with the above one-
loop matrix-element generators, accompanied by the non-
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factorizable virtual corrections, for which we give explicit
analytical results in this paper. We note in passing that this
kind of hybrid approach was already used in the Monte Carlo
generator RacoonWW [4,11,12,38] for W-pair production
in e+e− annihilation.

In detail, we present generic results on the non-factorizable
virtual corrections for the production of arbitrarily many res-
onances and their decays, i.e. we do not consider resonances
that are part of cascade decays. Moreover, we restrict our
calculation to electroweak corrections to keep the deriva-
tion and results transparent, but the modifications needed for
QCD corrections are straightforward. Similar results were
given in [15], but without detailed derivation and some-
what less general. Technically, pole expansions can be car-
ried out on the basis of scattering amplitudes, as done, e.g.,
in Refs. [15,17,18,21–24], or alternatively with the help of
specifically designed effective field theories, as formulated
in Refs. [39,40]. In this paper, we entirely analyze scattering
amplitudes using the Feynman-diagrammatic approach.

The paper is organized as follows: In Sect. 2 we set our
conventions and notations and review the general structure of
the pole approximation, including the definition of factoriz-
able and non-factorizable corrections. Moreover, our strategy
for calculating the non-factorizable corrections is explained
in detail there. Section 3 contains both our general results and
their illustration in applications to the Drell–Yan process, to
vector-boson pair production, and to vector-boson scattering.
Our conclusions are presented in Sect. 4. The appendices
provide more details as regards the derivation of our central
results as well as supplementary formulas that are helpful in
the implementation of our results in computer codes.

2 Pole approximation and non-factorizable corrections

2.1 Conventions and notations

Our conventions for labeling particles and momenta are illus-
trated in Fig. 1. We distinguish between initial- and final-state
particles, where a final-state particle is either one of then non-
resonant particles or a decay product of one of the r resonant
intermediate states.

We define the index set I comprising the indices of incom-
ing particles, the r sets R j containing the indices of the decay
products of resonance j , the set R of all r resonances, and
finally the set N collecting the n remaining particles. Typ-
ically we have I = {1, 2} and therefore |I | = 2, although
we are not limited to this case. In summary, the numbers for
resonant and non-resonant particles are related to the index
sets by

|R j | = r j , j ∈ R ≡ {1, . . . , r}, (2.1a)

|N | = n. (2.1b)

Fig. 1 Diagram for a typical process with multiple resonances illus-
trating the labeling of external particles for a process I → F = N ∪ R.
The particles with indices i ∈ I are incoming, particles with indices
i ∈ F are outgoing. The outgoing particles either result from the decay
of a resonant particle, i ∈ R, or are directly produced without interme-
diate resonant state, i ∈ N . There are r resonances, which have electric
charges Q j and momenta k j with j ∈ R = {1, . . . , r}. The decay
products of resonance j are labeled with i ∈ R j

For convenience we define

F = N ∪ R, R =
r⋃

j=1

R j , (2.2)

i.e. F is the index set of all outgoing particles. The momentum
of external particle i is labeled with ki for i ∈ I ∪ F , where
momenta are defined to be outgoing. Incoming particles with
incoming momenta pi , i ∈ I , therefore have momentum
pi = −ki . The resonant particle j has momentum

k j =
∑

i∈R j

ki . (2.3)

We define invariants in the following way:

s =
(∑

i∈I
pi
)2

, (2.4a)

si j = (ki + k j )
2, i, j ∈ I ∪ F , (2.4b)

si j = (ki + k j )
2 i ∈ R, j ∈ I ∪ F , (2.4c)

s̃i j = (ki − k j )
2, i ∈ R, j ∈ I ∪ F , (2.4d)

si j = (ki + k j )
2, i, j ∈ R, (2.4e)

where whenever a quantity possesses a “bar” or a “tilde”, it
concerns a resonant (intermediate) particle. The asymmet-
ric sign convention in the definition of si j and s̃i j accounts
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for the fact that the momenta of the resonances are out-
going/incoming in the production/decay subprocesses. The
squared masses of the particles are

k2
i = m2

i , (2.5a)

M
2
j = M2

j − iMj� j , (2.5b)

where Mj and � j are the real mass and width parameters of
the unstable particle j . The final-state particles are taken to
be massive, so that potential collinear singularities in the case
of light particles are regularized by a small mass mi . We also
define the inverse propagator denominators with complex
masses for the resonant particle j as

K j = k
2
j − M

2
j , j ∈ R. (2.6)

In order to regularize soft IR divergences we use an infinites-
imal photon mass mγ → 0 and give a simple substitution
rule to translate our results to dimensional regularization in
Appendix C.

Finally, each particle possesses an electric (relative)
charge Qi so that global charge conservation reads

∑

i∈I∪F

Qiσi = 0, (2.7)

with sign factors σi that are positive, σi = +1, for incom-
ing particles and outgoing antiparticles, and negative, σi =
−1, for incoming antiparticles and outgoing particles. Local
charge conservation for the resonance j and its decay prod-
ucts reads

Q j = −
∑

i∈R j

Qiσi ,
r∑

j=1

Q j =
∑

i∈I∪N

σi Qi , (2.8)

where Q j is the electric charge of the produced resonance j
of particle or antiparticle type alike.

2.2 Structure of the pole approximation

2.2.1 Factorizable corrections

We define the LO matrix element in PA, MLO,PA, as the
product of the matrix elements for the production of r reso-
nances with n additional non-resonant states N , MI→N ,R

LO ,
and the matrix elements of the decays of each resonance j ,

M j→R j
LO , multiplied by a product of r propagators of the

resonant particles,

MLO,PA =
∑

λ1,...,λr

(
r∏

i=1

1

Ki

)

×
⎡

⎣MI→N ,R
LO

⎛

⎝
r∏

j=1

M j→R j
LO

⎞

⎠

⎤

⎦
{
k

2
l →k̂

2

l =M2
l

}
l∈R

.

(2.9)

This product involves the sum over the polarizations λ j of the
resonances, inducing spin correlations between the different
production and decay subprocesses. Note that the momenta
of the resonances have to be set on shell in the matrix ele-
ments of the subprocesses,MI→N ,R

LO andM j→R j
LO , otherwise

the constructed matrix element is not gauge invariant in gen-
eral. Since in PA we only keep the leading contribution in
the expansion about the resonance poles, we can deform the

original (off-shell) momenta ki to momenta k̂i that are on

the (real) mass shell, k̂
2

l = M2
l , which avoids the unpleasant

appearance of complex momentum variables. The matrix ele-
ment MLO,PA is, thus, the leading contribution of an expan-
sion of the full matrix element of the process I → F in
the limit � j → 0, where the widths � j in the denominators
1/K j are kept.

We emphasize that the LO matrix element in PA,MLO,PA,
is only an auxiliary quantity in NLO predictions in PA, while
LO cross sections should be calculated with full LO matrix
elements. Using MLO,PA, e.g., in production processes of
electroweak gauge bosons V = W, Z would neglect already
terms of relative order O(�V /MV ) = O(α), which is of the
generic order of NLO electroweak corrections.

The factorizable corrections by definition comprise all
corrections to the various production and decay subpro-
cesses, i.e. the corresponding matrix element Mvirt,fact is a
sum of r+1 terms resulting fromMLO,PA upon replacing one
of the LO parts on the r.h.s. of Eq. (2.9) by the corresponding
one-loop-corrected matrix element Mvirt,

Mvirt,fact,PA =
∑

λ1,...,λr

⎛

⎝
r∏

i=1

1

Ki

⎞

⎠

⎡

⎣MI→N ,R
virt

r∏

j=1

M j→R j
LO

+MI→N ,R
LO

r∑

k=1

Mk→Rk
virt

r∏

j �=k

M j→R j
LO

⎤

⎦
{
k

2
l →k̂

2
l =M2

l

}
l∈R

. (2.10)

2.2.2 On-shell projection

Two different types of momenta enter Eqs. (2.9) and (2.10).
The phase-space integral of the corresponding cross-section
contribution usually is based on the full phase space deter-
mined by the momenta ka of all final-state particles a ∈
F , where the intermediate momenta ki are off their mass
shell. These are the momenta entering the propagator factor∏

i (1/Ki ), while the partial matrix elements appearing in
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the square brackets are parametrized by on-shell-projected
momenta k̂a that result from all ka by some deformation

{
ki
}
i∈I∪F → {

k̂i
}
i∈I∪F (2.11)

in order to project the virtualities k
2
i of all resonances to their

real mass shells at M2
i , i.e.

k̂i =
∑

a∈Ri

k̂a , k̂
2

i = M2
i , i ∈ R. (2.12)

This on-shell projection has to respect overall momentum
conservation and all mass-shell relations k2

a = k̂2
a = m2

a .
Note that the projection involves some freedom, but the dif-
ferences resulting from different definitions are of the order
of the otherwise neglected non-resonant contributions.

