
Eur. Phys. J. C (2016) 76:106
DOI 10.1140/epjc/s10052-016-3948-5

Regular Article - Theoretical Physics

The minimum mass of a charged spherically symmetric object in
D dimensions, its implications for fundamental particles, and
holography

Piyabut Burikham1,a, Krai Cheamsawat1,2,b, Tiberiu Harko3,4,c, Matthew J. Lake5,6,d

1 High Energy Physics Theory Group, Department of Physics, Faculty of Science, Chulalongkorn University,
Phyathai Rd., Bangkok 10330, Thailand

2 Theoretical Physics Group, Blackett Laboratory, Imperial College, London SW7 2AZ, UK
3 Department of Physics, Babes-Bolyai University, Kogalniceanu Street, 400084 Cluj-Napoca, Romania
4 Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
5 The Institute for Fundamental Study, “The Tah Poe Academia Institute”, Naresuan University, Phitsanulok 65000, Thailand
6 Thailand Center of Excellence in Physics, Ministry of Education, Bangkok 10400, Thailand

Received: 24 December 2015 / Accepted: 11 February 2016 / Published online: 27 February 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract We obtain bounds for the minimum and maxi-
mum mass/radius ratio of a stable, charged, spherically sym-
metric compact object in a D-dimensional space-time in the
framework of general relativity, and in the presence of dark
energy. The total energy, including the gravitational compo-
nent, and the stability of objects with minimum mass/radius
ratio is also investigated. The minimum energy condition
leads to a representation of the mass and radius of the charged
objects with minimum mass/radius ratio in terms of the
charge and vacuum energy only. As applied to the electron in
the four-dimensional case, this procedure allows one to re-
obtain the classical electron radius from purely general rela-
tivistic considerations. By combining the lower mass bound,
in four space-time dimensions, with minimum length uncer-
tainty relations (MLUR) motivated by quantum gravity, we
obtain an alternative bound for the maximum charge/mass
ratio of a stable, gravitating, charged quantum mechanical
object, expressed in terms of fundamental constants. Evalu-
ating this limit numerically, we obtain again the correct order
of magnitude value for the charge/mass ratio of the electron,
as required by the stability conditions. This suggests that, if
the electron were either less massive (with the same charge)
or if its charge were any higher (for fixed mass), a combina-
tion of electrostatic and dark energy repulsion would destabi-
lize the Compton radius. In other words, the electron would
blow itself apart. Our results suggest the existence of a deep
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connection between gravity, the presence of the cosmological
constant, and the stability of fundamental particles.

1 Introduction

The existence of a minimum length is an important pre-
diction of phenomenological quantum gravity. A funda-
mental bound yielding the smallest resolvable length scale
could help solve several outstanding problems in theoret-
ical physics, for example, by providing a natural cut off to
regularize divergent integrals in the renormalization of quan-
tum field theories, or by preventing matter from collapsing
to form a singularity at the center of a black hole. Further-
more, the existence of both minimum and maximum length
scales in nature or, at least, at a given epoch (for example,
RU ≈ 1.3×1028 cm is the current size of the horizon and acts
as a de facto maximum length scale for physical phenomena
in the universe today), is naturally linked to the existence of
upper and lower bounds on the mass–energy scales of phys-
ical processes. In this paper, we determine bounds on the
mass/radius ratio of stable charged objects, both classically
and quantum mechanically, and investigate their implications
for fundamental particles.

One way to introduce a minimum length is via a Gen-
eralized Uncertainty Principle (GUP) that extends the usual
Heisenberg Uncertainty Principle (HUP) to include nonlin-
ear terms, which may then be interpreted as quantum gravity
effects. A GUP of the form

�x�p ≥ h̄

2

[
1 + A (�p)2 + B

]
, (1)
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where A and B are positive constants, was proposed in [1] ,
and many different modifications of the HUP have since been
considered in the literature. The GUP in Eq. (1) gives rise
to an effective minimum length, in the form of a minimum
positional uncertainty,

�xmin = h̄
√
A(1 + B), (2)

which is proportional to
√A, but the existence of a mini-

mum bound is a general feature of these models. Collectively,
such modified relations are referred to either as GUPs, or as
minimum length uncertainty relations (MLURs) (for general
reviews of GUP phenomenology see [2,3], and see [4,5] for
reviews of minimum length scenarios in quantum gravity).
The existence of an absolute bound of the form �x ≥ �xmin

implies that �x cannot be made arbitrarily small, irrespective
of the uncertainties in any other physical observables.

It is interesting to note that the idea of a minimum length
induced by quantum gravitational effects was first proposed
long ago [6]. By investigating the quantum mechanical mea-
surement of the �0

01 component of the Christoffel symbols,
Bronstein obtained a fundamental limit for the temporal
uncertainty inherent in the measurement process,

�t �
(

h̄

c2Gρ2V

)1/3

, (3)

whereρ andV denote the density and the volume of a massive
body, respectively. This, in turn, may be related to the spatial
uncertainty via �x ≤ c�t . By taking into account that M =
ρV is the particle mass, we obtain an equivalent mass–time–
density uncertainty relation of the form

M � h̄

c2Gρ (�t)3 . (4)

Since the existence of lower bounds for physical quanti-
ties is a natural characteristic of quantum processes, the pres-
ence of similar bounds in the framework of classical physics
appears, at first sight, somehow unusual. Nonetheless, lower
bounds on the ratios of physical quantities do occur naturally
in classical general relativity, as a form of stability condi-
tion for compact objects. Two such bounds are of particular
interest for both astrophysics/cosmology and for the study
of subatomic particles: the minimum mass/radius ratio for
a compact object in the presence of dark energy and for a
charged compact object.

Classical (3 + 1)-dimensional general relativity, with no
dark energy component (� = 0), imposes an upper bound
on the mass/radius ratio of any compact object, the Buchdahl
limit [7], which requires a sphere of matter with arbitrary
equation of state to satisfy the stability constraint

2GM

c2R
≤ 8

9
. (5)

If this condition is violated, the object will inevitably col-
lapse under its own gravity to form a black hole. (Typi-
cally, this process occurs for stars when the mass of the star
exceeds approximately 3.2M� [8].) The Buchdahl limit, and
its extensions, have been intensively investigated, includ-
ing the study of the effects of the cosmological constant
[9], and of sharp limits on the mass/radius bounds [10–12].
D-dimensional extensions of the Buchdahl limits in the pres-
ence of a cosmological constant were obtained in [13,14],
while the mass/radius ratio for compact objects in five dimen-
sional Gauss–Bonnet gravity and f (R) gravity were consid-
ered in [15,16], respectively.

In the presence of dark energy, a minimum bound for
the mass/radius ratio of a stable compact object also exists.
This result follows rigorously from the generalized Buchdahl
inequalities for a compact object in the presence of a nonzero
cosmological constant (� �= 0) [17]. For � > 0, the exis-
tence of a lower bound admits an intuitive explanation: If the
stability condition is violated, the self gravity of the object
is insufficient to overcome the repulsive force due to dark
energy. Remarkably, a minimum mass also exists for � < 0
[17]. Physically, this is due to the balancing of both gravita-
tional and dark energy attraction with local pressure in the
matter distribution, induced by non-gravitational forces.

In [17], it was shown that an uncharged compact object
is stable against dark energy repulsion when its density is
above a certain minimum value,

ρ ≥ ρ� = �c2

16πG
, (6)

for � > 0. A similar condition follows from the generalized
Buchdahl inequality for a charged compact object, even in
the absence of dark energy [18]. For � = 0, this gives

2GM

c2R
≥ 3

2

GQ2

c4R2

⎡
⎣1 + GQ2

18c4R2

1 + GQ2

12c4R2

⎤
⎦ . (7)

For � �= 0, this result generalizes to [18]

2GM

c2R
≥ 3

2

GQ2

c4R2

⎡
⎣1 + 1

9
c4�R4

GQ2 − 1
54�R2 + GQ2

18c4R2

1 + GQ2

12c4R2

⎤
⎦ . (8)

Hence, for R2� � 1, the effect of dark energy is subdomi-
nant to electrostatic repulsion. Equation (7) can also be Taylor
expanded to give

2GM

c2R
≥ 3

2

GQ2

c4R2

(
1 − GQ2

36c4R2 + O(Q2/R2)4
)

, (9)

so that, to leading order, we have

R � 3

4

Q2

Mc2 . (10)

123



Eur. Phys. J. C (2016) 76 :106 Page 3 of 22 106

In this limit, we recover the standard expression for the clas-
sical radius of a charged body with mass M and charge Q:
that is, the radius at which the electrostatic potential energy
associated with the object is equal to its rest mass, Mc2. We
recall that this is roughly the radius the object would have if
its mass were due only to electrostatic potential energy.

Several general restrictions on the total charge Q of a
stable compact object can also be obtained from the study
of the behavior of the Ricci invariants r0 = Ri

i = R, r1 =
Ri jRi j and r2 = Ri jklRi jkl . For example, by considering
that the surface density must vanish, it may be shown that Q
satisfies the condition

Q2

R4 <
ρcc2

2

√
1 +

(
pc

ρcc2

)2

, (11)

where ρc and pc are the central density and pressure of the
object, respectively.

Though most investigations of stellar structure have been
done under the assumption of charge neutrality, there are a
number of physical processes that could lead to the forma-
tion of charged regions inside compact objects. One of these
processes could be mass accretion by a neutron star [19], if it
happens that accretion produces luminosities very close to the
Eddington limit LE = 4πGMmpc/σT [20], where M is the
mass of the star, σT is the Thomson scattering cross section,
and mp is the mass of the proton. Let us assume that the star
undergoes spherical accretion, and that the accreting material
is ionized hydrogen. If the accreting luminosity of the star
is L , then infalling electrons, at a distance r from the center
of the star, experience a radiative force Frad = σT L/4πcr2

[19]. On the other hand, the radiation drag acting on the pro-
tons is smaller by a factor

(
me/mp

)2 ≈ 3 × 10−7, where
me is the mass of the electron, so that electrons and pro-
tons are subject to different accelerations. Therefore, a star
can acquire a net positive charge, Q = (

GMmp/e
)
(L/LE ),

through accretion [19].
Another possibility giving rise to the existence of charged

macroscopic objects is related to quark deconfinement inside
dense neutron matter [21]. If deconfinement occurs inside a
dense neutron star, the strange beta-equilibrated quark matter
consists of an approximately equal mixture of three quarks,
the up, down and strange quarks, with a slight deficit in the
number of strange quarks. This composition of quark matter
could lead to a net positive charge inside the neutron star or
quark star.

In deriving the results quoted above, it was assumed
that the pressure within the object is isotropic. Interest-
ingly, anisotropies in the pressure distribution inside com-
pact objects, in the presence of a cosmological constant, can
significantly modify both the upper and the lower bounds
for the mass. These bounds are strongly dependent on the
anisotropy parameter �, which is defined as the difference

between the tangential and radial pressure at the surface of
the object. Pressure anisotropies modify the lower bound on
the minimum density of a stable spherical mass distribution,
for � > 0, so that [22]

ρ ≥ ρ�(�) = �c2

16πG

⎡
⎣1 − G�R2

6c2

1 + G�R2

12c2

⎤
⎦ . (12)

Hence, the presence of the anisotropic pressure distribution
weakens the lower bound on the mass. Remarkably, even
anisotropic objects may still be stable, as long as their mass
exceeds an absolute classical minimum value, determined
by both � and �. The existence of a cosmological constant
therefore has profound consequences for the stability of mat-
ter, even at the classical level.

