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Abstract If the Hartle–Hawking wave function is the cor-
rect boundary condition of our universe, the history of our
universe will be well approximated by an instanton. Although
this instanton should be classicalized at infinity, as long as we
are observing a process of each history, we may detect a non-
classicalized part of field combinations. When we apply it to
a dark energy model, this non-classicalized part of fields can
be well embedded to a quintessence and a phantom model,
i.e., a quintom model. Because of the property of complexi-
fied instantons, the phantomness will be naturally free from a
big rip singularity. This phantomness does not cause pertur-
bative instabilities, as it is an effect emergent from the entire
wave function. Our work may thus provide a theoretical basis
for the quintom models, whose equation of state can cross
the cosmological constant boundary phenomenologically.
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1 Introduction

One of the crucial tasks of quantum gravity is to understand
the singularities in general relativity. When we consider the
initial singularity of our universe [1,2], the problem is related
to various issues of physical cosmology, e.g., the origin of
the emergence of time, the initial condition of inflation, the
typicalness of our universe, etc. To deal with these issues, the
traditional approach is to investigate the canonical quantiza-
tion and to study the wave function of the universe [3].

After invoking the canonical quantization that includes the
metric, what we eventually obtain is the master wave equa-
tion, the Wheeler–DeWitt equation. This equation is a partial
differential equation and hence it requires boundary condi-
tions. We do not know what should be the correct boundary
condition, but perhaps the ground state of the universe can be
a reasonable choice. Hartle and Hawking (HH) [4] suggested
that the Euclidean path integral provides a good analog of the
ground state wave function. For cosmological applications,
the O(4) symmetric metric ansatz would be a good sim-
plification; and the Euclidean path integral can be approxi-
mated by the steepest-descent approximation, or by sum-over
instantons. When we consider the Euclidean instantons, we
need to complexify the time and hence every fields should
be complexified by analyticity [5–8]. However, as long as
the field is complex-valued, classical properties can never be
restored in terms of equations of motion. Therefore, after the
Wick rotation, the reality of the metric and the matter field is
required: this is the classicality1 condition [9,10].

1 By ‘classicality’ we mean that a universe is classical, where the uni-
verse is originated from the wave function and the wave function itself
is not classical. This is different from another notion of ‘classicality’
in the literature of inflationary physics; in this context, people consider
a classicalization of quantum fluctuations. In this paper, our physical
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Already some techniques have been investigated to calcu-
late HH instantons and to estimate the probability distribution
of each initial conditions [9–12]. Typical expectations of the
HH wave function are as follows: (1) it provides slow-roll
inflation to obtain a classical history and (2) it does not pre-
fer large number of e-foldings. The former is useful, but the
latter is not a good news for inflationary cosmology [13–
15]. However, if one considers more sophisticated models,
this difficulty can be resolved. Note that when our universe
begins, all field should be realized and satisfy the classical-
ity condition. We envision that there exists some fields that
in the early universe: an inflaton (or inflatons) that induces
inflation, heavy mass fields and light mass fields compared
with the inflaton. Regarding such a setting, the followings
should be noticed.

– If the mass scales of the fields are similar, then it is reason-
able that these fields are equally excited at the same time.
This may be related to the assisted inflation of multi-fields
that can help to prefer large e-foldings [16].

– If there is a much heavier mass field (or fields), then in
order to classicalize the heavier mass field, the lighter
field should be excited [17]. This excited lighter field
can in principle be the inflaton field, which may further
explain the preference of sufficiently large e-foldings.

– Some modifications of the gravity sector in the early uni-
verse may help to prefer large e-foldings [18–20].

While this is not yet settled, it is fair to say that the HH
wave function remains a reasonable theoretical basis for our
inflationary universe [21].