We suggest the following on-shell projection (which is a
generalization of the projection defined in Ref. [12]) for our
considered class of processes with r ≥ 2 resonances and
possibly additional non-resonant particles in the final state.
The on-shell projection preserves the momenta of the initial-
state and non-resonant final-state particles, i.e.

k̂a = ka a ∈ I ∪ N . (2.13)

We construct the on-shell-projected momenta by selecting
pairs of i, j of resonances whose new momenta k̂i and k̂ j are
defined in their center-of-mass frame, i.e. in the frame where
ki + k j = ∑

a∈Ri∪R j
ka = 0. In this frame the momenta

of the two resonances are back-to-back and the velocities
fixed by momentum conservation. We choose the direction

of the on-shell-projected momentum k̂i of resonance i along
its original direction ei = ki/|ki |, which determines the on-
shell-projected momenta as follows:

k̂
0

i = si j + M2
i − M2

j

2
√
si j

, k̂i =

√
λ
(
si j , M2

i , M2
j

)

2
√
si j

ei ,

(2.14a)

k̂
0

j = si j − M2
i + M2

j

2
√
si j

, k̂ j = −k̂i , (2.14b)

where λ(x, y, z) = x2+y2+z2−2xy−2xz−2yz is the well-
known triangle function. Note that this procedure leaves the
sum of the two resonance four-momenta (and thus also their

invariant mass si j ) unchanged, k̂i + k̂ j = ki + k j . Carrying
out the procedure for all pairs of resonances in R completes
the on-shell projection if their total number r is even. If there
is an odd number of resonances, the remaining resonance
is paired with an already projected resonance momentum

(preferably one of Eq. (2.14b) where we did not preserve the
direction) and repeat the procedure for this pair once again.

The on-shell projection of the decay products of each res-
onance can be done in a second step after fixing the resonance

momenta k̂i as above. For simplicity we restrict ourselves to
the case where a resonance i undergoes a 1 → 2 particle
decay. Denoting the 2 decay particles of i by a and b, i.e.
Ri = {a, b}, we define the new momenta k̂a and k̂b in the

center-of-mass frame of k̂i as

k̂0
a = M2

i + m2
a − m2

b

2Mi
, k̂a =

√
λ(M2

i ,m2
a,m

2
b)

2Mi
ea ,

(2.15a)

k̂0
b = M2

i − m2
a + m2

b

2Mi
, k̂b = −k̂a , (2.15b)

where ea = ka/|ka | is the direction of the original momen-

tum ka in the center-of-mass frame of k̂i . Note that this trans-
formation is a simple rescaling of ka and kb if a and b are
massless.

For processes with a single resonance it is not possible
to leave all of the initial-state and non-resonant final-state
momenta unmodified. In Sect. 3.2.1 we give a suitable on-
shell projection for the case of no additional non-resonant
particles and one resonance.

2.2.3 Non-factorizable corrections

Following the guideline of [24], we define the non-
factorizable virtual correction as the difference between the
full matrix element Mvirt and the factorizable part in the PA,
i.e.

Mvirt,nfact,PA ≡ [Mvirt − Mvirt,fact,PA
]

res,
{
k

2
l ,M

2
l →M2

l

}
l∈R

,

(2.16)

where the subscript ‘res’ indicates that after performing the
loop integration we keep only the resonant part of the expres-

sion. The additional subscript {k2
l , M

2
l → M2

l }l∈R means
that we set the virtualities and the complex masses of the
resonances to their real mass shell whenever possible, i.e.

when the replacements k
2
l → M2

l and �l → 0 do not lead

to singularities. Apart from the terms where k
2
l and M

2
l have

to be kept, the non-factorizable matrix elements should be
evaluated with on-shell projected momenta to produce a well-
defined result.

The procedure for deriving Mvirt,nfact,PA will be worked
out in detail in Sect. 2.3 below. Here we just anticipate some
basic features. In contrast to the factorizable parts the non-
factorizable corrections receive contributions from diagrams
in which the loop involves both production and decay of
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the resonances, so that the expression does no longer factor
in the simple form of Eq. (2.10), justifying the name ‘non-
factorizable’. However, as we will show in Sect. 2.3, the
non-factorizable corrections can be written as

2 Re{M∗
LO,PAMvirt,nfact,PA} ≡ ∣∣MLO,PA

∣∣2 δnfact, (2.17)

which defines the relative correction factor δnfact, for which
we give an analytic expression in Sect. 3. In order to
keep the derivation and the final results transparent, in
this paper we restrict ourselves to the case of electroweak
corrections, where only photon exchange turns out to be
relevant.

2.3 Calculation of the non-factorizable corrections

2.3.1 Relevant Feynman diagrams

In Eq. (2.16) we have defined the non-factorizable correc-
tions as the resonant parts of the difference between the full
one-loop matrix elements and the factorizable terms. Thus,
by definition the sum of the factorizable and non-factorizable
corrections, defined in Eqs. (2.10) and (2.16), captures the
full virtual correction in PA.

Although the definition of the non-factorizable corrections
involves the full matrix element Mvirt, we do not need to
know the full expression of Mvirt, since only a specific set of
diagrams contributes to the non-factorizable parts. Follow-
ing the arguments of Refs. [20–24], this set is identified as
follows:

1. By definition, all diagrams that do not involve the reso-
nance pattern of the considered process do not contribute
to the resonant (factorizable or non-factorizable) correc-
tions. Since resonance factors may also emerge from the
loop integration, propagators in loops have to be included
in the identification of potential resonances. In a first step,
certainly all diagrams can be omitted that do not involve
all relevant resonance propagators after omitting an inter-
nal line in the loop. After this step, we are left with two
types of diagrams:

(A) Diagrams in which at least one resonance propaga-
tor j ∈ R is confined in the loop. These are called
manifestly non-factorizable.

(B) Diagrams in which all resonance propagators appear
at least on one tree-like line.

2. Among the diagrams of type (A) only those can develop
a resonance corresponding to the propagator j , which
is confined in a loop if the loop contains a virtual pho-
ton exchanged between external particles and/or reso-
nances of the process, because only then a soft IR diver-

gence emerges.2 This can be seen via simple power-
counting in momentum space. Denoting the loop momen-
tum on the propagator j by k j + q, the resonance factor

1/[(k j + q)2 − M
2
j ] receives support in the loop inte-

gration only within a phase-space volume in which each

component of q is of O(|k2
j − M

2
j |/Mj ) ∼ O(� j ). To

compensate this suppression factor ∝ �4
j in the four-

dimensional loop integration, four powers of enhance-
ment in the small momentum q are necessary. The only
way to achieve this in a one-loop integral is a soft diver-
gence by a photon exchange (or a gluon in the QCD case),
a situation that can appear in two different ways. First
of all, the photon can be exchanged between 2 different
external particles a and b, where the IR divergence is pro-
duced by the factor 1/[(q2−m2

γ )(q2+2kaq)(q2−2kbq)]
composed of the three additional propagators. Second,
the photon can be exchanged between an external particle
a and another resonance i �= j , where the IR divergence
is produced by the factor3 1/[q2 −m2

γ )(q2 +2kaq)(q2 −
2kiq)].

3. The diagrams of type (B) already contribute to the fac-
torizable corrections, because the respective loop subdia-
grams contribute to an irreducible vertex function that can
be attributed to the production or one of the decay sub-
processes. Their factorizable contributions are obtained
upon setting all momenta ki (i ∈ R) of the resonances to
their mass shell everywhere but in the explicit propagator
factors 1/Ki . Since we are only interested in the leading
contribution of the expansion about the resonances, we
can neglect the decay widths �i when setting ki on shell,

i.e. we can keep k
2
i = M2

i real, which conceptually and
technically simplifies the evaluation of the factorizable
corrections significantly. Diagrams of type (B) can, thus,
only contribute to the non-factorizable corrections if the
two steps of the loop integration and the transition to

k
2
i = M2

i in the loop do not commute.4 This can only

happen if the process of setting k
2
i → M2

i before the
loop integration leads to a singularity for at least one res-

2 The exchange of a massless (or light) fermion does not produce the
needed enhancement because of the additional momentum term /q in
the propagator numerator. Massless or (light) scalars are ignored in this
argument, since they are not part of the SM or of any favored extension.
3 The factor 1/(q2 − 2ki q) actually results from a decomposition of
photon radiation off i into parts corresponding to production and decay
of resonance i , which is achieved via a partial fractioning of propagators
as shown in Eqs. (2.22a) and (2.22b) below. Without this decomposition

this factor reads 1/[(ki − q)2 − M
2
i ], i.e. the enhancement necessary in

the power-counting argument exists for small q ∼ O(�i ).
4 In the full contribution the loop integration is done first, followed by

the identification of the resonant parts upon taking k
2
i → M2

i . In the

factorizable contributions k
2
i = M2

i is set in the integrand before the
loop integration.
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onance, which in turn is only the case if the loop contains
a photon exchanged between resonance i and an external
particle or another resonance.