The nature of the cosmological constant or, more gener-
ally, dark energy, is one of the most fundamental problems
in contemporary physics. In particular, the important ques-
tion of whether � represents a true fundamental constant of
nature, or simply an approximation (for example, an approx-
imately constant field configuration that arises as a solution
to the, as yet unknown, equations of motion for a dynamical
scalar field), remains unanswered. However, even if we take
the existence of the cosmological constant, as implied by the
Cosmological Concordance, or �CDM model (cf. [23–27]),
at face value, yet another question remains: Is � an inde-
pendent constant of nature, or can it be expressed in terms of
other, known constants of nature?

In [28], it was shown that, if the minimum mass in nature
is MW = (h̄/c)

√
�/3 ≈ 3.5 × 10−66 g, as proposed by

Wesson [29], then a particle with mass MW and density ρ�,
given by Eq. (6), has a classical radius given by

R = (R2
P RW )1/3 ≈ 2.967 × 10−13 cm, (13)

where RP is the Planck length, and RW = √
3/� ≈ RU ≈

1026 m. This is of the same order of magnitude as the classical
electron radius,

re = e2

mec2 ≈ 2.812 × 10−13 cm. (14)

Based on this observation, it was suggested in [28] that
the radius R, given by Eq. (13), should be formally iden-
tified with re and taken as a minimum possible length scale
in nature. The cosmological constant � may then be for-
mally identified with the ‘standard’ set of physical constants
{c,G, h̄, e,me} via

� = 3
m6

eG
2

α6h̄4 , (15)

where α = e2/q2
P is the fine structure constant and qP =√

h̄c is the Planck charge. Evaluating this numerically gives
� = 1.4 × 10−56 cm−2, in good agreement with the value
inferred from various cosmological observations [23–27]. In
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[28], the formal identification R = re was justified on the
basis of a ‘small number hypothesis’, which represents an
extension of the large number hypothesis proposed by Dirac
[30], and which proposes that a numerical equality between
two very small quantities with a very similar physical mean-
ing cannot be a coincidence. Interestingly, the same identi-
fication was also obtained in [31] using information theory,
in which a set of axioms for the cosmological constant were
formulated by analogy with the Khinchin axioms [32], by
formally replacing the dependency of the information mea-
sure on probabilities of events by a dependency of � on the
other fundamental constants of nature. These results raise the
interesting questions of whether there is an intrinsic relation
between electromagnetic phenomena and dark energy, and
of what form the possible interaction/coupling of the electric
charge e with the cosmological constant � may be.

In this work, we aim to show concretely that, by consis-
tently combining results from general relativity, canonical
quantum theory, and MLURs predicted by phenomenolog-
ical quantum gravity, the identification (15) can be explic-
itly obtained by saturation of the quantum gravitational sta-
bility condition for the electron. Furthermore, our results
show this identification to be broadly consistent with the
results obtained by various early pioneers of quantum gravity
research (see [4,5] for reviews), including those of Bronstein
[6] and those obtained by Károlyházy et al. [33–35].

However, some assumptions present in the existing quan-
tum gravity literature are shown to be inconsistent with
canonical quantum mechanics. Specifically, certain assump-
tions as regards the nature of MLURs imply quantum grav-
ity effects which manifest on scales larger than the observed
Compton wavelengths of elementary particles. (Clearly, this
cannot be the case, otherwise quantum gravity would already
have been observed in the lab.) Interestingly, when these
assumptions are revised in order to ensure the consistency
of MLURs with the canonical theory (i.e. by ensuring that
quantum gravity effects are subdominant to ‘standard’ quan-
tum effects), the results obtained are inconsistent with both
Bronstein’s formulation, Eqs. (3) and (4), and Károlyházy’s
original results [33,34]. The reasons for these discrepancies
are discussed in detail in Sect. 6.

The structure of this paper is as follows. In Sects. 2, 3,
we obtain the generalized Buchdahl inequalities, in arbitrary
space-time dimensions, for a charged spherically symmetric
object embedded in a space-time with general nonvanishing
(i.e. positive or negative) dark energy. This extends previous
results given in [36], in which the D-dimensional generalized
Buchdahl inequalities for uncharged matter were obtained
in both the asymptotically de Sitter and the anti-de Sitter
cases. Specifically, in Sect. 2, the gravitational field equa-
tions and the hydrostatic equilibrium equations, also known
as the Tolman–Oppenheimer–Volkov (TOV) equations, are
obtained. The general form of the mass limits are given in

Sect. 3 and various limiting cases of special physical interest
are considered in Sect. 4. In Sect. 4.5, we use our previ-
ous results to derive bounds on the minimum and maximum
densities of static asymptotically de Sitter and anti-de Sitter
space-times. [These results are interesting because, even if
the real universe is an expanding (3+1)-dimensional space-
time with a positive cosmological constant, these static,
asymptotically de Sitter and anti-de Sitter spaces still have
essential interpretations from the viewpoint of holographic
duality.] The thermodynamic stability of higher-dimensional
charged objects is investigated in Sect. 5. By minimizing
the gravitational energy of charged objects with minimum
mass/radius ratio, we show that the ratio of the square of
the charge of the object to its mass, Q2/M , is proportional
to the radius of the object, R (to leading order). In Sect. 6,
we investigate the quantum mechanical implications of the
lower mass bound for charged objects, in the standard (3+1)-
dimensional scenario, leading to the identification of the cos-
mological constant� in terms of other fundamental constants
of nature, as in Eq. (15 ). This identification is seen to arise as
a consequence of the stability bound for the electron, viewed
as a charged, gravitating, quantum mechanical particle, and
extends the results obtained in [36], in which the minimum
mass of an uncharged, gravitating, quantum mechanical par-
ticle was determined. Section 6.3 shows that MLUR leads
to holography in arbitrary noncompact dimensions, and dis-
cusses its relation to the results previously obtained in Sect.
6. Section 7 contains a summary of our main results and a
brief discussion of possibilities for future work.

2 Geometry, field equations, and the TOV equations for
charged objects in D dimensions

In the following, we assume that the line element of a spheri-
cally symmetric D-dimensional static space-time can be rep-
resented in a generic form as [37]

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2d�2
D−2, (16)

where

d�2
D−2 = dθ2

1 +sin2 θ1dθ2
2 +· · ·+sin2 θ1 . . . sin2 θD−3dφ2.

(17)

Here x0 = ct , x1 = r , where r is the radial coordinate in D
space- time dimensions, with domain 0 ≤ r < ∞, while the
angular coordinates are defined according to 0 ≤ θi ≤ π ,
i = 1, . . . , D − 3, and 0 ≤ φ ≤ 2π , respectively.

The Einstein gravitational field equations are given by

Gμ
ν ≡ Rμ

ν − 1

2
δμ
ν R = κ

(
Tμ(M)

ν + Tμ(DE)
ν + Tμ(EM)

ν

)
,

(18)
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where κ = 8πGD/c4 and the energy–momentum tensor
contains three components, corresponding to matter (M),
dark energy (DE), and the electromagnetic field (EM). We
also assume that the matter and dark energy parts may be
expressed in terms of fluid variables, so that

Tμ(M)
ν = (ρc2 + P)uμuν − Pδμ

ν , (19)

Tμ(DE)
ν = (ρDEc

2 + PDE)uμuν − PDEδμ
ν , (20)

with the dark energy obeying the equation of state PDE =
wρDEc2, where ρDE = �Dc2/8πGD , and w = constant.
Finally, the electromagnetic energy–momentum tensor is
given by

Tμ(EM)
ν = Fμ

α Fα
ν + 1

4
δμ
ν FαβF

αβ (21)

where Fμν = ∇ν Aμ − ∇μAν and Aμ denotes the electro-
magnetic vector potential. The electromagnetic field tensor
Fμν satisfies the cyclic identity

∂λFμν + ∂μFνλ + ∂νFλμ = 0, (22)

and the Maxwell equations

1√−g
∂μ

(√−gFμν
) = jν, (23)

where jν denotes the electric current four-vector. We choose
the rest frame of the fluid so that the D-velocity is

uμ = δ
μ
t e

−ν/2, (24)

which is then normalized according to u2 = gttutut = 1.
We also introduce the electric charge density ρe, which is
related to the time component of the current four-vector by
the relation

j t = ρe(r)u
t = ρe(r)e

− ν
2 . (25)

From the Maxwell equation (22), and with the use of the
charge density defined above, we can construct the ‘proper
charge’, Q(r), defined as

Q(r) =
∫ r

0
ρe

(
e

λ(r ′)
2

)
r ′D−2dr ′, (26)

where we note that the definition does not contain the angular
volume �D−2.

By direct substitution, we obtain the nonzero components
of the energy–momentum tensor of the electromagnetic field
as

Ftr = −e− ν+λ
2

r D−2 Q(r) = −Frt , (27)

Ftr = gtt grr F
tr = e

ν+λ
2

r D−2 Q(r) = −Frt , (28)

Fr
t = gtt F

tr = − e
ν−λ

2

r D−2 Q(r), (29)

Ft
r = gtt Ftr = e

−ν+λ
2

r D−2 Q(r), (30)

Fr
t = grr Frt = e

ν−λ
2

r D−2 Q(r). (31)

For later use, we also compute F2 = FαβFαβ , which con-
tains only contributions from Frt and Ftr , so that

F2 = Ftr F
tr + Frt F

rt = −2
Q2(r)

r2(D−2)
.

Thus, for the components of the electromagnetic energy–
momentum tensor, we obtain

T t (EM)
t = T r(EM)

r = −T θi (EM)
θi

= Q2(r)

2r2(D−2)
, (32)

where i = 1, 2, . . . , D − 2 denote the angular variables of a
D-dimensional space-time. Hence, the electric field from the
charge density generates a positive energy density and a radial
pressure equal to Q2/2r2(D−2), and a negative transverse
pressure with exactly the same magnitude.

The conservation of the total energy–momentum tensor

∇μT
μ
ν = 0, (33)

gives the equation

−∂r P − (ρc2 + P)
∂rν

2
− ∂r PDE − (ρc2 + P)DE

∂rν

2

+ Q

r2(D−2)
∂r Q(r) = 0. (34)

This can be rewritten in a more compact form as

∂r Peff = −(ρc2+ρDEc
2+Peff )

∂rν

2
+ Q

r2(D−2)
∂r Q(r), (35)

where the effective pressure Peff(r) is defined as

Peff(r) ≡ P(r) + PDE(r). (36)

In this formulation, the charge dependent term is manifest,
and the conservation equation reduces to the uncharged case
when Q = 0.

The Einstein field equations for the Gt
t , G

r
r and Gθi

θi
com-

ponents then become

(D − 2)λ′e−λ

2r
− (D − 2)(D − 3)(e−λ − 1)

2r2

= κ

(
ρc2 + ρDEc

2 + 1

2

Q2(r)

r2(D−2)

)
, (37)

(D − 2)ν′e−λ

2r
+ (D − 2)(D − 3)(e−λ − 1)

2r2

= κ

(
P + PDE − 1

2

Q2(r)

r2(D−2)

)
, (38)
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e−λ

(
ν′′

2
+ ν′2

4
− ν′λ′

4
+ (D − 2)(ν′ − λ′)

4r

)

+ (D − 3)(D − 4)(e−λ − 1)

2r2

= κ

(
P + PDE + 1

2

Q2(r)

r2(D−2)

)
, (39)

respectively.