If so, then the natural next question is, what will hap-
pen to the much lighter fields compared with the inflaton? Of
course, at once they exist from the beginning, then these light
fields should be regarded as a part of instanton. At the first
glimpse, it is natural to assume that these light fields should
be classicalized, too. However, if a field is decoupled from
our phenomenological fields (standard model particles) and
the amount of energy of this field is much smaller than that
of the inflaton field, then even though the field is not classi-
calized, there is no way to distinguish the light field during
and after the primordial inflation. As time goes on, however,
the super slow-rolling and non-classicalized field can leave
some distinguishable effects in the universe around the dark
energy dominated era. This is a kind of ‘residue’ from the
quantum gravity. Then can we see these effects in this uni-
verse? (Regarding this topic, for extended calculations, see
[22]).

Footnote 1 continued
object and interest are different from the latter issue (classicalization
of quantum fluctuations).

Motivated by this scenario, in this paper we study the
properties of a field that has negligible amount of energy
compared to the inflaton, which is super slow-rolling and
non-classicalized. By non-classicalized, we mean that the
scalar field is not entirely realized from complex values (fol-
lowing the notion of classicality in [9,10]). Although this
field has the form of a quintessence field, however, due to its
non-classicalicity, some part of this field will also possess the
phantom behavior. Therefore, effects of the non-classicalized
field can be very well-embedded in a quintessence + phan-
tom dark energy model, i.e., the quintom model [23–25].
This quintum model is known to be useful to investigate late
time cosmology, especially in order to explain the crossing
phenomenon of the dark energy equation of state over the
cosmological constant boundary. Now the question is this: if
there remain effects from a non-classicalized field as a quin-
tum model, then what will be the signatures to our late time
universe? This is the task of this paper.

This paper is organized as follows. In Sect. 2, we briefly
summarize previous results on the HH wave function. In
Sect. 3, we discuss the behavior of the non-classicalized field
that is indeed a quintom model; we also discuss the physi-
cal implications of this model. In Sect. 4, we discuss further
interpretational issues, and finally, in Sect. 5, we summarize
this paper and discuss future issues that should be further
investigated.

2 Hartle–Hawking wave function for two scalar fields

2.1 Basic formalism and classicality

The ground state wave function by Hartle and Hawking [4]
is defined as the Euclidean path integral for a compact 3-
dimensional manifold � as a functional of the 3-metric hμν

and the field value χ by

�[hμν, χ ] =
∫
M

DgμνDφ e−SE[gμν,φ], (1)

where the 4-metric gμν and the field φ (for multi-field case,
include all fields) take the value hμν and χ on � = ∂M,
where M is a compact 4-dimensional Euclidean manifold.
We integrate over all M that have � as their only boundary.

In this paper, we investigate Einstein gravity with two
minimally coupled scalar fields φ1,2 (we choose the units
c = G = h̄ = 1):

SE =−
∫

dx4√+g

⎛
⎝ 1

16π
R−

∑
i=1,2

1

2
(∇φi )

2−V (φ1, φ2)

⎞
⎠ .

(2)
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For the purpose of demonstrating qualitative properties, here
we invoke a simple quadratic potential with massm1 andm2:

V (φ1, φ2) = V0 + 1

2
m2

1φ
2
1 + 1

2
m2

2φ
2
2 . (3)

What we want to attain are the following conditions:

1. V0 is much smaller than m2
1: V0/m2

1 � 1. Therefore,
during the inflationary era, we can ignore V0.

2. φ2 satisfies over-damped conditions even with V0:
m2

2/V0 < 6π (or, m2/H̃ < 3/2, where H̃2 = 8πV0/3).
Therefore, after the inflation era, φ2 still satisfies the over-
damped condition.

a. Minisuperspace model We impose the minisuperspace
model following the O(4) symmetric metric ansatz

ds2
E = dτ 2 + a2(τ )d
2

3

m2
1

. (4)

From this choice of metric, it is convenient to redefine

μ ≡ m2

m1
. (5)

The HH wave function is now

�[b, χ1, χ2] =
∫
C
DaDφ1Dφ2 e−SE[a,φ1,φ2], (6)

where the action is reduced by (here, we ignored the V0 term)