In summary, non-factorizable corrections are due to dia-
grams that result from the corresponding LO diagrams by
allowing for photon exchange between external particles of
different subprocesses and resonances in all possible ways.
The corresponding generic Feynman diagrams are illustrated
in Fig. 2.

2.3.2 Extended soft-photon approximation

Considering the diagrams with non-factorizable contribu-
tions in more detail in momentum space, only loop momenta
q of the internal photon with components of O(�i ) can con-
tribute to the non-factorizable corrections, where �i gener-
ically stands for the energy scale determined by the decay
widths of the resonances. For diagrams of type (A) this is
obvious, for diagrams of type (B) this is a consequence of
the fact that the difference between the full diagram and its
factorizable part can only develop a resonant part for such
small q. This observation is the basis for the evaluation of
the non-factorizable contributions in “extended soft-photon
approximation” (ESPA) which is a modification of the com-
monly used “soft-photon approximation”, which is based on
the eikonal currents of soft photons. The modification con-
cerns the fact that the soft momentum q is kept in the denom-
inators of the resonance propagators, but it is neglected else-
where as usual. In particular, q can be set to zero in the
numerator of Feynman diagrams and in the denominators of
all propagators that do not contribute to the soft divergences
mentioned above. As a consequence, the non-factorizable
corrections can be deduced from scalar one-loop integrals
(i.e. without integration momenta in the numerator) with at
most five propagators in the loop integration (largest number
of loop propagators in Fig. 2), and the resulting correction
factorizes from the underlying LO diagram, as already antic-
ipated in Eq. (2.17).

Now we are able to start with the generic construction of
the non-factorizable contributions within the ESPA. The cou-
pling of the soft photon to an external particle, either incom-
ing or outgoing, within the ESPA is exactly the same as in the
usual eikonal approximation, i.e. coupling the photon with
outgoing momentum q to the external line a with momen-
tum ka and electric charge Qa modifies the underlying LO
amplitude by the eikonal current factor

jμeik,a(q) = −2eσaQak
μ
a

q2 + 2qka
, (2.18)

where a can be incoming or outgoing with the sign σa = ±1
as defined before, but ka is formally outgoing. Here and in the

following, the q2 term in a propagator denominator is always
implicitly understood to contain Feynman’s iε prescription
according to q2 + iε. The usual soft-photon approximation
combines the individual contributions to the eikonal currents
to a full eikonal current Jμ

eik(q) = ∑
a jμeik,a(q), where the

sum runs over all external particles a, and the soft-photon
factor that multiplies |MLO|2 is proportional to the integral∫

dDq Jeik(q) · Jeik(−q)/(q2 −m2
γ ). We will generalize the

eikonal currents to ESPA currents upon including contribu-
tions from the resonances, so that individual currents can be
attributed to the production and decay subprocesses, Jprod

and Jdec,i . The factorizable corrections will then be identi-
fied with the diagonal contributions Jprod(q) · Jprod(−q) and
Jdec,i (q) · Jdec,i (−q), while the non-factorizable corrections
correspond to non-diagonal terms Jprod(q) · Jdec,i (−q) and
Jdec,i (q) · Jdec, j (−q), where the photon is exchanged by dif-
ferent subprocesses.

We first define the contributions of external particles to
the ESPA currents. Taking into account that outgoing lines
a ∈ Ri always result from resonance i ∈ R, we include the
modification of the resonance factor by the photon momen-
tum in the definition of the ESPA current factors,

jμa (q) = jμeik,a(q)
Ki

Ki (q)
= −2eσaQak

μ
a

q2 + 2qka

Ki

Ki (q)
,

a ∈ Ri , i ∈ R, (2.19a)

jμa (q) = jμeik,a(q) = −2eσaQak
μ
a

q2 + 2qka
, a ∈ I ∪ N , (2.19b)

where

Ki (q) = (ki + q)2 − M
2
i = q2 + 2qki + Ki . (2.20)

Photon radiation off a resonance i ∈ R can be described
by similar factors, but their derivation is somewhat more
involved. The first step in this derivation is to analyze the
emission of a soft photon with momentum q off i , where the
components of q are of O(�i ). In Appendix A we show for
the relevant cases of resonances with spin 0, 1/2, or 1 that

(2.21a)

(2.21b)

where the graphically represented propagators on the right-
hand sides are proportional to 1/Ki . Here, the charge Qi
refers to a particle or antiparticle flowing from the produc-
tion part on the left to its decay part on the right. The sub-
diagram on the l.h.s. of Eq. (2.21a) belongs to a graph in
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(a) (b)

(c) (d)

(e) (f)

(g)

(i)

(h)

Fig. 2 Feynman diagrams that contribute to the non-factorizable
photonic corrections. The diagrams a–d are called manifestly non-
factorizable, since they do not contain factorizable contributions. They

are type (A) diagrams, as defined in Sect. 2.3.1. The remaining diagrams
also have factorizable parts and thus are of type (B)
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which resonance i exchanges a photon with an external par-
ticle of the production part, or with another resonance j �= i ,
or with any external particle of a final-state particle of any
other resonance j �= i . The second diagram belongs to the
situation where the photon exchange happens between reso-
nance i and one of its decay particles. In both situations the
photon emission off the resonance can be split into an emis-
sion part before or after the resonant propagation using the
partial fractionings

1

Ki (q)Ki
= 1

q2 + 2kiq

[
1

Ki
− 1

Ki (q)

]
, (2.22a)

1

Ki Ki (−q)
= 1

q2 − 2kiq

[
1

Ki
− 1

Ki (−q)

]
. (2.22b)

Applied to the two subgraphs of Eqs. (2.21a) and (2.21b),
this leads to

(2.23a)

(2.23b)

The first contribution on the r.h.s. of Eq. (2.23a), which is
proportional to 1/Ki , corresponds to photon radiation dur-
ing the production of the resonance. We attribute the ESPA
current

j
μ

out,i (q) = 2eQik
μ

i

q2 + 2kiq
(2.24)

to an outgoing resonance i when it exchanges a photon with
any particle of the production phase or the decay of any other
resonance j �= i . Applying this current factor to the cor-
responding LO matrix element describes soft-photon emis-
sion off a resonance of particle or antiparticle type during
its production phase. The second subdiagram on the r.h.s. of
Eq. (2.23a) corresponds to photon radiation during the decay
of the resonance. We define the ESPA current

j
μ

in,i (q) = − 2eQik
μ

i

q2 + 2kiq

Ki

Ki (q)
, (2.25)

which describes soft-photon emission off the resonance i
during its decay phase. The factor Ki/Ki (q) accounts for the
fact that the propagator 1/Ki is included in the LO amplitude,
but not 1/Ki (q). Using these results in combination with
the ESPA currents (2.19a) describing radiation off the decay
products, we can define the complete ESPA current Jμ

dec,i (q)

for the decay of resonance i ,

Jμ
dec,i (q) = j

μ

in,i (q) +
∑

a∈Ri

jμa (q)

=
⎡

⎣− 2eQik
μ

i

q2 + 2kiq
−
∑

a∈Ri

2eσaQak
μ
a

q2 + 2kaq

⎤

⎦ Ki

Ki (q)
. (2.26)

The combination Jdec,i (q) · Jdec, j (−q) is, thus, relevant for
the non-factorizable corrections induced by photon exchange
between the two decay subprocesses of two different reso-
nances i and j .