2.1 The TOV equation for a charged sphere in
D-dimensional space-times

Equation (37) can be integrated immediately to obtain the
‘accumulated’ mass M(r) inside radius the r , which is a
function of the cosmological constant, �D , and of the charge
integral,

2κc2

(D − 2)�D−2
M(r) = r D−3(1 − e−λ(r))

− 2�D

(D − 1)(D − 2)
r D−1

− κ

(D − 2)

∫ r

0

Q2(r ′)
r ′D−2 dr ′. (40)

The charge integral in Eq. (40) can be transformed by
integration by parts, giving

1

r D−3

∫ r

0

Q2(r ′)
r ′D−2 dr ′ = −1

(D − 3)r D−3

(
Q2(r)

r D−3

−
∫ r

0

2Q(r ′)
r ′D−3

dQ(r ′)
dr ′ dr ′

)
. (41)

In the integral no surface term at infinity appears and the
result is not valid for all space, but only for r < R, where R
is the radius of the sphere. The second term on the right-hand
side of Eq. (41) is the electromagnetic mass contribution, to
be included in the total mass of the sphere. Thus, e−λ(r)

becomes

e−λ(r) = 1 − 2κc2

(D − 2)�D−2

M(r)

r D−3

+ κ

(D − 2)(D − 3)

Q2(r)

r2(D−3)
− 2�D

(D − 1)(D − 2)
r2

− 2κc2

(D − 2)�D−2

�D−2

(D − 3)c2r D−3

×
∫ r

0

Q(r ′)
r ′D−3

dQ(r ′)
dr ′ dr ′. (42)

We now define the total mass MT (r) as the sum of the
mattermass M(r) and of the electromagneticmass generated
by the charge Q(r) as

MT (r) = M(r) + �D−2

(D − 3)c2

∫ r

0

Q(r ′)
r ′D−3

dQ(r ′)
dr ′ dr ′. (43)

The total mass–energy density inside the fluid sphere, includ-
ing the electromagnetic contribution ρq(r), can then be
defined as

ρT (r) = 1

�D−2r D−2

d

dr

×
(
M(r) + �D−2

(D − 3)c2

∫ r

0

Q(r ′)
r ′D−3

dQ(r ′)
dr ′ dr ′

)

= ρ(r) + 1

(D − 3)c2

Q(r)

r2D−5
∂r Q(r)

≡ ρ(r) + ρq(r), (44)

where ρq(r) has been defined implicitly.
Using the definition of MT (r), e−λ(r) can then be written

in the simpler form

e−λ(r) = 1 − 2κc2

(D − 2)�D−2

MT (r)

r D−3

+ 2κ

(D − 2)(D − 3)
r2U(r) − 2�D

(D − 1)(D − 2)
r2,

(45)

where

U(r) ≡ Q2(r)

2r2(D−2)
. (46)

By substituting the above expression into Eq. (38), we obtain

e−λ(r)

r
ν′(r) = 2κ

(D − 2)
[Peff(r) − U(r)]

+(D − 3)

[
2κc2

(D − 2)�D−2

MT (r)

r D−1

− 2κ

(D − 2)(D − 3)
U(r) + 2�D

(D − 1)(D − 2)

]
. (47)

Thus, with the use of Eqs. (35) and (47) we obtain the
TOV equation, describing the structure of a charged sphere
in D dimensions, which takes the form

dPeff

dr
= − (Peff + ρc2 + ρDEc2)

(D − 2)r D−2y2

×
[(

κPeff − 2�D

D − 1

)
r D−1 + (D − 3)

κc2MT (r)

�D−2
− κQ2

r D−3

]

+ QQ′

r2(D−2)
, (48)

where we have introduced the Buchdahl variables, defined
as

y2 ≡ e−λ(r) = 1 − 2w(r)r2 + 2κ

(D − 2)(D − 3)
U(r)r2,

ζ(r) = eν(r)/2, x = r2,

w(r) = κc2

(D − 2)�D−2

MT (r)

r D−1 + �D

(D − 1)(D − 2)
.
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We note that the right-hand side of the TOV equation con-
tains an extra term QQ′/r2(D−2), vis-á-vis the uncharged
case [36], which represents the charge contribution to the
hydrostatic equilibrium.

3 Mass limits in D dimensions for charged spherically
symmetric objects in the presence of dark energy

In terms of Buchdahl variables, Eqs. (47) and (35) can be
written as

ζ ′(x)
ζ

= ν′(x)
2

,

= 1

y2

[
4πGD

(D − 2)c4 Peff(x) + D − 3

2
w(x) − κU

D − 2

]
,

(49)

and

P ′
eff(x) = −

[
ρ(x)c2 + ρDEc

2 + Peff(x)
] ζ ′(x)

ζ

+ Q(x)

xD−2 Q
′(x), (50)

respectively, where (. . .)′(x) denotes differentiation with
respect to x . More elegantly, Eq. (50) can be formulated in
another way as

(Peffζ )′(x) = −(ρ +ρDE)c2ζ ′(x)+ Q(x)

xD−2 Q
′(x)ζ(x). (51)

This relation will be important later, in the derivation of the
Buchdahl inequality. Furthermore, there exists an additional
relation between ρT , ρDE and the function w(x) = w(r2),
defined as

w(x) = κ

2(D − 2)

1

x
D−1

2

∫ x

0
(ρT c

2 + ρDEc
2)x ′ D−3

2 dx ′,

(52)

namely
(
x

D−1
2 w(x)

)′ = κ

2(D − 2)
(ρEc

2 + ρDEc
2)x

D−3
2 . (53)

From Eq. (49), we then obtain

y2ζ ′ = κ

2(D − 2)
Peffζ + D − 3

2
wζ − κ Uζ

D − 2
. (54)

After differentiating Eq. (54) with respect to x [and with the
use of Eq. (51)], we find
(
y2ζ ′)′ = − κ

2(D − 2)
(ρ + ρDE)ζ ′ − κ

D − 2
(Uζ )′

+ κ

2(D − 2)

Q

xD−2 Q
′ζ + D − 3

2
(wζ )′. (55)

Since ρT = ρ + ρq , we next obtain
(
y2ζ ′)′ = − κ

2(D − 2)
(ρT + ρDE)ζ ′ − κ

D − 2
(Uζ )′

+ κ

2(D − 2)
ρqζ

′ + κ

2(D − 2)

Q

xD−2 Q
′ζ

+D − 3

2
(wζ )′, (56)

and, with the use of Eq. (53), we arrive at the result
(
y2ζ ′)′ = − 1

x
D−3

2

(
x

D−1
2 w

)′
ζ ′ + κ

2(D − 2)
ρqζ

′

+ κ

2(D − 2)

Q

xD−2 Q
′ζ + D − 3

2
(wζ )′

− κ

D − 2
(Uζ )′. (57)

Furthermore, since y(x) is defined in terms of Buchdahl vari-
ables as

y2(x) = 1 − 2w(x)x + 2κ

(D − 2)(D − 3)
U(x)x, (58)

we have

2yy′ = −2w′x − 2w + 2κ

(D − 2)(D − 3)
U ′x

+ 2κ

(D − 2)(D − 3)
U , (59)

where

U(x) = Q2

2xD−2 , ρq(x) = 2

D − 3

(
Q

xD−3 Q
′
)

, (60)

and

U ′(x) = Q

xD−2 Q
′ − D − 2

x
U . (61)

Using Eqs. (58)–(61) in Eq. (57), we finally obtain

y
(
yζ ′)′ = D − 3

2
w′ζ + κQ2ζ

2xD−1 − κQQ′

2(D − 2)xD−2 . (62)

This is the generalized Buchdahl equation for spheri-
cally symmetric, charged compact objects in D-dimensional
space-time. As compared to the uncharged case [36], it con-
tains an additional term on the right-hand side, which is the
extra contribution due to the presence of the electric charge.

3.1 Buchdahl inequality in D space-time dimensions

In the following, we introduce four new variables z, γ , ψ and
η, defined as

dz = 1

y(x)
dx → z(r) =

∫ r

0

2r ′
√

1 − �(r ′)
r ′D−3

dr ′, (63)
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γ (r) ≡ Q2ζ

r2D−3 , (64)

ψ = ζ − η, (65)

where η(r) is defined in terms of the integral

η(r) = 2κ

∫ r

0

⎛
⎜⎜⎝
∫ r1

0

γ (r2)√
1 − �(r2)

r D−3
2

dr2

⎞
⎟⎟⎠

r1√
1 − �(r1)

r D−3
1

dr1.

(66)

The function �(r), introduced in Eq. (63), is explicitly
defined by

�(r) ≡ 2κc2MT (r)

(D − 2)�D−2
− 2κ U(r)r D−1

(D − 2)(D − 3)
+ 2�Dr D−1

(D − 1)(D − 2)
,

(67)

giving y2 = 1 − �(r)/r D−3.
In terms of the new variables introduced above, the Buch-

dahl equation Eq. (62) can be written as

d2ψ(z)

dz2 = D − 3

2
w′(x)ζ(x) − κQQ′

2(D − 2)xD−2 . (68)

For a stable charged object, the assumption that the aver-
age total density

ρ̄T = (D − 1)MT (r)

�D−2r D−1 , (69)

does not increase with r implies that MT /r D−1 is a decreas-
ing function. Therefore, we assume that, for all r ′ < r , �(r)
satisfies the condition

�(r ′)
r ′D−3 ≥ �(r)

r D−3

(
r ′

r

)2

, (70)

and also that

γ (r ′) ≥ γ (r). (71)

From Eq. (68), we can then obtain the generalized Buchdahl
inequalities from the condition that, for any physical density
profile of the charged object, the following relations hold:

d

dr

MT (r)

r D−1 < 0 → w′(x) < 0, (72)

together with the condition that (Q2)′ > 0 inside the object.
The inequality

d2

dz2 ψ(z) < 0 (73)

therefore holds, for all r in the range 0 ≤ r ≤ R, where R is
the radius of the fluid sphere, for any static charged object.

Using the mean value theorem, we get

d

dz
ψ ≤ ψ(z) − ψ(0)

z
, (74)

and, since ψ(0) = ζ(0) − η(0) = ζ(0) > 0, it follows that

d

dz
ψ(z) ≤ ψ(z)

z
→ d

dz
ζ − d

dz
η ≤ ζ − η

z
. (75)

The above relation can be written explicitly as

1

2r

√
1 − �(r)

r D−3

dζ

dr
− κ

∫ r

0

γ (r ′)√
1 − �(r ′)

r ′D−3

dr ′

≤ 1

2
∫ r

0
r ′√

1− �(r ′)
r ′D−3

dr ′

×

⎡
⎢⎢⎣ζ − 2κ

∫ r

0

r1√
1 − �(r1)

r D−3
1

⎛
⎜⎜⎝
∫ r1

0

γ (r2)√
1 − �(r2)

r D−3
2

dr2

⎞
⎟⎟⎠ dr1

⎤
⎥⎥⎦ .

(76)

All the integrals in the inequality (76) can be evaluated using
the conditions (70) and (71). By using (70), it follows that
the denominator of right-hand side of (76) is bounded, such
that

⎛
⎝
∫ r

0

r ′
√

1 − �(r ′)
r ′D−3

dr ′
⎞
⎠

−1

≤ �(r)

r D−1

(
1 −

√
1 − �(r)

r D−3

)−1

.

(77)

The second term on the left-hand side of (76) also has an
upper bound,

∫ r

0

γ (r ′)√
1 − �(r ′)

r ′D−3

dr ′ ≤ γ0

∫ r

0

1

y
dr ′ = γ0r

y
, (78)

where γ0 ≡ γ (r = 0) is the central value of γ . The term
involving γ (r) also has a lower bound,

∫ r

0

γ (r ′)√
1 − �(r ′)

r ′D−3

dr ′ ≥ γ (r)
∫ r

0

(
1 − �(r)

r D−3

(
r ′

r

)2
)− 1

2

dr ′

= γ (r)

(
�(r)

r D−1

)− 1
2

arcsin

(√
�(r)

r D−3

)
.