SE = 2π2

m2
1

∫
dτ

[
− 3

8π

(
aa′2 + a

)
+ a3

×
{

1 + 1

2

(
φ′2

1 + φ′2
2 + φ2

1 + μ2φ2
2

)}]
. (7)

Even though μ � 1, we explicitly retain this term to study
the behavior of the field φ2. Along the contour C, the metric a
starts from zero, which will be interpreted as the South Pole;
along this contour, it grows to the boundary value b in the
Lorentzian regime where φi takes the value χi (Fig. 1).

b. Steepest-descent approximation To approximately esti-
mate the path-integral, we use the steepest-descent approxi-
mation. We approximate the wave function by summing over
on-shell histories, the instantons, that satisfy the same bound-
ary conditions [4]. For such an on-shell history p, the HH
wave function is approximated by

�[b, χ1, χ2] �
∑
p

e−S p
E . (8)

Note that the on-shell condition is to satisfy the following
equations of motion:

0 = a′′ + 8π

3
a

(
φ′2

1 + φ′2
2 + 1

2

(
φ2

1 + μ2φ2
2

))
, (9)

0 = φ′′
1 + 3

a′

a
φ′

1 − φ1, (10)

0 = φ′′
2 + 3

a′

a
φ′

2 − μ2φ2, (11)

where ′ denotes a derivative with respect to τ .
c. Classicality condition Since our universe follows the
Lorentizian signature, a time contour in the path integral
(Eq. (6)) should connect from Euclidean to Lorentzian man-
ifold. The contour of τ is defined on the complex plane (left
of Fig. 1). The field values at the boundary of the scale factor
b and scalar fields χi should be real numbers. However, these
metric and scalar fields are naturally complexified along the
complex time contour. We are interested in the condition of
the endpoint (b and χi ). By using the analyticity, we can
choose a contour τ = x + iy for 0 ≤ x ≤ X and 0 ≤ y ≤ Y
(right of Fig. 1) that connects from τ = 0 to the endpoint. This
contour connects from τ = 0 to the turning point at τ = X
through the Euclidean time; then, one can Wick-rotate to the
Lorentzian time until the boundary at τ = X + iY .

If the action along a given history is complex-valued and if
the real part and the imaginary part of the action rapidly vary
up to the variation of canonical variables, then the Hamilton–
Jacobi equation is not satisfied and hence the history is no
more classical. On the other hand, if the real part of the
Euclidean action varies slowly compared to the imaginary

Fig. 1 Left an instanton
solution is defined on the
complex plane τ = x + iy.
Right by choosing a contour C
(red arrows) we can draw a
combination of the Euclidean
and the Lorentzian manifolds. If
we choose a proper initial
condition and a proper turning
time X , we can satisfy the
classicality condition at large Y
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part, then the Hamilton–Jacobi equation (the classical equa-
tion of motion) will be approximately satisfied. According
to [10], this is called the classicality condition:

|∇A Re SE[b, χ1, χ2]| � |∇A Im SE[b, χ1, χ2]| , (12)

where A = b, χi . In practice, the classicality condition can
be presented by

|Im a|
|Re a| � 1,

|Im φi |
|Re φi | � 1 (13)

for all i’s as t increases, and hence correspond to the reality
at the endpoint [17].

When the classicality condition is satisfied, we can inter-
pret that the instanton generates a universe along the time
direction. For a classical universe, one can approximate the
probability of the Wheeler–DeWitt wave function by

P[b, χ1, χ2] ∝ |�[b, χ1, χ2]|2 � e−2 ReSE[b,χ1,χ2]. (14)

d. Initial conditionsThe boundary condition at the South Pole
comes from the regularity condition,

a(τ = 0) = 0, a′(τ = 0) = 1, φ′
i (τ = 0) = 0. (15)

At the end endpoint, we impose the following conditions
where b and χi are real values:

a(τ = X + iY ) = b, φi (τ = X + iY ) = χi . (16)

At the turning time, because of the analyticity, we impose
the Cauchy–Riemann condition:

∂a

∂x
(τ = X) = ∂a

i∂y
(τ = X),

∂φi

∂x
(τ = X)= ∂φi

i∂y
(τ = X).