The second type of photon emission, treated in Eq. (2.23b),
is needed to describe photon exchange between a resonance i
in its production phase and itself or one of its decay prod-
ucts. More precisely, it is the second term on the r.h.s. of
Eq. (2.23b) that corresponds to this situation, since the cor-
responding i propagator carries the momentum ki −q, where
the i momentum is reduced by photon radiation. For an out-
going resonance we define the ESPA current

j̃μout,i (q) = − 2eQik
μ

i

q2 − 2kiq
, (2.27)

where we have not included the factor Ki/Ki (−q) in the def-
inition in order to avoid double counting this factor, because
it is already included in the definition of Jμ

dec,i (−q) which

will multiply j̃μout,i (q) in the calculation of the corresponding
photon-exchange diagrams. The full ESPA current Jμ

prod,i (q)

for the production of resonance i to describe photon exchange
with the decay subprocess of i , then consists of three different
types of contributions: the first where the photon is attached
to resonance i ∈ R, the second where the photon is attached
to any other resonance j ∈ R, j �= i , and the third where the
photon is attached to external stable particles a ∈ I ∪ N , of
the production phase,

Jμ
prod,i (q) = j̃μout,i (q) +

∑

j∈R
j �=i

j
μ

out, j (q) +
∑

a∈I∪N

jμa (q)

= − 2eQik
μ

i

q2 − 2kiq
+
∑

j∈R
j �=i

2eQ jk
μ

j

q2 + 2k jq

−
∑

a∈I∪N

2eσaQak
μ
a

q2 + 2kaq
. (2.28)

Since the first term in Eq. (2.23b) involves the propagator fac-
tor 1/Ki without photon momentum, this contribution corre-
sponds to photon exchange between the resonance i during
its decay phase and any particle taking part in the decay of
i . This term in Eq. (2.23b) is, thus, only relevant for the fac-
torizable soft-photonic corrections to the decay of i .
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In summary, the complete set of non-factorizable contri-
butions can be written as

δnfact = 2 Re

{
(2πμ)4−D

∫
dDq

−i

q2 − m2
γ

×
[∑

i∈R

Jprod,i (q) · Jdec,i (−q)

+
∑

i, j∈R
i �= j

Jdec,i (q) · Jdec, j (−q)

]}
, (2.29)

in D dimensions in order to regularize occurring UV diver-
gences. Setting mγ to zero, directly produces the result
for δnfact where soft IR divergences are regularized dimen-
sionally. By construction, the correction factor δnfact is a
gauge-invariant quantity. Its derivation starts from the dif-
ference (2.16) of the full matrix element and the correspond-
ing factorizable corrections, which are both gauge invari-
ant. Picking then the resonant parts from this difference
in a consistent way and dividing it by |MLO,PA|2, leads
to a gauge-invariant result. Electromagnetic gauge invari-
ance is also reflected by the ESPA currents Jμ

prod,i (q) and

Jμ
dec,i (q), since contracting them with qμ gives zero up to

terms of O(q2), which, however, do only influence non-
resonant contributions and are thus negligible. Therefore, in
principle the ESPA currents and the non-factorizable correc-
tions could be defined upon setting the q2 terms to zero,
as for instance done in Refs. [22,23] for W-pair produc-
tion. We have decided to keep the q2 terms, first to be able
to make direct use of standard scalar integrals, and sec-
ond to avoid artificial ultraviolet divergences in non-resonant
contributions.

It should be noted that r different ESPA currents Jμ
prod,i (q)

are necessary to correctly describe photon exchange between
the production of resonance i and the decay subprocesses of
resonance j , since the momentum flows for i = j and i �= j
are not the same.5

3 Analytic results for the non-factorizable corrections

3.1 Generic result

Having derived Eq. (2.29), it is straightforward to translate all
individual contributions to the correction factor δnfact shown
in Fig. 2 into a form expressed in terms standard scalar one-
loop integrals. This task is carried out in detail in Appendix B,
and some of the relevant one-loop integrals are collected in
Appendix C. The explicit results are given by

5 This fact was already realized in the calculation of non-factorizable
corrections to e+e− → WW → 4 f in Refs. [22,23], but overlooked
in the (correct) calculation of Ref. [24] where currents were only intro-
duced for illustration.

δnfact = −
r∑

i=1

r∑

j=i+1

∑

a∈Ri

∑

b∈R j

σaσbQaQb
α

π
Re {
}

−
r∑

i=1

∑

a∈Ri

∑

b∈N∪I

σaσbQaQb
α

π
Re

{

′} (3.1)

with functions


(i, a; j, b) = 
mm + 
mf + 
mm′ + 
mf ′ + 
ff ′ ,
(3.2a)


′(i, a; b) = 
′
mm + 
′

mf + 
xf + 
xm, (3.2b)

which depend on the indices of the external particles a, b and
the resonances i, j to which they are connected. Some of the
indices i, j, a, b might be omitted if they do not appear in
the considered subcontribution. Depending on whether the
index b refers to the initial or final state, the contribution xf
denotes either if or nf , and for the contribution xm either im
or mn.

The matrix elements for diagrams of the type mm (Fig. 2i)

and mf (Fig. 2e) are proportional to Q
2
i and Qi Qb, respec-

tively, so that we have used global charge conservation,
Eq. (2.7), to fit them in the summation structure of Eq. (3.1).
This is also the reason why their contributions appear in both

 and 
′. Furthermore the mf ′ contribution appears twice
because we sum over i < j . The relations between the func-
tions 
··· and 
′··· are


mm(i; j) = 
′
mm(i) + 
′

mm( j), (3.3a)


mf(i, a; j, b) = 
′
mf(i, a) + 
′

mf( j, b), (3.3b)


mf ′(i, a; j, b) = 
′
mf ′(i; j, b) + 
′

mf ′( j; i, a), (3.3c)

so that we only need to give the primed functions 
′···.
The virtual parts of the not manifestly non-factorizable

contributions are


mm′ ∼ −(si j − M2
i − M2

j )
{
C0(k

2
i , si j , k j , 0, M

2
i , M

2
j )

− C0(M
2
i , si j , M

2
j ,m

2
γ , M2

i , M2
j )
}
, (3.4a)


′
mm ∼ 2M2

i

×
⎧
⎨

⎩
B0(k

2
i , 0, M

2
i ) − B0(M

2
i ,m

2
γ , M

2
i )

Ki
− B ′

0(M
2
i ,m2

γ , M2
i )

⎫
⎬

⎭ ,

(3.4b)


′
mf ∼ −(s̃ia − M2

i − m2
a)
{
C0(k

2
i , s̃ia,m

2
a, 0, M

2
i ,m

2
a)

− C0(M
2
i , s̃ia,m

2
a,m

2
γ , M2

i ,m2
a)
}
, (3.4c)


xm ∼ −(sib − M2
i − m2

b)
{
C0(k

2
i , sib,m

2
b, 0, M

2
i ,m

2
b)

− C0(M
2
i , sib,m

2
b,m

2
γ , M2

i ,m2
b)
}
. (3.4d)
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The parts in curly brackets contain the subtraction of the
respective factorizable parts, which are obtained by setting
the virtualities of the resonances on their real masses before
the loop integration, as discussed in Sect. 2.2.3.

The manifestly non-factorizable virtual contributions read


ff ′ ∼ −(sab − m2
a − m2

b)Ki K j

× E0(ka, ki ,−k j ,−kb,m
2
γ ,m2

a, M
2
i , M

2
j ,m

2
b),

(3.5a)


′
mf ′ ∼ −(sib − M2

i − m2
b)K j

× D0(ki ,−k j ,−kb,m
2
γ , M

2
i , M

2
j ,m

2
b), (3.5b)


xf ∼ −(sab − m2
a − m2

b)Ki

× D0(ka, ki ,−kb,m
2
γ ,m2

a, M
2
i ,m

2
b). (3.5c)

These contributions do not have factorizable counterparts.
For the second sum in Eq. (3.1) it is instructive to write

down an explicit expression, at least for the case of mass-
less external particles. Using the loop integrals given in
Appendix C for ma,mb → 0, the function 
′ reads


′ ∼ 2

[
ln

(
M2

i − s̃ia

M2
i

)
+ ln

(
M2

i − sib
−sab

)
− 1

]

× ln

( −Ki

mγ Mi

)
+ Li2

(
M2

i − s̃ia

M2
i

,
M2

i − sib
−sab

)
+ 2.

(3.6)

where sab, s̃ia , and sib are implicitly understood as sab + i0,
s̃ia+i0, and sib+i0, respectively. The dilogarithmic function
Li2 is defined in Eq. (C.5).

The correction factor δnfact contains soft divergences
which are regularized as terms proportional to lnmγ (or poles
1/ε in D = 4−2ε dimensions, cf. Appendix C). These terms

always appear as logarithms ln[mγ Mi/(M
2
i −k

2
i )] as a result

of the connection between the soft divergence in the loop

integration and the resonance at k
2
i = M2

i .
Note, however, that the whole correction factor δnfact is

free of mass singularities of the external particles a, b if one
or more masses ma,mb become small. In the subcontribu-
tion of Eq. (3.6), this is directly visible, but for the other
contributions there is a non-trivial cancellation between the
corresponding mass singularities that appear in individual
contributions. For small masses ma,mb it is, thus, possible
to set the masses to zero consistently, which changes individ-
ual singular loop integrals, but not the final result for δnfact. In
view of the limits Ki → 0, note that there are two different
types of non-analytic terms: The mentioned ln Ki terms and
rational functions of the form Ki K j/(aK 2

i +bKi K j +cK 2
j )

originating from the five-point functions of Eq. (3.5a), where
a, b, c are polynomial in the kinematical invariants. Terms
of the latter type require at least two different resonances

and already appeared in the treatment of the W-pair produc-
tion [15,16,22–24,41].