(79)
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Consequently, the term in the numerator on the right-hand
side of (76) is bounded from below by

∫ r

0

r1√
1 − �(r1)

r D−3
1

⎛
⎜⎜⎝
∫ r1

0

γ (r2)√
1 − �(r2)

r D−3
2

dr2

⎞
⎟⎟⎠ dr1

≥
∫ r

0
r1

(
1 − �(r1)

r D−3
1

)− 1
2

⎛
⎜⎜⎜⎝

γ (r1)
(

�(r1)

r D−1
1

) 1
2

arcsin

(√
�(r1)

r D−3
1

)
⎞
⎟⎟⎟⎠ dr1,

≥ γ (r)
(

�(r)
r D−1

) 1
2

∫ r

0
r1

(
1 − �(r)

r D−1 r
2
1

)− 1
2

arcsin

(√
�(r)

r D−1 r1

)
dr1

= γ (r)
(

�(r)
r D−1

) 3
2

∫ s

0

s′

(1 − s′2) 1
2

arcsin s′ds′

= γ (r)
(

�(r)
r D−1

) 3
2

[(
�

r D−1

) 1
2

r

−
√

1 −
(

�

r D−1

)
r2 arcsin

((
�

r D−1

) 1
2

r

)]
, (80)

where we have denoted

s′ ≡
(

�

r D−1

) 1
2

r1, s ≡
(

�

r D−1

) 1
2

r. (81)

Plugging integrals (77), (79), and (80) into (76) and using
the relation y2 = 1 − �(r)/r D−3, we next obtain

ν′(r)
2r

ζ(r)y(r)

≤ 1 + y

r2

[
ζ(r) − 2κγ (r)r3

(
1

1 − y2 − y arcsin (
√

1 − y2)

(1 − y2)3/2

)]

+ 2κ
γ0r

y
. (82)

At the surface of the compact object, r = R, and thus, using
Eq. (49) together with the value of the dark energy at the
surface Peff(r = R) = wρDEc2 ≡ Pe, we find
(

κ

D − 2
Pe + (D − 3)w(R) − 2κU

(D − 2)

)
R2

≤ y2 + y + 2κR3

[
γ0

y
+ γ (R)

1 − y

(
y arcsin (

√
1 − y2)√

1 − y2
− 1

)]

≤ y2 + y + 2κR3 γ0

y
, (83)

where we have used the fact that arcsin (
√

1 − y2) ≤√
1 − y2/y, and have assumed that γ ≥ 0 for 0 ≤ r ≤ R.

In the γ0 term, we also assume that ζ(R) ≥ y(R) as a result
of the energy condition ρc2 + P ≥ 0, which allows us to
replace 1/ζ with 1/y.

For γ0 = 0, the inequality (83) properly reduces to the
uncharged case discussed in [36]. Even when y is bounded
between 0 and 1, the last term on the left-hand side is
unbounded, since it is proportional to 1/y. The metric
becomes the black hole metric for y = 0, but we expect
the Buchdahl limit to set in before this point, at the upper
bound �/RD−3 = 1 − y2.

3.2 Dimensionless form of the mass bounds

We now introduce a new set of dimensionless variables
{�, u, b,�}, defined as

� ≡ 2κR3γ0

(
1

y

)

upper
(84)

and

u ≡ κc2MT

(D − 2)�D−2RD−3 , b ≡ �DR2

D − 2
,

� ≡ 2κR2U
(D − 2)(D − 3)

= κQ2

(D − 2)(D − 3)R2(D−3)
, (85)

respectively. In terms of these dimensionless quantities, the
inequality (83) can be expressed in a simple form as

(D − 1)u + (1 + w)b − (D − 2)� ≤ 1 + y + �, (86)

where y = √
1 − (2u + 2b/(D − 1) − �). The inequality

(86) implies the bounds

u− ≤ u ≤ u+, (87)

where

u± = − B

2A

(
1 ±

√
1 − 4AC

B2

)
, A = (D − 1)2,

B = 2 + 2(D − 1)[b(1 + w) − (1 + (D − 2)� + �)],
C = −(1 + �) + 2b

D − 1

+
[
b(1 + w) − (1 + (D − 2)� + �)

]2
. (88)

As a cross-check of our main result, we compare these bounds
with the known result for uncharged objects obtained in [36].
When Q = 0, we have � = 0, � = 0, and

M ≡ MT |Q=0 → u = 8πGDM

(D − 2)�D−2RD−3 . (89)

In this case,

u± = D − 2

(D − 1)2

[
1 − (1 + w)

D − 1

(D − 2)2 �DR
2
]

± D − 2

(D − 1)2

√
1 + 2w

D − 1

(D − 2)3 �DR2, (90)

in complete agreement with the previous result [36].

123



106 Page 10 of 22 Eur. Phys. J. C (2016) 76 :106

In order to obtain the influence of the charge on the mass
bounds, we need to evaluate the value of �, which contains
the unknown parameter γ0 and the upper bound u+ [through
(1/y)upper in (84)]. Since ζ(r = 0) = 1, an estimate value
of γ0 can be obtained from Eq. (64):

γ0 ≈ e2

λ2D−3
e

, (91)

where λe = h̄/mec is the Compton wavelength of the elec-
tron. This is equivalent to the statement that a charge e cannot
be compressed to within a radius smaller than λe. Conse-
quently, we can approximate

� ≈ 2κR3 e2

λ2D−3
e

[
1 −

(
2u+ + 2b

D − 1
− �

)]−1/2

. (92)

The dimensionless quantity � ∼ R3 can have values as small
as 10−87 (for MT � 2 × 103 g, R = 1.5RS , where RS =
2GM/c2 is the corresponding Schwarzschild radius) to as
large as 1600 (for MT � M� = 2 × 1033 g, R = 1.5RS)
when D = 4 and for very small �. Thus, we cannot take it
to be a generically small quantity.

On the other hand, the cosmological constant in four
space-time dimensions is extremely small in the real physical
world. The quantity b is thus very small, since R is typically
much less than, or at most comparable to the size of the
universe, R � RU ≈ RW = √

3/�. Therefore, it is interest-
ing to explore the mass bounds for charged spherical objects
when �,� � b. Another important limit is when the dark
energy becomes a cosmological constant with w = −1. We
will explore mass limits in these situations in the following
section.

4 Mass limits for �R2 � 1 cases

In this section, we assume the dark energy density to be very
small, i.e. �R2 � 1. We first consider the case in which dark
energy corresponds to a cosmological constant with w = −1.
The general case, with arbitrary w, is then investigated.

4.1 Cosmological constant dark energy

If dark energy corresponds to a cosmological constant and b
is very small, we can set w = −1 in Eq. (88) so that

√
1 − 4AC

B2 �
√

1 − (D − 1)2[(1 + (D − 2)� + �)2 − (1 + �)]
[(D − 1)(1 + (D − 2)� + �) − 1]2

×
[

1 − b

(D − 1)

(
1 + � + 1

(D − 1)2 − 2

D − 1
(1 + (D − 2)� + �)

)−1
]

,

(93)

while

− B

2A
= (D − 1)(1 + (D − 2)� + �) − 1

(D − 1)2 > 0. (94)

The upper (lower) mass limit is then given by u+(−) respec-
tively. For B < 0,C > 0, u− is positive and the lower limit
exists. It is straightforward to see that B is always negative for
D ≥ 2 andC is always positive for �D ≥ 0, since �,� ≥ 0.

4.2 Generic dark energy

A more general situation is when we allow a small w-
dependent term to exist for ω �= −1. In this case, we may
approximate the quantity

√
1 − 4AC/B2 as

√
1 − 4AC

B2 �
√

1 − 4AC0

B2
0

− b(D − 1)2

√
1 − 4AC0

B2
0

{
1

D−1 − (1 + w)(1 + (D − 2)� + �)

[(D − 1)(1 + (D − 2)� + �) − 1]2

− (D − 1)(1 + w)[(1 + (D − 2)� + �)2 − (1 + �)]
[(D − 1)(1 + (D − 2)� + �) − 1]3

}
,

(95)

where

B0 ≡ B(b = 0) = 2 − 2(D − 1)(1 + (D − 2)� + �),

C0 ≡ C(b = 0) = (1 + (D − 2)� + �)2 − (1 + �),

− B

2A
= − (D − 1)[b(1 + w) − (1 + (D − 2)� + �)] + 1

(D − 1)2 .

Since C0 > 0, the second term on the right-hand side of
Eq. (95) will determine whether the lower bound u− exists.
Thus, for � > (<) 0, a nontrivial positive lower bound u−
will exist if

w < (>)
1 − (D − 1)(1 + (D − 2)� + �) − 2AC0

B0

(D − 1)(1 + (D − 2)� + �) + 2AC0
B0

. (96)

4.3 Charged sphere with no dark energy

We may also setb = 0 and simply consider the mass limits for
a charged sphere in asymptotically flat space. From Eq. (88),
it follows that
√

1 − 4AC

B2 =
√

1 − 4AC0

B2
0

< 1, (97)

and

− B

2A
= (D − 1)[(1 + (D − 2)� + �)] − 1

(D − 1)2 . (98)

Hence, for D ≥ 2, both the upper and the lower limits always
exist according to Eq. (98).
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Due to the electrostatic repulsion between charged fluid
elements, the minimum mass/radius power ratio is required
in order for gravitational attraction to counteract the repulsive
force, which enables the object to maintain a static config-
uration. The maximum mass/radius power ratio denotes the
limit before gravitational collapse. For a charged object, we
expect the maximum mass/radius power to be greater than
that for an uncharged object, i.e. the Buchdahl limit Eq. (5),
due to the repulsive effect of the charge density.

4.4 Small objects with �,� � 1

As long as the size R of the object is sub-astronomical (i.e.
small compared to the size of a typical star), the numerical
value of � in (3+1) dimensions is generically much smaller
than unity. We now consider the condition � � 1, together
with � � 1, in arbitrary dimensions, and derive explicit
expressions for the mass bounds in this limit.

For �,� � 1, we can approximate
√

1 − 4AC/B2 as
√

1 − 4AC

B2 � 1 − (D − 1)2

(D − 2)2

×
[
� + (2D − 5)�

2
− b

(
D − 2

D − 1
+ w

)]
,

(99)

and the mass limits u± become

u+ � 2(D − 2)

(D − 1)2 + 1

(D − 1)(D − 2)(
(2D2 − 9D + 11)

�

2
+ (D − 3)� + [2 + 3w − D(1 + w)]b

)
,

(100)

u− � −1 + (D − 1)[b(1 + w) − (1 + (D − 2)� + �)]
(D − 2)2

×
[
� + (2D − 5)�

2
− b

(
D − 2

D − 1
+ w

)]
. (101)

The minimum mass/radius power can thus be approximated
by
(

MT

RD−3

)

min
= ��D−2

κc2 + (2D − 5)Q2
tot/�D−2

2(D − 2)(D − 3)R2(D−3)c2

−�DR2�D−2

κc2

(
w

D − 2
+ 1

D − 1

)
,

(102)

where we define the total charge contribution Qtot ≡
�D−2Q. Note again that the total mass MT is the sum of
usual matter mass and the electromagnetic mass given by
Eq. (43). For zero dark energy, b = 0, and for very small �

the minimum mass/radius power simplifies to
(

MT

RD−3

)

min
≈ (2D − 5)Q2

tot/�D−2

2(D − 2)(D − 3)R2(D−3)c2
. (103)

The minimum mass/radius power ratio can also be cast in
the form of a minimum average density for a static spherical
object, i.e.