(17)

This system is constructed by second order differential equa-
tions of three complex-valued functions: a and φi . We have
eight boundary conditions at τ = 0 and three conditions at
the endpoint. We solve this problem by choosing a scalar
field value at τ = 0,

φi (τ = 0) ≡ φi (0) = |φi (0)|eiθi , (18)

where |φi (0)| and θi are real. One can solve this initial value
problem to calculate time evolutions of a and φi from τ = 0.
For a given |φi (0)|, in order to satisfy classicality conditions,
one needs to tune X and θi .

2.2 Summary of previous results and motivations

e. Applications to primordial inflation These conclusions are
already proven by previous authors:

– For a single field inflaton with V = V0 + (1/2)m2φ2, if
m2/V0 < 6π and hence if the potential is in the slow-
roll regime, then the probability distribution is consistent

with that of the quantum field theory in de Sitter space
[26,27].

– On the other hand, if m2/V0 > 6π , then φ cannot be
classicalized around φ = 0. This was proven analytically
as well as numerically in [9,10].

– As a simple extension, if there are two fields φ1 and φ2

with V = (1/2)m2
1φ

2
1 + (1/2)m2

2φ
2
2 and m1/m2 	 1

(hence, φ2 direction is a slow-rolling direction), then to
classicalize the heavy mass direction φ1 around φ1 = 0,
we must require the condition [17]

m2
1

(1/2)m2
2φ

2
2

< 6π. (19)

This in turn requires φ2 � (m1/m2) to classicalize both
fields (and, this initial condition is the most probable one
as well, see details in [17]).

In the early universe, there may exist various fields. To clas-
sicalize heavy fields, some slow-rolling fields need to be
excited and these excited slow-rolling fields can be the origin
of inflation.
f. Motivations: what about a slower direction? If the inflaton
field is excited, inflation is turned on, and as the inflaton
decays, matters and structures will be formed. However, what
will happen if there was a much slower direction than the
inflaton field? Let us call this field a quintessence.

If this quintessence is decoupled from the other matter
fields and its direction rolls much more slowly than the infla-
tion itself, then even though the field is not classicalized, it
would not induce any observable effect. Hence, even though
the quintessence field is not entirely classicalized, during and
post inflation, it renders no observable impact.

However, at late times after radiation and matter dominant
eras, such quintessence field may in principle exhibit some
physical imprints. Then what will be the signatures of the
non-classicalized quintessence to our late time universe? This
physics should be connected to physics of the dark energy,
which is the task of this paper.

3 Physics of non-classicalized field: quintessence
and/or phantom

We explicitly write the relevant quantities as a = ar + iai ,
φ1 = φ1r + iφ1i , and φ2 = φ2r + iφ2i . Let us assume
that m1 	 m2, where φ1 is the inflaton field and φ2 is the
quintessence field. In addition, let us further assume that a
and φ1 are almost completely classicalized, while φ2 is not.
In other words, as t → Y (where t = Y is almost the end
point of inflation),

|ai |
|ar | → 0,

|φ1i |
|φ1r | → 0,

|φ2i |
|φ2r | � O (1) . (20)
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In addition, we further assume that around the turning time
τ = X ,

∣∣
φ2

∣∣∣∣
φ1

∣∣ � 1, (21)

so that the contribution from φ2 does not affect inflationary
physics (hence, when the universe is created, the probability
is mainly determined by φ1 and does not sensitively depend
on φ2).

Then after the primordial inflation and matter/radiation
dominated era, there will be an era dominated by the
quintessence field.