In order not to spoil the cancellation of mass singularities,
it is essential to use a unique procedure to isolate the non-

analytic terms in the limit K
2
i , M

2
i → M2

i and to perform the
on-shell projection of the phase space in the regular terms.

Our results on photonic non-factorizable corrections con-
firm the generic results given in the appendix of Ref. [15],
which were formulated for several resonances and non-
resonant final-state particles as well, though without details
of their derivation. The specific formulas of Ref. [15] are
given for the situation where resonances decay into 2 mass-
less particles, an assumption we do not make. Moreover,
we have presented a detailed general derivation of the pho-
tonic non-factorizable corrections, including a definition of
the underlying ESPA current.

3.2 Examples

3.2.1 Single Z- or W-boson production in hadronic
collisions

The simplest application of Eq. (3.1) is the production of a
single resonance, e.g. the Drell–Yan-like production qq →
Z → �−�+ or qq ′ → W± → ν��

+/�−ν�. There is only
one resonance (r = i = 1) and no additional non-resonant
particles in the final state (n = 0), so that Eq. (3.1) simplifies
to

δnfact = −
∑

a∈R1

∑

b∈I
σaQaσbQb

α

π
Re

{

′} . (3.7)

Since the external fermion masses are negligible, we can
make use of 
′ as given in Eq. (3.6). The relevant kinematical
invariants read

s12 = s34 = 2k1 · k2 = 2p1 · p2 = s, s11 = s12 = 0,

s13 = s24 = 2k1 · k3 = −2p1 · k3 = t , s̃13 = s̃14 = 0,

s14 = s23 = 2k1 · k4 = −2p1 · k4 = u, (3.8)

where we have taken the numbering I = {1, 2}, R1 = {3, 4},
and s, t, u are the usual Mandelstam variables. With the par-
ticle ordering defined above, the sign factors σa are

σ1 = −σ2 = 1, σ3 = −σ4 = −1. (3.9)

For the case of W± production/decay, the charge assign-
ment is

Q1 = Qu, Q2 = Qd, Q3 = Qν = 0,

Q4 = Q� = −1, Q1 = Qu − Qd, (3.10)
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so that δnfact is given by

δnfact = −α

π

{
2

[
1 − Qu ln

(
−M2

W

û

)
+ Qd ln

(
−M2

W

t̂

)]

× ln

(
M

2
W − s

mγ MW

)
− Qu Li2

(
1 + M2

W

û

)

+ Qd Li2

(
1 + M2

W

t̂

)
− 2

}
, (3.11)

where we have made the difference between the Mandel-
stam variables and their on-shell-projected counterparts t̂, û
explicit. For a single resonance with only massless external
particles, an appropriate on-shell projection can be simply
realized by the rescaling

s → M2
W

s
s = M2

W, t → M2
W

s
t = t̂, u → M2

W

s
u = û.

(3.12)

This result for δnfact agrees with the one given for the case of
W+ production in Eq. (2.22) of Ref. [17].

For Z-boson production the charges are given by

Q1 = Q2 = Qq , Q3 = Q4 = Q� = −1, Q1 = 0.

(3.13)

The resonance is neutral, so that the contributions mm, mf ,
and im vanish, and the result can be written as

δnfact = −
∑

a=3,4

∑

b=1,2

σaQaσbQb

×α

π

{
2 ln

(
M2

Z

−ŝab

)
ln

(
M

2
Z − s

mγ MZ

)
+ Li2

(
1 + M2

Z

ŝab

)}
,

(3.14)

where again ŝab results from sab by the on-shell projec-
tion (3.12) in accordance with Eq. (2.9) of Ref. [18].

3.2.2 W-pair production in lepton/hadron/photon collisions

For the case of f 1 f2 → W+W− → f3 f 4 f5 f 6, we choose
the index sets appearing in Eq. (3.1) to be

I = {1, 2}, R1 = {3, 4}, R2 = {5, 6}, N = ∅. (3.15)

The corresponding sign factors are

σ1 = −1, σ2 = 1, σ3 = −1, σ4 = 1, σ5 = −1, σ6 = 1

(3.16)

and therefore r = 2 and n = 0. N = ∅ means there are
no additional non-resonant particles, so that the sum over

b in Eq. (3.1) simply runs over the initial-state particles.
Furthermore, since f 1 is the antiparticle of f2, we have∑

b∈I σbQb = 0, so that the contributions from 
′
mm and


′
mf cancel in 
′ given in Eq. (3.2b), because they do not

depend on b.
The initial-state contributions, i.e. the function 
′(i, a; b)

= 
xm(i, a; b)+
xf (i, a; b), can be brought into a form that
can be summed together with the remaining non-vanishing
contributions, 
. To this end, we first define the relative
charge of the initial-state fermions Q f = Q1 = Q2 and
express their sign factors σ1,2 in terms of the charges of the
vector bosons,

σ1 = −σ2 =
∑

c∈R1

σcQc = −
∑

c∈R2

σcQc, (3.17)

and then explicitly perform the summation over i and b, i.e.

2∑

i=1

∑

a∈Ri

∑

b∈I
σaQaσbQbRe{
′(i, a; b)}

=
∑

a∈R1

∑

c∈R2

σaQaσcQc(−Q f )Re
{

′

im(a; c)+
′
if (a; c)} .

(3.18)

On the r.h.s. of Eq. (3.18) we defined two new functions, one
of them


′
im(a; c) = 
im(i = 1, a; b = 1) − 
im(i = 1, a; b = 2)

−
im(i = 2, c; b = 1) + 
im(i = 2, c; b = 2), (3.19)

in which the summation over i andb is explicit. The definition
of 
′

if is analogous.
As previously constructed, the remaining contributions 


have the same summation structure as the r.h.s. of Eq. (3.18),
because i = 1 and j = 2, so that with the identity σaσb =
(−1)a+b Eq. (3.1) reads

δnfact =
∑

a∈R1

∑

b∈R2

(−1)a+b+1QaQb
α

π
Re

{

′′} , (3.20)

where we collected all contributions in


′′ = 
mm+
mf +
mm′ +
mf ′ +
ff ′ −Q f
(

′

if +
′
im

)
.

(3.21)

An on-shell projection is given in Sect. 2.2.2. Here we
specialize to the case of two W bosons and give the on-
shell-projected momenta k̂i in the center-of-mass frame. The
initial-state momenta are unmodified,

k̂1 = k1, k̂2 = k2, (3.22)
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implying s12 = s. Since M1 = M2 = MW the triangle func-

tion is λ = s2β2 with the velocity β =
√

1 − 4M2
W/s. Using

the momenta given in Eq. (2.14a) and fixing the direction
e1 = k1/|k1| of the W+ boson, leads to

k̂1 = 1

2

√
s (1, βe1) , k̂2 = −k̂1 − k̂2 − k̂1. (3.23)

Using Eq. (2.15a) and making use of the fact that the fermions
are massless, the on-shell projection reduces to a scale fac-
tor for the momentum whose direction we want to preserve.
Since scaling massless momenta commutes with boosts, the
scale factor is an invariant and can be easily computed in the
center-of-mass frame of the vector boson,

k̂3 = k3
M2

W

2k̂1k3

, k̂4 = k̂1 − k̂3, (3.24a)

k̂5 = k5
M2

W

2k̂2k5

, k̂6 = k̂2 − k̂6, (3.24b)

where the scale factors are derived from the conditions k̂2
4 =

k̂2
6 = 0. These momenta must be inserted into Eqs. (3.4)

and (3.5) which simplifies some of the kinematical prefactors,
e.g. s12 → s and s̃ia → 0, for all a ∈ Ri . These results agree
for the case f 1 = e+, f2 = e−, Q f = −1 with the one
given in Refs. [12,24] and for the case of initial-state quarks
with Refs. [15,16].

As already mentioned in Sect. 2.2.2, the chosen on-
shell projection constitutes an intrinsic ambiguity on the
method. To determine the error introduced by this ambigu-
ity and to verify that the choice is suitable results obtained
with different on-shell projections can be compared. For
e+e− → WW → 4 fermions this check was carried out
in Ref. [12], i.e. the results from the on-shell projection as
defined above was compared against results where the direc-
tion of k4 instead k3 was preserved. The comparison revealed
differences from changing the on-shell projections that are of
the order of all other intrinsic uncertainties of the double-pole
approximation (DPA), as expected.

For the case of two initial photons, γ γ → W+W−, there
are no initial-state contributions, i.e. Q f = Qγ = 0 in
Eq. (3.21). Electroweak corrections to this process in DPA,
including these non-factorizable corrections, were calculated
in Ref. [41].