ρ̄min = �(D − 1)

κc2R2 + Q2(2D − 5)(D − 1)

2(D − 2)(D − 3)R2(D−2)c2

−�D

κc2

(
1 + w

D − 1

D − 2

)
. (104)

Remarkably, with the contribution from the electric charge
density, the lower bound (i.e. nontrivial positive values of
u−) exists, for a wide range of values of �D , in both the
asymptotically de Sitter and the anti-de Sitter cases. For pos-
itive (negative) �D , as long as w is not much less (more)
negative than −(D − 2)/(D − 1), the lower bound always
exists.

On the other hand, the maximum mass/radius power ratio
is
(

MT

RD−3

)

max
= 2(D − 2)2�D−2

(D − 1)2κc2 + ��D−2

κc2

(
D − 3

D − 1

)

+ (2D2 − 9D + 11)Q2
tot/�D−2

2(D − 1)(D − 2)(D − 3)R2(D−3)c2

−�DR2�D−2

κc2

[2 + 3w − D(1 + w)]
(D − 1)(D − 2)

. (105)

Thus, the maximum mass/radius power becomes larger in
the presence of the electric charges, but the presence of dark
energy could either enhance or weaken the upper bound,
depending on the sign of w. For zero dark energy and very
small �, the maximum mass/radius power limit reduces to
(

MT

RD−3

)

max
≈ 2(D − 2)2�D−2

(D − 1)2κc2

+ (2D2 − 9D + 11)Q2
tot/�D−2

2(D − 1)(D − 2)(D − 3)R2(D−3)c2
.

(106)

For convenience, we now present some results in (3 + 1)

dimensions with positive � and w = −1.
(
MT

R

)

min
= 3

4

(
4πQ2

R2c2

)
+ �R2c2

12G
, (107)

(
MT

R

)

max
= 4

9

c2

G
+ 7

12

(
4πQ2

R2c2

)
+ �R2c2

12G
, (108)

where we have assumed small contributions from the dimen-
sionless quantity �. At this point, in order to facilitate the
comparison between the previous four-dimensional results
obtained in [18] and the results of the present paper, we
would like to mention that due to the different choice of
units and scaling of physical parameters the results of [18]
can be re-obtained once the substitutions 4πQ2/c2 → Q2

and �c2 → 8πGB are performed in all the equations of the
present paper.
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We end this section with a discussion of the holographic
interpretation of the minimum and maximum mass/radius
power ratio, focusing on the scenario in which the object is
embedded in an asymptotically anti-de Sitter (AdS) space-
time, with �D < 0. In this case, the maximum mass bound
for a given radius of a charged object corresponds to the
Hawking temperature, TH , of a charged (i.e. a Reissner–
Nordström) black hole (RNBH), with the same mass. At this
radius, any object with larger mass than the maximum mass
will inevitably collapse to form a black hole. For a large
RNBH with positive heat capacity, TH is an increasing func-
tion of the black hole mass and can be determined once the
mass is known (see, for example, [38] for explicit formu-
las). From the viewpoint of holographic duality, the Hawk-
ing temperature can be identified with the temperature of the
dual gauge plasma in the deconfined phase (for example, the
quark–gluon plasma in QCD). Specifically, it can be inter-
preted as the maximum temperature of the dual gauge matter
in the confined phase before it undergoes an inevitable phase
transition into a deconfined phase. Or, in other words, as the
confinement/deconfinement phase transition temperature.

Generically, a static configuration in the bulk gravity pic-
ture of the background AdS space is dual to a thermal phase
in the boundary gauge picture. To give a few examples: An
empty bulk AdS space is dual to the confined phase of gauge
matter on the boundary. A black hole in the bulk is dual to
the thermal phase of the gauge matter on the boundary, in
which the Hawking temperature of the black hole is identi-
fied with the temperature of the thermal gauge phase. The
mass of a static AdS star made of fermions is dual to the
conformal dimension of the multitrace operator in the dual
conformal field theory (CFT) [39,40]. In [41], it was shown
that the mass of the bulk AdS star is linearly proportional to
the number density of particles on the boundary when the
mass is large. This provides a holographic correspondence
between the bulk mass in the gravity picture and the particle
density on the boundary in the gauge field picture.

With this in mind, we can interpret the minimum mass at
a given radius, derived in this section, to be the dual of the
minimum density of the gauge matter living on the boundary
space. If the density of the gauge matter is too low, it will
evaporate into a ‘hadron’ gas. This gauge picture corresponds
to the gravity picture in which the mass of the spherical object
scatters into the entire AdS space, since it is lower than the
minimum mass required for stability at a given radius. Thus,
the minimum mass/radius power ratio gives the critical den-
sity of the dual gauge ‘nucleus’, under which it will evaporate
into the ‘hadron’ gas phase.

4.5 Bounds on the static universe

We can apply the condition (87) to the entire universe by
setting R → {RU ,∞}. For asymptotically dS space, this is

not allowed since r is limited by the cosmic horizon radius
RU = √

(D − 1)(D − 2)/2�D . For asymptotically AdS
space, R → ∞ is physically viable. Generically, the bounds
given by Eq. (87) may yield bounds on the average density
of static, asymptotically dS and AdS universes by letting
R = RU and R → ∞, respectively.

First, let us consider the AdS case. Since �, given by
Eq. (92), is proportional to R3/y, dividing by R2 gives an
interesting constraint on the average density of a static uni-
verse, with D > 3. For R → ∞, the parameters in Eq. (88)
become

B

R2 → 2(D − 1)

(
�D

D − 2
(1 + w) − �

R2

)
,

C

B2 = 1

4(D − 1)2 = 1

4A
,

leading to the degeneracy of u+ and u−. This implies the
uniqueness of the average density of the static asymptotically
AdS universe, which is given by

ρ̄AdS = 1

κc2

(
�(D − 2)

R2 − �D(1 + w)

)
, (109)

where

�

R2 ≈ 2κe2

λ2D−3
e

√
(D − 1)(D − 2)

−�D − κc2ρ̄AdS . (110)

This bound only exists, for �D < −κc2ρ̄AdS, w � −1,
if the universe is charged. For the uncharged case, Q = 0,
the maximum mass/radius power ratio of the entire universe
(R → ∞) gives the average density bound

ρ̄AdS = −�Dc2

8πG
(1 + w) , (111)

for the static AdS universe.
For asymptotically dS space, we can set R = RU =√
(D − 1)(D − 2)/2�D to obtain an approximate average

density

ρ̄dS = �D

κc2

(
�(D − 2)

�DR2 − (1 + w) + 2(D − 2)

(D − 1)2

)
. (112)

For a static uncharged dS universe, starting from Eq. (90)
and setting R = RU , we obtain

ρ̄dS
max,min = �D

κc2

(
1 + w + 2(D − 2)

(D − 1)2

±2(D − 2)

(D − 1)2

√
1 + w

(D − 1)2

(D − 2)2

)
. (113)

These limits exist only for w > −(D − 2)2/(D − 1)2. Even
if, in reality, the universe is an expanding (3+1)-dimensional
space-time with positive �, the static dS and AdS space still
have essential interpretations from the viewpoint of holo-
graphic duality (cf. discussion of the AdS case in Sect. 4).
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5 Total energy and gravitational stability of charged
objects with minimum mass/radius ratio in arbitrary
dimensions

In the present section, we investigate the stability of charged
gravitating objects in arbitrary dimensions. As a first step in
this study, we derive an explicit expression for the total energy
of a compact, charged, general relativistic object, which
includes the contribution from the gravitational energy. For
the sake of notational convenience, we use a system of units
such that c = G = 1 and κ = 8π throughout the remainder
of this section.

A definition of gravitational field energy EG , with interest-
ing properties, was proposed in [42], and further developed
in [43,44]. The derivation of EG proceeds as follows: Let
us assume that Tμ

ν is the energy–momentum tensor of a sta-
tionary system with mass M , embedded within a space-time
with a time-like Killing vector ξν . Then the matter–energy
EM of the system is defined as [42,43]

EM =
∫

Tμ
ν ξν√−gd�μ, (114)

where � is any space-like surface over which the energy
is to be evaluated. If M is the total energy of the system,
then the gravitational energy of the system EG is defined as
EG = M − EM [42].

This definition of the gravitational energy can be refor-
mulated in terms of the theory of surface layers [43,44] as
follows: let the surface � be a closed surface, which cuts the
space-time in such a way that the exterior space-time remains
unchanged, while the interior space-time is flat. The internal
energies of the matter and of the gravitational field are then
replaced by the surface energy of �, so that EG = E� −ET ,
where EG is the energy of the gravitational field inside �,
E� is the energy of �, and ET is the energy of the matter
inside � [43]. The matter–energy inside the surface is given
by ET = ∫

V Tμ
ν ξνuμdV , where V is the invariant volume

inside �, and uμ is the four-velocity field of points that are
fixed in �.

Next, we introduce the unit normal vector fieldn of �. The
exterior curvature tensor of � is defined by Ki j = ∇ j ni ,
where we have introduced the set of intrinsic coordinates(
xi , x j

)
on �. The surface energy tensor of � (the Lanc-

zos tensor) Sij is defined as Sij = (1/8π)
([

Ki
j

]
− δij [K ]

)
,

where [] denotes the discontinuity at �, and K = Ki
i [43].

The energy of the cut is given by E� = ∫
�
Sμ
ν ξνuμd�,

where � is an invariant surface element. For a vacuum solu-
tion of Einstein’s field equations, E� gives the gravitational
field energy inside �. If there is a nonvanishing energy–
momentum density tensor inside �, then the gravitational
field energy is given by [43]

EG =
∫

�

Sμ
ν ξνuμd� −

∫

V
Tμ

ν ξνuμdV . (115)

This definition is manifestly coordinate invariant.
In the case of spherical symmetry, and in arbitrary dimen-

sions, S0
0 = − (

c4/4πG
)∑D−2

i=1

[
K θi

θi

]
, and thus the energy

inside the surface � is given by

EG = −(D − 3)reν/2
[
e−λ/2

]

= −(D − 3)reν/2
(

1 − e−λ/2
)

. (116)

In the exterior of a higher-dimensional charged matter dis-
tribution, the vacuum metric functions satisfy the condition
ν + λ = 0, and the metric is the generalized D-dimensional
Reissner–Nordström–de Sitter metric, with coefficients

eν = e−λ = 1 − 2u + � − 2b

D − 1
, (117)

where the dimensionless parameters u, � and b are given by
Eq. (85). Therefore, the gravitational energy inside a surface
of radius R, where R is the radius of the charged object, is
given by

EG |r=R

= −(D−3)R

√
1 − 2MF(D)

RD−3 + κQ2

(D−2) (D−3)

1

R2(D−3)
− 2�D

(D−1) (D−2)
R2

×
⎡
⎣1−

√
1 − 2MF(D)

RD−3 + κQ2

(D−2) (D−3)

1

R2(D−3)
− 2�D

(D−1) (D−2)
R2

⎤
⎦ ,

(118)

where F(D) ≡ κ/[(D − 2)�D−2]. For an object with mini-
mum mass/radius power ratio, and with small �, b and negli-
gible �, the condition (102) is satisfied. Thus, eliminating the
total mass using Eq. (102), the gravitational energy becomes

EG |r=R = −(D − 3)R

√
1 − κQ2

(D − 2)2

1

R2(D−3)
+ 2w�D

(D − 2)2 R
2

×
[

1 −
√

1 − κQ2

(D − 2)2

1

R2(D−3)
+ 2w�D

(D − 2)2 R
2

]
.