3.1 Behavior of non-classicalized field

g. Equations of motion Equations of motion in Lorentzian
signatures are separated by real parts

0 = är + 8π

3
ar

(
φ̇2

1r + φ̇2
2r − φ̇2

1i − φ̇2
2i

−1

2

(
φ2

1r − φ2
1i + μ2φ2

2r − μ2φ2
2i

))

−8π

3
ai

(
2φ̇1r φ̇1i + 2φ̇2r φ̇2i − φ1rφ1i − μ2φ2rφ2i

)
,

(22)

0 = φ̈1r + 3

(
ȧr ar + ȧi ai
a2
r + a2

i

)
φ̇1r

−3

(
−ȧr ai + ȧi ar

a2
r + a2

i

)
φ̇1i + φ1r , (23)

0 = φ̈2r + 3

(
ȧr ar + ȧi ai
a2
r + a2

i

)
φ̇2r

−3

(
−ȧr ai + ȧi ar

a2
r + a2

i

)
φ̇2i + μ2φ2r , (24)

and imaginary parts

0 = äi + 8π

3
ar

(
2φ̇1r φ̇1i + 2φ̇2r φ̇2i − φ1rφ1i − μ2φ2rφ2i

)

+8π

3
ai

(
φ̇2

1r + φ̇2
2r − φ̇2

1i − φ̇2
2i

−1

2

(
φ2

1r − φ2
1i + μ2φ2

2r − μ2φ2
2i

))
, (25)

0 = φ̈1i + 3

(
ȧr ar + ȧi ai
a2
r + a2

i

)
φ̇1i

+3

(
−ȧr ai + ȧi ar

a2
r + a2

i

)
φ̇1r + φ1i , (26)

0 = φ̈2i + 3

(
ȧr ar + ȧi ai
a2
r + a2

i

)
φ̇2i

+3

(
−ȧr ai + ȧi ar

a2
r + a2

i

)
φ̇2r + μ2φ2i , (27)

where ˙ is with respect to the Lorentzian time.
h. Existence of ai , φ1i → 0turning time We first argue that
there exists a turning time when ai → 0 and φ1i → 0. As
a toy model, let us fix μ2 = 0.01, |φ1(0)| = |φ2(0)| = 0.9.
Since μ2 � 1 and the initial field position is the same, the
total energy contribution is dominated by φ1.

If we classicalize two fields at the same time, then the
optimized point is θ1 � −0.1676, θ2 � −0.0016; and
along the turning time X � 0.85, we obtain the classical-
ized Lorentzian history. We can solve the same initial condi-
tion not only along one time contour, but also over the com-
plex plane (Fig. 2) (see also [28–30]). This result shows that
along the turning time X � 0.85, three curves (dashed, dot-
ted, and thin white curves, corresponding ai = 0, φ1i = 0,
and φ2i = 0, respectively) coincide and hence along the
Lorentzian time, all fields will be classicalized.

Now let us consider the situation that we tilt θ2 from the
optimized value and violates the classicality of φ2. As long
as

∣∣
φ2

∣∣ / ∣∣
φ1

∣∣ � 1, the effects of φ2 will be very restricted
for a and φ1. If the tilted angle increases, then by tuning a
proper θ1, again we can obtain a good turning time where
ai → 0 and φ1i → 0 are satisfied. For example, in Fig. 3,
we tilt θ2 and check that there still exists a turning time X
that satisfies ai , φ1 → 0.

For more realistic applications, in Fig. 4, we demon-
strated a case when the tilted value is much larger θ2 =
θo − 2400π/8192 to demonstrate a phantom phase. In this
case, we choose μ = 0 to apply for a realistic cosmological
model that should satisfy μ � 1 (see details in Sect. 3.2).
Even though the tilted value is larger than the optimized
value, still the classicality of a and φ1 is robust.
i. Embedding in quintom model Fig. 3 has shown the exis-
tence of a history that satisfies ai → 0 and φ1i → 0. We
have already demonstrated this numerically. To be prudent,
we further check its consistency through analytic approxima-
tions. In this regard, if we choose the proper turning time that
approximately2 satisfies ai → 0, φ1i → 0, and ȧr/ar ≡ H ,
then equations are simplified by

0 = Ḣ + H2 + 8π

3

(
φ̇2

1r + φ̇2
2r

−φ̇2
2i − 1

2

(
φ2

1r + μ2φ2
2r − μ2φ2

2i

))
, (28)

2 In numerical analysis, |ai |/|ar | and |φ1i |/|φ1r | rapidly approaches to
zero and hence (although ai and φ1i are not exactly zero) this is a very
good approximation.