3.2.3 Vector-boson scattering at hadron colliders

A prominent process featuring the production of additional
non-resonant particles that were absent in the two previous
examples is the case of vector-boson scattering at hadron
colliders. The production of two vector bosons that are able
to scatter off each other is only possible via radiation off a

quark or an antiquark line, which then subsequently form jets
in the final state. We thus have, at the parton level, the pro-
cesses q1q2 → VV ′q7q8 → �3�4�5�6q7q8 and all possible
combinations with antiquarks that are consistent with charge
conservation. The index sets, thus, are

I = {1, 2}, R1 = {3, 4}, R2 = {5, 6}, N = {7, 8}.
(3.25)

A particularly interesting process is the scattering of same-
sign W bosons, because, e.g., the appearance of μ±μ±
pairs in an event is a rather clean event signature and the
QCD-initiated production can be efficiently suppressed by
cuts [42].

Although desirable to reach a precision of some percent,
electroweak corrections to this process are not yet avail-
able at this time, due to the fact that the full correction to
a 2 → 6 process is extremely challenging. However, as we
argue here, the full correction is also not necessary, because
an evaluation of the corrections in DPA will certainly be good
enough. In DPA, the vector-boson scattering is a 2 → 4 par-
ticle production process with two resonances followed by
two vector-boson decays, so that the virtual factorizable cor-
rections can be calculated with modern automated tools for
one-loop amplitudes. The non-factorizable corrections can
be evaluated using our master formula presented in Sect. 3 in
a similar fashion as in the examples discussed in the previous
sections.

The on-shell projection can be performed as given in
Sect. 2.2.2. We then keep the momenta of the initial-state par-
ticles and also the momenta of the non-resonant final states,
i.e.

k̂1 = k1, k̂2 = k2, k̂7 = k7, k̂8 = k8. (3.26)

In the center-of-mass frame of the vector bosons, i.e. the
frame where k1 + k2 + k7 + k8 = 0, we can easily con-
struct the momenta. If the vector bosons have the same mass,
MV , the momenta are given by Eq. (3.23) if we make the
replacements s → s12 and MW → MV . If they have differ-
ent masses, e.g. in the case of W±Z scattering, we can use
the general procedure as given in Eq. (2.15a).

4 Conclusion

Many interesting particle processes at present and poten-
tial future high-energy colliders share the pattern of pro-
ducing several unstable particles in intermediate resonant
states which decay subsequently, thereby producing final
states of high multiplicities. At run 2 of the LHC, which
has started in 2015, multiple-vector-boson production such
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as pp → WWW → 6 leptons and massive vector-boson
scattering such as pp → WW + 2 jets → 4 leptons + 2 jets
are prominent examples for corresponding upcoming anal-
yses in the electroweak sector. In spite of the smaller cross
sections of high-multiplicity processes, predictions for those
processes nevertheless have to include radiative corrections
of the strong and electroweak interactions at next-to-leading
order, in order to reach a precision of about 10 %, or better
since both types of corrections are generically of this size or
even larger in the TeV range.

Calculating radiative corrections to resonance processes
poses additional complications on top of the usual complex-
ity of higher-order calculations, since gauge invariance is
jeopardized by the necessary Dyson summation of the res-
onance propagators. For low and intermediate multiplici-
ties, complete next-to-leading-order calculations are feasible
within the complex-mass scheme, but unnecessarily com-
plicated and also not needed in view of precision for high
multiplicities. In those cases, predictions where matrix ele-
ments are based on expansions about resonance poles are
adequate. Such expansions can be based on scattering ampli-
tudes directly or on specifically designed effective field theo-
ries. If only the leading contribution of the expansion is kept,
the approach – known as pole approximation – is particu-
larly intuitive. At next-to-leading order, corrections are clas-
sified into separately gauge-invariant factorizable and non-
factorizable corrections, where the former can be attributed
to the production and decay of the unstable particles on their
mass shell. The remaining non-factorizable corrections are
induced by the exchange of soft photons or gluons between
different production and decay subprocesses.

In this paper, we have presented explicit analytical results
for the non-factorizable photonic virtual corrections to pro-
cesses involving an arbitrary number of unstable particles at
the one-loop level. The results represent an essential building
block in the calculation of next-to-leading-order electroweak
corrections in pole approximation and are ready for a direct
implementation in computer codes. As illustrating examples,
we have rederived known results for the single and pair pro-
duction of electroweak gauge bosons and have outlined the
approach for vector-boson scattering.

A generalization of the results to QCD corrections is
straightforward and merely requires the inclusion of the color
flow in the algebraic parts of the individual contributions,
while the analytic part containing the loop integrals remains
the same.

The presented results on virtual non-factorizable correc-
tions help to close a gap in the ongoing effort of several groups
toward the fully automated calculation of next-to-leading-
order corrections, since the automation of the remaining
virtual factorizable corrections is well under control within
QCD with up to 4–6 final-state particles and becomes more
and more mature for electroweak corrections as well. The

situation in view of real QCD and real photonic electroweak
corrections is even better, since tree-level calculations with
up to about 10 final-state particles based on full matrix ele-
ments are possible with modern multi-purpose Monte Carlo
generators. Having at hand generic results on virtual non-
factorizable corrections, thus, opens the door to the fully
automated calculation of virtual corrections to resonance pro-
cesses in pole approximation.
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A Appendix

A Soft-photon emission off resonances

In this appendix we derive Eqs. (2.21a) and (2.21b), which
describe soft-photon emission off a resonating particle, for
particles of spin 0, 1/2, or 1. Obviously it is sufficient to prove
only the former of these equations; the latter follows from the
first upon replacing the momentum ki → ki − q, taking into
account that the photon momentum q is negligible in the
numerator.

If the radiating particle i has spin 0, the proof is extremely
simple. Inserting the Feynman rule for the coupling of a scalar
particle i to a photon and for the two scalar propagators, the
subdiagram on the l.h.s. of Eq. (2.21a) can be directly brought
to the desired form,

(A.1)

where ∼ means that the two sides later produce the same soft
singularity structure for small photon momentum q when
embedded in a full diagram. According to the arguments
of Sect. 2.3.1, the calculated loop diagram changes by this
approximation only in terms that are not enhanced by reso-
nance i . In Eq. (A.1) the necessary approximation was just
to omit q in the numerator.
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If i is a spin-1/2 fermion, inserting the relevant Feynman
rules produces

(A.2)

A simple rearrangement of the Dirac matrices leads to the
desired form after dropping again irrelevant (non-resonant)
terms,

(A.3)

Analogous manipulations with the opposite fermion flow for
an antifermion resonance produce the same result.

The case where i is a charged spin-1 boson deserves more
care. We assume that i is a gauge boson that receives its
mass by the Higgs mechanism, just like the W boson in
the SM. In principle, we thus have to consider all possi-
ble loop diagrams with subdiagrams (2.21a), in which the
resonance line i represents the gauge-boson field, its cor-
responding would-be Goldstone boson, or even a Faddeev–
Popov ghost field. However, if we switch to an Rξ gauge for
the i field where its gauge parameter ξi �= 1, the propaga-
tors of the corresponding Goldstone and ghost fields develop

their pole at k
2
i = ξi M

2
i �= M

2
i . However, a pole at k

2
i = M

2
i

would be necessary to produce soft divergences on resonance
which in turn is a necessary condition for the correspond-
ing diagrams to contribute to non-factorizable corrections.
Consequently, we can ignore subgraphs (2.21a) with would-
be Goldstone boson or ghost fields in the following. In the
adopted Rξ gauge the i propagator is given by

(A.4)

Obviously the second term with the unphysical pole at

k
2
i = ξi M

2
i again does not contribute to the non-factorizable

corrections and can be ignored. Inserting the respective Feyn-
man rules, we obtain

(A.5)

where we have neglected q in the numerator in the first
∼ relation and performed simple four-vector contractions
in the subsequent step. The final ∼ relation, which proves
Eq. (2.21a), is again valid up to irrelevant terms with an
unphysical propagator pole.

B Derivation of virtual non-factorizable corrections

In this appendix we calculate the non-factorizable correc-
tions induced by the various diagram types shown in Fig. 2,
making use of the generic results derived in Sect. 2.3, which
are summarized in Eq. (2.29). Our aim is to express all contri-
butions in terms of known standard scalar one-loop integrals
as defined in Appendix C.

Now we list the different types of non-factorizable correc-
tions:

• The ff ′-diagram in Fig. 2a is manifestly non-factorizable
and involves the following combination of currents:

ja(q) · jb(−q)

= 2eσaQak
μ
a

q2 + 2qka

Ki

Ki (q)

2eσbQbkb,μ
q2 − 2qkb

K j

K j (−q)
, (B.1)

where a ∈ Ri and b ∈ R j are decay particles of two dif-
ferent resonances i, j ∈ R, i �= j . Inserting this into the
integral (2.29) and using e2 = 4πα, directly leads to the
contribution δff ′(i, a; j, b) = − α

π
σaQaσbQb Re {
ff ′

(i, a; j, b)} with


ff ′(i, a; j, b) = −(sab − m2
a − m2

b) Ki K j

× E0(ka, ki ,−k j ,−kb,m
2
γ ,m2

a, M
2
i , M

2
j ,m

2
b).