(119)

For a stable configuration, the total gravitational energy
should have a minimum, defined by

∂EG

∂R
= 0,

∂2EG

∂R2 > 0. (120)

The resulting expression can be rearranged into a cubic equa-
tion in �D , and thus solved analytically for �D in arbitrary
dimensions. However, the expression is long and compli-
cated, so we will give only the approximate form, valid to
leading order in Q2 and �D . Thus, we have

(2D − 7)

2
R2(3−D)κQ2 + 3�DwR2 ≈ 0, (121)
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giving

R ≈
(

2D − 7

6

κQ2

−w�D

)1/[2(D−2)]
, (122)

as the radius of a stable charged object, with minimum
mass/radius power ratio, which also minimizes the gravi-
tational energy of the configuration.

Following the method presented in [18], for compact
objects in (3 + 1) dimensions, we obtain the minimum mass
of a charged object as a function of the D-dimensional cos-
mological constant �D , and of its electric charge, in the form

M = g(w, D)
�D−2

D − 2
Q

D−1
D−2

( −6w�D

(2D − 7)κ

) D−3
2(D−2)

(123)

where

g(w, D) ≡ 2D − 5

2(D − 3)
+ 2D − 7

6

(
D − 2

w(D − 1)
+ 1

)
.

(124)

Using Eqs. (122) and (123), we can now eliminate the cos-
mological constant and obtain the ratio of the square of the
charge of the object to its mass, as a function of the radius:

Q2

M
= D − 2

g(w, D)�D−2
RD−3. (125)

For D = 4, this gives

Q2

M
= 1

4π

(
18w

1 + 15w

)
R =

(
1

4π

)
9

7
R (w = −1).

(126)

From the expression for R in Eq. (122), we see that sta-
bility can be achieved only when �D > 0 for negative w.
Furthermore, if we fix the mass M the of object to the mini-
mum allowed at a given radius R, and consider a change δR,
then any change in the charge contribution Q2 must be com-
pensated by a corresponding change in the �D contribution,
in such a way that as to keep the gravitational energy of the
system constant.

In the case of the electron, for which Q = e and M = me,
Eq. (126) automatically recovers the classical electron radius,
re = 1.28e2/me (in CGS units). In classical, relativistic, but
non-gravitational physics, this is obtained from the require-
ment that the electrostatic energy e2/re equals the rest mass–
energy me. In the present approach, this result is obtained by
minimizing the total gravitational energy of a charged sys-
tem with minimum mass/radius ratio.

5.1 A complementary stability analysis

Consider a charged static object with the minimum mass/radius
power ratio. One way to obtain a stability condition for this
object is by minimizing the quantity M/RD−3

min with respect

to the radius R. If the object has the minimum mass/radius
power ratio and we make a slight change in R, its mass has
to change in such a way that the mass/radius power ratio
remains constant. By setting

∂

∂R

(
M

RD−3

)

min
= 0, (127)

and using condition (102), we obtain the stability condition

κQ2

R2(D−2)
= − 2�D

2D − 5

(
D − 2

D − 1
+ w

)
, (128)

yielding the radius

R =
⎡
⎣ κQ2(2D − 5)

−2�D

(
D−2
D−1 + w

)
⎤
⎦

1
2(D−2)

. (129)

Substituting back into Eq. (102) gives the mass at the mini-
mum mass/radius power ratio configuration,

M = �D−2(2D − 5) Q2

2(D − 3)

⎡
⎣ κQ2(2D − 5)

−2�D

(
D−2
D−1 + w

)
⎤
⎦

− D−3
2(D−2)

.

(130)

The dark energy constant �D can be eliminated using Eqs.
(129) and (130) to give

Q2

M
= 2(D − 3)

(2D − 5)�D−2
RD−3. (131)

For D = 4, this gives

Q2

M
= 1

6π
RD−3. (132)

Although the stability analysis based on the minimization
of gravitational energy allows only positive �D , for negative
w, the stability analysis presented here allows both �D > 0
and �D < 0. However, for �D < 0, the equation of state
parameter w must satisfy the condition w > −(D−1)/(D−
2), which gives w > −3/2 for D = 4.

6 Quantum implications of a classical minimum mass
for charged objects

In this section, we investigate the quantum implications of the
existence of a classical minimum mass for charged objects
in (3 + 1) dimensions. In Sect. 6.1, we begin by review-
ing a series of quantum gravity arguments that give rise to
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‘cubic’ MLURs, in which the minimum positional uncer-
tainty (�x)min is given by the cube root of three phenomeno-
logically significant length scales. In general, such relations
may be derived by minimizing the total uncertainty, due to
both canonical quantum mechanical and gravitational effects,
with respect to the mass M of the system. In Sect. 6.2,
we combine the mass minimization condition giving rise to
cubic MLURs with phenomenological results from canon-
ical quantum mechanics, namely, the existence of a mini-
mum Compton radius for any object (i.e. ‘particle’) of mass
M , and consider charged objects subject to the bound (10).
By combining all three mass bounds, we obtain the condi-
tion for quantum gravitational stability of a charged parti-
cle. Applying this to the electron, we find that saturation of
this condition requires the existence of a ‘new’ fundamental
length scale in nature, R∗, of order RW . Furthermore, setting
R∗ = RW = √

3/�, we recover the expression for �, writ-
ten in terms of the fundamental constants {c,G, h̄, e,me},
Eq. (15).

For later convenience, we now define the Planck length
RP , mass MP , and charge qP , expressed in terms of the
independent constants {c,G, h̄}, via

RP =
√
h̄G

c3 , MP =
√
h̄c

G
, (133)

and

qP = √
h̄c. (134)

For the sake of clarity, all fundamental constants are written
explicitly throughout the remainder of this section.

Following [29], but adopting the notation and terminology
used in [36], we also define two mass scales, MW and M ′

W ,
associated with the cosmological constant �,

MW = h̄

c

√
�

3
, M ′

W = c2

G

√
3

�
. (135)

From here on, we refer to these as the first and second Wesson
masses, respectively. The associated lengths are

RW =
√

3

�
, R′

W = h̄G

c3

√
3

�
, (136)

which we will refer to as the first and second Wesson length
scales. Hence, RW is simply the Compton wavelength of a
particle of mass MW and R′

W is the Compton wavelength of a
particle of mass M ′

W . We also note that M ′
W = M2

P/MW and
R′
W = R2

P/RW , so that {MW , RW } ↔ {
M ′

W , R′
W

}
under the

T -duality transformations (see, for example [45]), MW ↔
M2

P/MW , RW ↔ R2
P/RW . Physically, M ′

W ≈ 1.347 × 1056

g and RW ≈ 1.0 × 1028 cm are of the order of the present
day mass and radius of the universe [36].

6.1 Cubic MLURs in phenomenological quantum gravity

In addition to those proposed by Bronstein [6], at least three
sets of heuristic arguments based on quantum gravitational
phenomenology give rise to the cubic MLURs. The first is
based on an extension of a gedanken experiment first pro-
posed by Salecker and Wigner [46], which proceeds as fol-
lows. Suppose we attempt to measure a length d using a
special ‘clock’, consisting of a mirror and a device that both
emits and detects photons. The photons are reflected by the
mirror, placed at some unknown length d from the device,
which emits a photon and re-absorbs it after a time t = 2d/c.
Assuming that the recoil velocity of the device is well below
the speed of light, it may be modeled non-relativistically.
Then, by the standard HUP, the uncertainty in its velocity
�v, at the time of emission, is of order

�v = h̄

2M�x
, (137)

where M is its mass and �x is the initial uncertainty in its
position.

We note that the ‘device’ considered here may still be
small enough to behave quantum mechanically. For exam-
ple, we may consider a two-state system involving a charged
particle, embedded within a broader experimental set-up,
that emits and re-absorbs photons. In this case, �x and
�p = M�v refer to the positional and momentum uncer-
tainty of the charged particle, which, together with the mirror
that reflects the photons, measures (or ‘probes’) the distance
d.

During the time required for the photon to travel to the
mirror and back, the particle acquires an additional positional
uncertainty (�x)′ = 2d�v/c [i.e., in addition to the standard
positional uncertainty �x � h̄/(2M�v)], so that the total
positional uncertainty is given by

�xtot = �x + h̄d

Mc�x
= h̄

2M�v
+ 2d�v

c
. (138)

Minimizing this expression with respect to �x , and using
(�v)max ≈ h̄/(M(�x)min), we have

(�x)min ≈
√

h̄d

Mc
≈ √

λCd,

(�v)max ≈
√

h̄c

Md
≈ c

√
λC

d
(139)

(neglecting numerical factors of order unity), where λC =
h̄/(Mc) denotes the Compton wavelength of the particle, so
that

(�xtot)min ≈ √
λCd. (140)

If we then require d > RS = 2GM/c2 (i.e. that our measur-
ing device is not inside a black hole), we obtain (�xtot)min =
RP . However, more realistically, we may require d > λC ,
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so that the measurement process devised by Salecker and
Wigner gives rise to a MLUR which is consistent with the
standard Compton bound.

The original argument presented in [46] may also be mod-
ified to explicitly include the classical ‘uncertainty’ in the
position of the measuring device due to gravitational effects.
Assuming that this is proportional to the Schwarzschild
radius of the device RS , the total uncertainty due to canonical
quantum mechanical effects, plus gravity, is

�x =
√

h̄d

Mc
+ β

GM

c2 , (141)

where β > 0 [47]. Minimizing this with respect to M yields

M � MP

(
d

β2RP

)1/3

(142)

and, substituting this back into Eq. (141), we obtain

�x ≥ (�x)min � (βR2
Pd)1/3, (143)

where (again) we have neglected numerical factors of order
unity in the preceding expressions.

One disadvantage of the approach described above is that
it appears to apply only to the specific measurement process
envisaged in [46]. However, in [48,49], it was shown that the
expression for (�x)min given in Eq. (139) may be obtained
from general principles in canonical quantum mechanics. For
V = 0, the time evolution of the position operator x̂(t) given
by the Schrödinger equation (in the Heisenberg picture) is

dx̂(t)

dt
= i

h̄
[Ĥ , x̂(t)] = p̂

M
. (144)

This may be solved directly to give

x̂(t) = x̂(0) + p̂(0)
t

M
. (145)

The spectra of any two Hermitian operators, Â and B̂, must
obey the general uncertainty relation [50]

�A�B ≥ 1

2
|〈[ Â, B̂]〉|, (146)

so that setting Â = x̂(0), B̂ = x̂(t) gives

[x̂(0), x̂(t)] = i h̄
t

M
, (147)

and

�x(0)�x(t) = h̄t

2M
. (148)

In the Heisenberg picture, we have (�x)2 = �x(0)�x(t),
so that, again setting t = d/c, (�x)min is given by Eq. (139).

As with Salecker and Wigner’s gedanken experiment, we
have again considered performing two measurements of the
position of an object, one at t = 0 and the other at some
time t > 0, and can relate this to the uncertainty inherent in
the measurement of a length scale d = ct . However, in this

case, no assumptions have been made about the details of the
measurement procedure, so that Eq. (139) may be considered
as a general result in canonical quantum mechanics (i.e. not
accounting for the effects of gravity). As such, the arguments
presented in [47], and hence the cubic MLUR (143), may be
considered to have general validity for gravitating quantum
mechanical systems.

Cubic MLURs of the form (143) (with β = 1) were also
obtained in [33,34] by considering a gedanken experiment
to measure the lengths of geodesics with minimum quantum
uncertainty. This derivation relies on the fact that the mass
of the measuring device M distorts the background space-
time. Equating the uncertainty in momentum of the device
with the uncertainty in its mass then implies an irremovable
uncertainty or ‘fuzziness’ in the space-time in the vicinity of
the device itself. This results in an absolute minimum uncer-
tainty in the precision with which a gravitating measuring
device can measure the length of any given world-line, d.