(B.2)

The sum over all non-equivalent pairs i, j and the corre-
sponding pairs a, b is

δff ′ = − α

π

r∑

i=1

r∑

j=i+1

∑

a∈Ri

∑

b∈R j

σaQaσbQb Re {
ff ′ (i, a; j, b)} .

(B.3)
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• The xf -diagrams in Fig. 2b and c are manifestly non-
factorizable and involve the following combination of
currents:

ja(q) · jb(−q) = 2eσaQak
μ
a

q2 + 2qka

Ki

Ki (q)

2eσbQbkb,μ
q2 − 2qkb

,

(B.4)

where a ∈ Ri , i ∈ R, and b ∈ I ∪ N . Inserting this
into the integral (2.29), directly leads to the contribution
δxf(i, a; b) = − α

π
σaQaσbQb Re {
xf(i, a; b)} with


xf(i, a; b) = −(sab − m2
a − m2

b) Ki

×D0(ka, ki ,−kb,m
2
γ ,m2

a, M
2
i ,m

2
b)

= −(sab − m2
a − m2

b) Ki

D0(m
2
a, s̃ia, sib,m

2
b, k

2
i , sab,m

2
γ ,m2

a, M
2
i ,m

2
b). (B.5)

The sum over all resonances i and corresponding pairs
a, b is

δxf = −α

π

r∑

i=1

∑

a∈Ri

∑

b∈I∪N

σaQaσbQb Re {
xf(i, a; b)} .

(B.6)

• Themf ′-diagram in Fig. 2d is manifestly non-factorizable
and receives contributions from the following combina-
tion of currents:

j in,i (q) · jb(−q) + jout,i (q) · jb(−q)

= 2eQik
μ

i

q2 + 2kiq

(
Ki

Ki (q)
− 1

)
2eσbQbkb,μ
q2 − 2qkb

K j

K j (−q)

= − 4e2QiσbQb ki · kb K j

Ki (q)(q2 − 2qkb)K j (−q)
, (B.7)

where i, j ∈ R are different resonances (i �= j) and b ∈
R j . Inserting this into the integral (2.29), leads to the con-
tribution δmf ′(i; j, b) = α

π
QiσbQb Re{
′

mf ′(i; j, b)}
with


′
mf ′(i; j, b) = −(sib − k

2
i − m2

b) K j

×D0(ki ,−k j ,−kb,m
2
γ , M

2
i , M

2
j ,m

2
b)

∼ −(sib − M2
i − m2

b) K j

×D0(ki ,−k j ,−kb,m
2
γ , M

2
i , M

2
j ,m

2
b)

= −(sib − M2
i − m2

b) K j

×D0(k
2
i , si j , s̃ jb,m

2
b, k

2
j , sib,m

2
γ , M

2
i , M

2
j ,m

2
b).

(B.8)

The sum over the resonances i and j and its decay product
b is

δmf ′ = α

π

r∑

i=1

r∑

j=1
j �=i

∑

b∈R j

QiσbQb Re{
′
mf ′(i; j, b)}

= −α

π

r∑

i=1

r∑

j=i+1

∑

a∈Ri

∑

b∈R j

σaQaσbQb

× (
Re

{

′

mf ′(i; j, b)}+ Re
{

′

mf ′( j; i, a)
})

.

(B.9)

• The mf -diagram in Fig. 2e is not manifestly non-
factorizable, since it contains a factorizable part. The
non-factorizable part receives contributions from the fol-
lowing combination of currents:

j̃out,i (q) · ja(−q)

= 2eQik
μ

i

q2 − 2kiq

2eσaQaka,μ

q2 − 2qka

Ki

Ki (−q)

= 4e2QiσaQa ki · ka
q2 − 2qka

(
1

q2 − 2kiq
− 1

Ki (−q)

)
,

(B.10)

where i ∈ R and a ∈ Ri . Inserting this into the
integral (2.29), leads to the contribution δmf(i; a) =
− α

π
QiσaQa Re

{

′

mf(i; a)
}

with


′
mf(i; a)=(s̃ia − k

2
i − m2

a){C0(−ki ,−ka,m
2
γ , k

2
i ,m

2
a)

−C0(−ki ,−ka,m
2
γ , M

2
i ,m

2
a)}

∼ (s̃ia − M2
i − m2

a) {C0(M
2
i , s̃ia,m

2
a,m

2
γ , M2

i ,m2
a)

−C0(k
2
i , s̃ia,m

2
a, 0, M

2
i ,m

2
a)}, (B.11)

with the usual difference between the full off-shell dia-
gram and its factorizable part with k

2
i = M2

i . The final
form, where invariants are used as arguments of the C0

integrals, makes the appearance of off-shell and on-shell
momenta on the resonance lines better visible. The sum
over all resonances i and its decay products a is

δmf = −α

π

r∑

i=1

∑

a∈Ri

QiσaQa Re
{

′

mf(i, a)
}

= −α

π

r∑

i=1

∑

a∈Ri

⎛

⎜⎜⎝
r∑

j=1
j �=i

∑

b∈R j

+
∑

b∈I∪N

⎞

⎟⎟⎠ σaQaσbQb

× Re
{

′

mf(i, a)
}
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= −α

π

r∑

i=1

r∑

j=i+1

∑

a∈Ri

∑

b∈R j

σaQaσbQb

×(Re
{

′

mf(i, a)
}+ Re

{

′

mf( j, b)
})

−α

π

r∑

i=1

∑

a∈Ri

∑

b∈I∪N

σaQaσbQb Re
{

′

mf(i, a)
}

.

(B.12)

• The xm-diagrams in Fig. 2f and 2g are not manifestly non-
factorizable, since they contain factorizable contributions
as well. The non-factorizable part receives contributions
from the following combination of currents:

j in,i (q) · jb(−q) = 2eQik
μ

i

q2 + 2kiq

Ki

Ki (q)

2eσbQbkb,μ
q2 − 2qkb

= 4e2QiσbQb ki · kb
q2 − 2qkb

(
1

q2 + 2kiq
− 1

Ki (q)

)
,

(B.13)

where i ∈ R and b ∈ I ∪ N . Inserting this into the
integral (2.29), leads to the contribution δxm(i; b) =
α
π
QiσbQb Re {
xm(i; b)} with


xm(i; b) = (sib − k
2
i − m2

b) {C0(ki ,−kb,m
2
γ , k

2
i ,m

2
b)

−C0(ki ,−kb,m
2
γ , M

2
i ,m

2
b)}

∼ (sib − M2
i − m2

b) {C0(M
2
i , sib,m

2
b,m

2
γ , M2

i ,m2
b)

−C0(k
2
i , sib,m

2
b, 0, M

2
i ,m

2
b)}, (B.14)

which again reflects the subtraction of the factorizable

part with an on-shell momentum of the resonance (k
2
i =

M2
i ) from the full off-shell diagram. The sum over all res-

onances i and other particles b of the production process
reads

δxm = α

π

r∑

i=1

∑

b∈I∪N

QiσbQb Re {
xm(i; b)}

= −α

π

r∑

i=1

∑

a∈Ri

∑

b∈I∪N

σaQaσbQb Re {
xm(i; b)} .

(B.15)

• The mm′-diagram in Fig. 2e is not manifestly non-
factorizable, i.e. it contains both factorizable and non-
factorizable parts. Its non-factorizable contribution invol-
ves the following combinations of ESPA currents:

jout,i (q) · j in, j (−q) + j in,i (q) · jout, j (−q)

+ j in,i (q) · j in, j (−q)

= − 2eQik
μ

i

q2 + 2kiq

2eQ jk j,μ

q2 − 2k jq

K j

K j (−q)

− 2eQik
μ

i

q2 + 2kiq

Ki

Ki (q)

2eQ jk j,μ

q2 − 2k jq

+ 2eQik
μ

i

q2 + 2kiq

Ki

Ki (q)

2eQ jk j,μ

q2 − 2k jq

K j

K j (−q)

= 4e2Qi Q j (ki · k j )

(
1

Ki (q)

1

K j (−q)

− 1

q2 + 2kiq

1

q2 − 2k jq

)
, (B.16)

where i, j ∈ R are different resonances, i �= j . We have
used Eq. (2.22a) and (2.22b) to obtain the final form.
Inserting this into Eq. (2.29), we obtain its contribution
δmm′(i; j) = − α

π
Qi Q j Re {
mm′(i; j)} to δnfact, where


mm′(i; j) = −(si j − k
2
i − k

2
j )

×{C0(ki ,−k j ,m
2
γ , M

2
i , M

2
j )

−C0(ki ,−k j ,m
2
γ , k

2
i , k

2
j )}

∼ −(si j − M2
i − M2

j ){C0(k
2
i , si j , k

2
j , 0, M

2
i , M

2
j )

−C0(M
2
i , si j , M

2
j ,m

2
γ , M2

i , M2
j )}, (B.17)

where ∼ again means identical up to non-resonant terms.
The final form nicely shows how the subtraction of
the factorizable part, where the resonance momenta ki, j
are on shell, from the full diagram defines the non-
factorizable contribution. Summing over all resonance
pairs i, j and using charge conservation in the form (2.8),
the full mm′ contribution can be written as

δmm′ = − α

π

r∑

i=1

r∑

j=i+1

Qi Q j Re {
mm′(i; j)}

= − α

π

r∑

i=1

r∑

j=i+1

∑

a∈Ri

∑

b∈R j

σaQaσbQb Re {
mm′(i; j)}.