As with the results proposed in [47], in this scenario the
value β ∼ O(1) arises as a direct result of the assump-
tion that the Schwarzschild radius of body of mass M ,
RS = 2GM/c2, represents the minimum classical ‘gravita-
tional uncertainty’ in its position. In fact, for cubic MLURs
of the form (143), it is usually assumed that β ∼ O(1) in
most of the existing quantum gravity literature [5]. For all of
the scenarios leading to Eq. (143) considered above, this is
directly equivalent to assuming a minimum classical gravi-
tational uncertainty, given by RS .

However, since Eq. (143) holds if and only if Eq. (142)
also holds, it is straightforward to check that setting β = 1
is inconsistent with the requirement that quantum gravity
effects, stemming from MLURs of the form (143), be sub-
dominant to ‘standard’ quantum effects. Since quantum grav-
ity has not been observed in the lab, we require (�x)min �
(βR2

Pd)1/3 ≤ h̄/(Mc), or, equivalently

M ≤ MP

(
RP

βd

)1/3

. (149)

Substituting the minimization condition for �x , Eq. (142),
into this inequality then gives

d ≤ √
βRP . (150)

Clearly, for β ∼ O(1), this contradicts the weak gravi-
tational limit of the theory, represented by Eq. (139), and
which yields d ≥ (�x)min = RP . This implies that the
arguments of Károlyházy et al. [33,34], which automatically
assume β = 1, are also inconsistent with the weak field limit
and the condition that quantum gravity effects from MLURs
become subdominant to canonical quantum uncertainty in
this regime.

In fact, subsequent work has claimed that Károlyházy’s
quantum space-time MLUR is incompatible with observa-
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tions in yet another sense, in that it implies a vacuum energy
density of the order of the neutron star density [35]. While it
would be interesting to repeat the arguments presented in [35]
using the more general relation, Eq. (143), and to consider
the value of β required to reduce the neutron star density to
the observed vacuum density, this task lies outside the scope
of the present paper and is left to future work. However, for
now, we note that only the more general relation (143), with
β � 1, is compatible with current observations.

Although the arguments presented in this subsection do
not allow us to fix the value of β, or even the minimum value
of β required for consistency with the weak field limit, we
note that they yield two conditions on the mass of the mea-
suring device M in relation to the distance to be measured
d, Eqs. (142) and (149), and that these relations involve only
a single free constant. In the next subsection, we combine
these with the condition relating the mass M and radius R
of a gravitationally stable charged body, and explicitly con-
sider an object of charge e and mass me (i.e. an electron).
In so doing, we see that the consistency of all three relations
implies the identification of fundamental constants given in
Eq. (15).

6.2 Quantum gravitational bounds for stable charged
objects

One possible definition of the quantum gravity regime is the
requirement that the positional uncertainty of an object, due
to combined canonical quantum and gravitational effects, be
greater than or equal to its classical radius, (�x)min ≥ R.
(This is essentially the inverse of the requirement for classi-
cality: that the macroscopic radius of an object be larger than
its quantum uncertainty.) Thus, the conditions

λC ≥ (�x)min ≥ R (151)

correspond to a regime in which the ‘particle’ behaves quan-
tum mechanically and gravitationally, but in which spe-
cific quantum gravitational effects are subdominant the stan-
dard Compton uncertainty. In this regime, we may therefore
assume that

(�x)min = (βR2
Pd)1/3 = γ λC , (152)

where γ ≤ 1. Likewise, we may set

ξ R = (�x)min = (βR2
Pd)1/3, (153)

where ξ ≥ 1, if we expect the object to display no classical
behavior. Clearly,

γ ≤ ξ, (154)

with equality holding if and only if γ = ξ = 1.
For convenience, we now rewrite the three independent

expressions we have obtained for M throughout the preced-
ing sections of this work, namely

M = MP

(
d

β2RP

)1/3

, (155a)

M = γ RPMP

(βR2
Pd)1/3

, (155b)

M = Q2

q2
P

ξMP RP

(βR2
Pd)1/3

. (155c)

Equations (155a) and (155b) are simply Eqs. (142) and (152)
restated. Equation (155c) corresponds to saturating the bound
in Eqs. (9) and (10) by assuming that R = (�x)min/ξ rep-
resents the value of the classical radius that minimizes the
ratio M/R, for a sphere of mass M and charge Q. (For sim-
plicity, we have neglected numerical factors of order unity in
Eq. (10)).

Thus, the quantity M in Eqs. (155a) and (155b) denotes
the value of the mass for which the quantum uncertainty
of the object, including gravitational effects, is minimized,
whereas the M in Eq. (155c) is the mass of a body for which
the classical bound (10) is saturated. By Eq. (131), this is
also the radius at which both the classical mass/radius ratio
and the classical gravitational energy are both minimized.

We now investigate the properties of a charged particle for
which the combined uncertainty (due to both canonical quan-
tum and gravitational effects) and the classical mass/radius
ratio and gravitational energy are minimized. Thus, we pro-
ceed by equating the three expressions for M in Eqs. (155a)
and (155c). The physical picture is that we use a ‘particle’ of
mass M and classical radius R as a probe to measure a dis-
tance d: the minimum uncertainty in the position of the parti-
cle is also the minimum uncertainty in the measurement of d.

Equations (155b) and (155c) immediately imply

Q2

q2
P

= γ

ξ
≤ 1, (156)

or, equivalently,

Q ≤ qP . (157)

This gives a nice (and self-consistent) interpretation of the
Planck charge qP as the leading order contribution to a sum
of terms that determine the maximum possible charge of a
stable, gravitating, quantum mechanical object. The bound
(157) may also be obtained in a more direct way by com-
bining a general relativistic result with canonical quantum
theory: rewriting Eq. (142) as Q2 � q2

P RM/(MP RP ) and
invoking a Compton-type relation between R and M (i.e. tak-
ing R to be the Compton radius of the sphere), yields exactly
the same result.

For convenience, we now rewrite

R∗ = βd, (158)

where R∗ is an arbitrary length scale. We note that, if β

is independent of d, R∗ is simply proportional to d, but, if
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β ∝ d−1, R∗ is a constant. (Also note that setting β ∝ d−1

would in no way alter the argument for the minimization
of �x with respect to M , proposed in Sect. 6.1.) Equations
(155a)–(155c) then become

M = MPd

(RP R2∗)1/3 , (159)

and

M = γ (M2
PM∗)1/3, (160)

respectively, where M∗ = MP RP/R∗. Equating the two then
yields

d = γ (R2
P R∗)1/3. (161)

The expression for M , Eq. (160), also implies that the Comp-
ton wavelength of the particle is given by

λC = (R2
P R∗)1/3

γ
= ξ R

γ
= q2

P R

Q2ξ
. (162)

The self-consistent solution to Eqs. (155a)–(155c), written
in terms of R∗ = βd (158), is therefore

γ = Q2

q2
P

≤ 1, ξ = 1, (163)

yielding

R = Q2

q2
P

λC = (R2
P R∗)1/3, (164)

where λC = h̄/(Mc) and

M = Q2

q2
P

(M2
PM∗)1/3, (165)

together with

d = Q2

q2
P

(R2
P R∗)1/3. (166)

To summarize our results, we have shown that, to probe
a distance d, given in terms of some length scale R∗ by Eq.
(166), we can minimize the combined quantum mechanical
and gravitational uncertainty inherent in the measurement
of d by choosing an appropriate probe ‘particle’, with mass
M , given by Eq. (165). This mass corresponds to a classi-
cal radius R given by Eq. (164). In addition, we found that
the minimum value of the combined uncertainty, incorpo-
rating gravitational effects, is equal to the classical radius,
(�x)min = R. [Alternatively, if we take a particle of mass
M , given in terms of Q and M∗ = MP RP/R∗ by Eq. (165),
the value ofd obtained in Eq. (166) represents the length scale
with is naturally ‘probed’ by such a particle, with minimum
uncertainty (�x)min = R.]

Mathematically, the three length scales λC , (�x)min = R,
and d, are related via

d = Q2

q2
P

(�x)min = Q2

q2
P

R = Q4

q4
P

λC . (167)

We also showed that the Planck charge acts as a maximum
possible charge for any stable, gravitating, quantum mechan-
ical object, regardless of its mass M and associated Compton
radius λC . Therefore, for Q < qP , the positional uncertainty
induced by quantum gravitational effects is strictly less than
the Compton scale, for a stable body of any mass M .

Let us now reverse this argument by asking the following
question: If we suppose that M represents the mass, not of a
composite body, but of a true fundamental particle, what is
the inherent length scale that such a particle can probe, with
minimal uncertainty? To answer this question, we first note
that, in order for M and Q in Eq. (165) to be constants of
nature, R∗ must also be a constant of nature.

As a test case, let us now consider the electron by setting
M = me and Q = e, for which Eq. (167) recovers the
well known relation re = αλe, were α ≈ 1/137 is the fine
structure constant. For convenience, let us also associate R∗
with another universal constant, which we denote �∗, via the
relation

�∗ := 3

R2∗
. (168)

From Eq. (165), we then have

�∗ = 3
m6

eG
2

α6h̄4 . (169)

Evaluating this numerically gives

�∗ ≈ 1.4 × 10−56 cm−2, (170)

and we recall that

� ≈ 3.0 × 10−56 cm−2, (171)

is the value of the cosmological constant implied by various
observations [23–27]. This strongly suggests the identifica-
tion �∗ = �, R∗ = RW .

We stress, however, that this identification is not based
purely, or even primarily, on a numerical coincidence. Rather,
our requirement that the total uncertainty �x , incorporat-
ing canonical quantum and gravitational effects, be min-
imized for all stable bodies, including fundamental parti-
cles, requires the existence of a fundamental length scale
in nature which is many orders of magnitude larger than the
Planck length. Specifically, the minimization of the com-
bined canonical quantum and gravitational uncertainty of the
electron requires the existence of a fundamental constant,
with dimensions L−2, of the form (169). Formally identify-
ing �∗ = � and substituting this back into Eq. (9), we obtain
the bound
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Q2

M
�
(

3h̄2G2c6

�

)1/6

≈ e2

me
= 2.52 × 108 Fr/g, (172)

to leading order. The fulfillment of this condition therefore
indicates the stability of a general, charged, gravitating, quan-
tum mechanical object, as claimed.

Finally, let us now consider the role of the length scale d,
given by Eq. (166), when R∗ is a universal constant and so is
Q. Combining this with the requirement that R∗ = βd, Eq.
(158), we obtain the following expression for β:

β = q2
P

Q2

(
R∗
RP

)2/3

= λC R

R2
P

. (173)

The preceding arguments, given in Sect. 6.1, then imply that
the gravitational uncertainty of the particle is given by

(�x)grav ≈ λC R

R2
P

× RS = R = (�x)min, (174)

rather than (�x)grav ≈ RS = 2GM/c2, as assumed in
[34,35,47]. This implies that an additional, self-consistent
interpretation of the classical radius R of a charged object, is
that it represents the minimum value of the classical gravi-
tational ‘disturbance’ induced by the objects mass M .