(B.18)

• Themm-diagram in Fig. 2i deserves some particular care,
since it should be considered in combination with its con-
tribution to the mass renormalization counterterm of res-
onance i . According to the ESPA currents, the following
combination of currents defines the non-factorizable con-
tribution:

j̃out,i (q) · j in,i (−q) = 2eQik
μ

i

q2 − 2kiq

2eQiki,μ
q2 − 2kiq

Ki

Ki (−q)
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= 4e2Q
2
i k

2
i

(
1

Ki Ki (−q)
− 1

Ki (q2 − 2kiq)

+ 1

(q2 − 2kiq)2

)
(B.19)

for all i ∈ R. Inserting this into the integral (2.29), leads

to the contribution δmm(i) = α
π
Q

2
i Re

{

′

mm(i)
}

with6


′
mm(i) = 2k

2
i

⎧
⎨

⎩
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(
k

2
i ,m

2
γ , M

2
i

)
− B0

(
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i ,m

2
γ , k

2
i

)

Ki
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0(k

2
i ,m

2
γ , k

2
i )

⎫
⎬

⎭

∼ 2M2
i

⎧
⎨

⎩
B0

(
k

2
i , 0, M

2
i

)
− B0

(
M

2
i ,m

2
γ , M

2
i

)

Ki

−B ′
0(M

2
i ,m2

γ , M2
i )

⎫
⎬

⎭ . (B.20)

This final form can be interpreted in two different ways:
Taking the first B0 term as the full off-shell contribu-
tion, the second and third terms correspond to its on-shell
subtraction to obtain its non-factorizable part. Perform-
ing the same subtraction for the corresponding countert-
erm contribution connected with the i self-energy, gives
zero, because there is no issue with respect to interchang-
ing limits in the loop integration, since the renormaliza-
tion constants are always calculated first. The alternative
interpretation is to consider the terms in the curly brackets
as the full off-shell contribution of the photon-exchange
diagram and the corresponding counterterms, where the
last-but-one and the last terms correspond to the mass and
wave-function renormalization of the i line in the on-shell
renormalization scheme, respectively. By construction, in
this scheme on-shell particles do not receive self-energy
corrections, i.e. the factorizable part of the considered
contribution in curly brackets is zero, in accordance with
our result.
Summation over all resonances i leads to

δmm = +α

π

r∑

i=1

Q
2
i Re

{

′

mm(i)
}

6 The term ∝ 1/(q2 − 2ki q)2 can be identified with the momen-
tum derivative B ′

0(p
2
1,m2

γ ,m2
1) = ∂B0(p2

1,m2
γ ,m2

1)/∂p
2
1 by apply-

ing ∂/∂p2
1 = 1/(2p2

1)pμ
1 ∂/∂pμ

1 as follows: ∂[1/(q2 + 2p1q + p2
1 −

m2
1)]/∂p2

1 = −(qp1 + p2
1)/(q2 + 2p1q + p2

1 −m2
1)

2/p2
1 ∼ −1/(q2 +

2p1q + p2
1 − m2

1)
2.
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C Scalar integrals

The scalar integrals used in this paper are defined as

B0(p1,m
2
γ ,m2

1)

= (2πμ)4−D
∫

dDq

iπ2

1

q2 − m2
γ

1

(q + p1)2 − m2
1

, (C.1a)

C0(p1, p2,m
2
γ ,m2

1,m
2
2)

= (2πμ)4−D
∫

dDq

iπ2

1

q2 − m2
γ

2∏

i=1

1

(q + pi )2 − m2
i

,

(C.1b)

D0(p1, p2, p3,m
2
γ ,m2

1,m
2
2,m

2
3)

= (2πμ)4−D
∫

dDq

iπ2

1

q2 − m2
γ

3∏

i=1

1

(q + pi )2 − m2
i

,

(C.1c)

E0(p1, p2, p3, p4,m
2
γ ,m2

1,m
2
2,m

2
3,m

2
4)

= (2πμ)4−D
∫

dDq

iπ2

1

q2 − m2
γ

4∏

i=1

1

(q + pi )2 − m2
i

,

(C.1d)

and

B ′
0(p1,m

2
γ ,m2

1) = ∂

∂p2
1

B0(p1,m
2
γ ,m2

1), (C.2)

which is used in the mm contribution. The integrals are
defined in D = 4 − 2ε dimensions in order to regularize
the UV divergence in the B0 function and (if relevant) to
regularize possible IR (soft and collinear) singularities in the
other functions. The scale μ represents the arbitrary reference
scale of dimensional regularization. Sometimes it is conve-
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nient to give the arguments of the loop functions in terms of
invariants parametrizing the integral, as e.g.

B0(p1,m
2
γ ,m2

1) ≡ B0(p
2
1,m

2
γ ,m2

1), (C.3a)

C0(p1, p2,m
2
γ ,m2

1,m
2
2)

≡ C0(p
2
1, (p2 − p1)

2, p2
2,m2

γ ,m2
1,m

2
2), (C.3b)

D0(p1, p2, p3,m
2
γ ,m2

1,m
2
2,m

2
3)

≡ D0(p
2
1, (p2 − p1)

2, (p3 − p2)
2, p2

3, p2
2,

(p3 − p1)
2,m2

γ ,m2
1,m

2
2,m

2
3). (C.3c)

For the kinematical case considered in Eq. (3.6), i.e. for mass-
less external particles (ma,mb → 0 with ma,mb � mγ →
0), the integrals necessary for Eq. (3.6) are given in the fol-
lowing. The relation ‘∼’ implies that we performed the on-

shell projection k
2
i → M2

i and set the masses to the real ones,

M
2
i → M2

i , whenever possible. In places where the propaga-

tor denominator appears inside a logarithm, Ki = k
2
i − M

2
i ,

this is not possible, and Ki is kept with its full dependence

on the original momentum k
2
i . The on-shell projection of the

invariants, e.g. sib → ŝib, is implicitly understood to keep
the notation brief. The relevant integrals explicitly read

D0(m2
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2
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2
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2
γ ,m2

b, M
2
i ,m

2
a)

∼ 1

sabKi

{
2 ln

(
mamb

−sab

)
ln

(
mγ Mi

−Ki

)
− ln2

(
mbMi

M2
i − sib

)

− ln2

(
maMi

M2
i − s̃ia

)
− Li2

(
M2
i − s̃ia

M2
i

,
M2
i − sib
−sab

)
− π2

3

}
,

(C.4a)
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B0(k
2
i , 0, M

2
i ) − B0(M

2
i ,m

2
γ , M

2
i )

Ki

−B ′
0(M

2
i ,m2

γ , M2
i ) ∼ 1

M2
i

{
ln

(
mγ Mi

−Ki

)
+ 1

}
, (C.4d)

where sab, s̃ia , and sib are implicitly understood as sab + i0,
s̃ia + i0, and sib + i0, respectively. Here we make use of the
function

Li2(x1, x2) = Li2 (1 − x1x2) + η(x1, x2) ln (1 − x1x2) ,

(C.5)

which is a specific analytical continuation of the dilogarithm
Li2 in the two arguments x1 and x2, which in turn makes use
of the η function

η(a, b) = 2π i{θ(−Ima) θ(−Imb) θ(Im(ab))

−θ(Ima) θ(Imb) θ(−Im(ab))}. (C.6)

The remainingC0 and D0 integrals can be found in Refs. [43]
and [44], respectively. The five-point integral E0 can be
reduced to five four-point integrals D0 as, e.g., described
in Refs. [45,46].

Finally, we recall the simple, well-known substitution that
translates a pure soft IR singularity from mass regularization
by the infinitesimal mass mγ to regularization in D = 4−2ε

dimensions,

ln(m2
γ ) → �(1 + ε)

ε
(4πμ2)ε + O(ε). (C.7)
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