As an additional check on the consistency of this result,
we note that imposing the general condition β = R∗/d on
Eq. (141) yields

�x =
√

MP RPd

M
+ R∗RPM

MPd
. (175)

Clearly, minimizing this expression with respect to M (i.e.
treating M and d as independent variables), yields

(�x)min = (R2
P R∗)1/3. (176)

However, since the length scale that may be probed with min-
imum total uncertainty using a particle of canonical quantum
width λC is d = (Q4/q4

P )λC (Eq. 167), where Q2 ≤ q2
P , it is

reasonable to ask, what happens in the ‘canonical quantum
limit’, where d → λC , so that d and M can no longer be
considered independent variables? In this case, for a charged
particle, Eq. (167) requires Q2 = q2

P , and Eq. (175) becomes

�x = d + R∗R2
P

d2 = RPMP

M
+ R∗M2

M2
P

. (177)

Minimizing this expression with respect to either d or M
yields Eq. (176). Hence, Eq. (175) is the only form of Eq.
(141) which is valid, for charged particles, in the canonical
quantum regime. However, we may conjecture that Eq. (177)
is valid in general, even for uncharged particles, since Eq.
(141) breaks down, for β ∼ O(1), when particles are used
to probe distances comparable to their canonical quantum
radius.

We also note that, in the limit d → λC , Eq. (173) implies
R∗ → λ3

C/R2
P . Substituting these values into Eq. (175)

yields

�x ≈ (�x)min = R = d = λC , (178)

and

R∗ = λ3
C

R2
P

. (179)

Since we require λC � RP , in order to avoid black hole
formation, all quantities {�x, R, d, R∗, λC } remain above
the Planck scale in this limit.

Finally, before concluding this section, we note that Bron-
stein’s bound (3) is also a form of cubic MLUR, which may
be rewritten as

(�x)min ≈
(
M2

P

M2

)1/3

R, (180)

after identifying �x ≈ c�t , where we have used the fact
that ρ = MR−3 denotes the classical density. It is clear
that this is compatible with our result, Eq. (167), only when
M = MP . Thus, in general, our results are incompatiblewith
those presented in [6].

Although Bronstein did not explicitly consider charged
particles, so that our results are not directly comparable to
his, the origin of the difference appears to lie the fact that
his results imply the gravitational field of an object gives
rise to an additional uncertainty in its momentum, of order
(�p)grav ≈ Gρ2V�x�t . Though it is beyond the scope of
the present work to investigate this discrepancy further, it
would be interesting to consider extending Bronstein’s orig-
inal arguments to the case of charged bodies, to see whether
they are compatible with those presented here.

6.3 MLUR and holography in arbitrary dimensions

In this section, we will demonstrate that the MLUR which
represents the minimum possible uncertainty due to com-
bined canonical quantum and gravitational effects, implies
holography involving quantum gravity ‘bits’, in space-times
with an arbitrary number of noncompact dimensions.

We have seen, in Sect. 6.1, that the minimum canonical
quantum mechanical uncertainty is proportional to M−1/2,
where M is the mass of the object (cf. Eq. (175)). It was also
shown in Sect. 4 that, for a given mass of a static object,
its classical radius has a minimal possible value before the
object collapses to form a black hole. (This because the ratio
M/RD−3 has an upper bound; see also [36]). Thus, the min-
imum classical gravitational uncertainty is given by the min-
imum radius of the object, which is roughly the same as the
horizon radius of the corresponding black hole. This is pro-
portional to M1/(D−3) in D dimensions.
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Therefore, the MLUR of the D-dimensional space-time
can be expressed in the form

�x ≥ ζ√
M

+ χM1/(D−3), (181)

where ζ , χ are positive constants. This expression contains
the canonical quantum mechanical term and the classical
gravitational term. By minimizing �x with respect to M ,
we obtain the minimum length

(�x)min = D − 1

2

(
2

D − 3

) D−3
D−1

(ζ 2χD−3)1/(D−1), (182)

which corresponds to the mass

M =
(

ζ(D − 3)

2χ

)2(D−3)/(D−1)

. (183)

For a measuring apparatus with size �, the quantum mechani-
cal uncertainty term and the classical gravitational term have
parameters

ζ ∼
√

�h̄

c
,

χ ∼ (κc2)1/(D−3). (184)

By using the D-dimensional Planck length

RP(D) ∼
(
h̄κc2

c

)1/(D−2)

, (185)

we can express the maximum number of degrees of freedom
in an �D−1 volume as

N =
(

�

(�x)min

)D−1

∼
(

�

RP(D)

)D−2

. (186)

Remarkably, the result satisfies a holographic relation.
Thus, the maximum number of degrees of freedom in a

(D − 1)-dimensional volume is proportional to the (D − 2)-
dimensional ‘area’ of the boundary in which the volume is
enclosed. Specifically, it is equal to the number of quantum
gravity bits, (�/RP(D))

D−2, on the (D−2)-dimensional sur-
face. Hence, we prove that cubic MLURs, combining the
minimum possible uncertainties arising from both canonical
quantum and gravitational effects, inevitably lead to holog-
raphy in arbitrary, noncompact, D-dimensional space-time.

7 Discussions and final remarks

In the present work, we have investigated the possibility of the
existence of a minimum mass/radius ratio for charged, stable,
compact general relativistic objects in arbitrary dimensions,
in the presence of dark energy in the form of a cosmological
constant. We have shown that for a static, spherically sym-
metric mass distribution, such a minimum ratio does indeed

exist, and that it arises as a direct consequence of the D-
dimensional Buchdahl inequality, which also gives rise to an
upper bound for the mass/radius ratio.

In the case of the minimum mass/radius ratio, we obtained
an explicit inequality giving the lower bound on M/R in
arbitrary dimensions, as an explicit function of the charge Q
and the D-dimensional cosmological constant �D . In order
to obtain both the upper and the lower bounds, we general-
ized the approach introduced in [36] for uncharged objects
to include nonzero charge, Q �= 0. For Q = 0, all our results
reduce properly to the bounds obtained in [36].

In addition, we have investigated the condition of the ther-
modynamic stability for objects with minimum mass/radius
ratio, which requires that they are in the minimum energy
state. To estimate the total energy of these objects, we have
used the definition of gravitational energy introduced in [42].
In D = 4 dimensions, imposing the condition of minimum
stability, for charged objects with minimum mass/radius
ratio, leads to an explicit expression, Eq. (126), in which the
ratio of the square of the charge of the object to its mass is pro-
portional to the radius, Q2/M ∝ R. The same bound was also
obtained as a stability condition for charged bodies in [18].

We have also investigated the quantum implications of the
existence of a classical minimum mass for charged objects
in four space-time dimensions, by starting from a series of
quantum gravity arguments that give rise to cubic MLURs of
the form �x ≥ (�x)min = (βR2

Pd)1/3, Eq. (143), where β is
positive numerical constant which is related to the positional
uncertainty of the object induced by its gravitational field.
In these approaches, �x represents not only the uncertainty
in the position of the object, but also the irremovable quan-
tum uncertainty inherent in any measurement of the physical
length d.

We have combined the mass minimization condition, giv-
ing rise to the cubic MLURs, with phenomenological results
from canonical quantum mechanics, namely, the existence
of a minimum (canonical) quantum radius (the Compton
radius), and have considered objects subject to the mini-
mum mass/radius bound for charged bodies (10). By com-
bining all three mass bounds, we have obtained the condi-
tion for quantum gravitational stability of a charged particle,

Q2/M �
(
3h̄2G2c6/�

)1/6 ≈ e2/me = 2.52 × 108 Fr/g,
Eq. (172).

Physically, we may interpret this as meaning that, if the
electron were any less massive (for fixed charge e), or more
highly charged (for fixed mass me), a combination of elec-
trostatic and dark energy repulsion would lead to instabil-
ity. In other words, the electron would blow itself apart, as
claimed in the Introduction. In addition, saturation of this
condition yields an expression for � in terms of the con-
stants {c, h̄,G, e,me}, given by Eq. (15).

Specifically, by combining the mass bound obtained from
purely classical considerations with the cubic MLURs, moti-
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vated by quantum gravity, and applying the result to body of
charge e and mass me (i.e. an electron), we obtained a pre-
diction of a ‘new’ constant of nature, �∗, which may be
expressed in terms of other fundamental constants. Physi-
cally, the existence of this constant is required in order to
ensure the consistency of MLURs with the weak field limit
of canonical quantum theory and with the classical stability
bounds for charged, gravitating ‘particles’. Evaluating �∗
numerically, we have shown that it has the same order of mag-
nitude value as the observed cosmological constant, which
motivates the identification �∗ ≡ � ≈ 1056 cm−2. Cru-
cially, this implies that, if the cosmological constant can be
expressed as a function of the set of the ‘standard’ constants
{c, h̄,G, e,me}, it cannot be interpreted as a fundamental
constant of nature.

It is also interesting to note that the cubic MLURs used in
this work, which, together with the classical stability bounds
obtained for charged objects, imply a fundamental relation-
ship between the existence of the cosmological constant and
the stability of fundamental particles, also imply the exis-
tence of a holographic relationship between the maximum
number of degrees of freedom in a bulk space-time and the
number of quantum gravity ‘bits’ on the boundary. This is
proved explicitly, for arbitrary D-dimensional space-times
(with noncompact dimensions), in Sect. 6.3.

Finally, we note that the formalism developed in this paper
can be easily extended to the case of non-electromagnetic
interactions. For example, by interpreting the charge Q as a
generalized charge, corresponding to a Yang–Mills field, we
can apply our results even to the case of strongly interacting
particles, based on the fundamental QCD Lagrangian [51]

LQCD = 1

4

∑
a

Fa
μνF

aμν

+
N f∑
f =1

ψ̄
(
iγ μ∂μ − αsγ

μAa
μ

λa

2
− m f

)
ψ, (187)

where the subscript f denotes the various quark flavors
u, d, s etc., and the corresponding quark masses m f . The
nonlinear gluon field strength is defined as

Fa
μν = ∂μA

a
ν − ∂ν A

a
μ + αs fabc A

b
μA

c
ν . (188)

In Eqs. (187) and (188), ψ is the (spinor) wave function of
the quarks, γ μ are the Dirac matrices, fabc are the structure
constants of the group SU(3), and αs is the strong interaction
coupling constant. In the first order perturbation theory, one
can neglect the quark masses, so that the equation of state for
zero temperature quark matter can be obtained [51,52]:

pq = 1

3

(
ρqc

2 − 4B
)

, (189)

where B is interpreted physically as the difference between
the energy density of the perturbative and non-perturbative
QCD vacua (the bag constant), while ρq and pq denote the
energy density and thermodynamic pressure of the quark
matter, respectively. Equation (189) is called the MIT bag
model equation of state. From a physical point of view,
Eq. (189) represents the equation of state of a gas of mass-
less particles (the quarks), with corrections due to the QCD
trace anomaly and perturbative interactions included. The
quarks are bound together by the vacuum pressure, B. Hence
Eq. (189) provides a simplified theoretical model for the
long-range, quark confining interactions in QCD. The typ-
ical value of the bag constant B, as obtained from particle
physics experiments, and theoretical considerations, is of the
order of B = 57 MeV/fm3 ≈ 1014 g/cm3 [51,52]. On the
other hand, after a neutron matter–quark matter phase tran-
sition, which can take place, for example, in the dense core
of neutron stars, the energy density of strange quark matter
is of the order of ρq ≈ 5 × 1014 g/cm3.

However, it is important to note that, in the case of the
QCD description of strong interactions, the strong coupling
constant αs is a function of the particle (i.e. quark) momenta,
and of their energy density. For the simplest hadronic mod-
els, the quark–gluon coupling constant is of the order of
αs ≈ 0.12 [51]. If we define the generalized QCD charge
as QQCD ≈ α

1/2
s , we may obtain an estimate for the mass

of a quark, interpreted as an electric and color-charged par-
ticle having a minimum mass/radius ratio by applying the
formalism developed in this paper and identifying the con-
stant �∗ with B, where B is the bag constant introduced in
the simple MIT bag model, Eq. (189). This yields a value of
order mq ≈ 67.75 MeV [18], which represents a reasonable
approximation to the predicted mass of the s quark [52].
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