123



91 Page 6 of 12 Eur. Phys. J. C (2016) 76 :91

Fig. 2 ar , ai , φ1r , φ1i , φ2r , and φ2i over the complex time plane
τ = x + iy, for μ2 = 0.01, |φ1(0)| = |φ2(0)| = 0.9 with initial
conditions θ1 � −0.1676, and θ2 � −0.0016. Dashed, dotted, and thin

white curves are ai = 0, φ1i = 0, and φ2i = 0, respectively, where we
superimposed three curves on the figure of middle-right

0 = φ̈1r + 3H φ̇1r + φ1r , (29)

0 = 2φ̇2r φ̇2i − μ2φ2rφ2i , (30)

0 = φ̈2r + 3H φ̇2r + μ2φ2r , (31)

0 = φ̈2i + 3H φ̇2i + μ2φ2i . (32)

Therefore, except Eq. (30) that is related to ai , this sys-
tem of equations are indistinguishable to the system of a
quintessence field and a phantom field.

123
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Fig. 3 φ1i for slightly tilted θ2 = θo ± 2π/8192, where θo is the optimized value � −0.0016, the plus signis for left, and the minus sign is for
right. Dashed, dotted, and thin white curves are ai = 0, φ1i = 0, and φ2i = 0, respectively

We already found that there exists a direction that satisfies
ai → 0 and hence Eq. (30) should be consistent in the end.
We can further check the consistency. During the inflationary
regime, we can approximate H as a slowly varying function.
Then the follows are solutions:

φ2r = A+e−α+t + A−e−α−t , φ2i = B+e−α+t + B−e−α−t ,

(33)

where

α± = 3H ± √
9H2 − 4μ2

2
. (34)

If we insert this to Eq. (30), then this term behaves as

∝ e
−

(
3H−

√
9H2−4μ2

)
t

(35)

and hence as time goes on Eq. (30) will be satisfied. This
implies that as time goes on, i.e., as ai and φ1i decay to zero,
Eq. (30) will be automatically satisfied.3

j. Initial conditions From the above analysis, we thus have
various possible initial conditions in the post-inflation period.
Let us discuss them in the following:

– If A+ = B− = 0, then

|φ2i |
|φ2r | ∝ e−(α+−α−)t = e−

√
9H2−4μ2t → 0, (36)

and hence the classicality of φ2 is satisfied. In other
words, the classicality of φ2 is only allowed by a finely-
tuned initial condition.

3 We may further choose H = μ/2 to automatically cancel Eq. (30),
but we will not further restrict our parameters. Since |ai/ar | � 1, as
we see in Eq. (22), contributions to energy-momentum tensors will be
well approximated by a quintessence field and a phantom field.

– If A± and B± are all non-zero, then

|φ2i |
|φ2r | → B−

A−
= const. (37)

– If A− = B+ = 0, then

|φ2i |
|φ2r | ∝ e+

√
9H2−4μ2t (38)

and hence the phantom dominance.

If there exists an instanton from the natural parameter space,
then |φ2i |/|φ2r | → const is the most reasonable condition.
Of course, for realistic calculations, H varies with time and
hence details are quite complicated. However, as long as we
consider the time whena and φ1 are sufficiently classicalized,
still this assumption |φ2i |/|φ2r | → const is quite reasonable
from numerical calculations. In Fig. 5, we show that the ratio
|φ2i |/|φ2r | approaches to a constant as time goes on for var-
ious choices of μ.

In conclusion, this model is well embedded in a model
with a quintessence field ψq and a phantom field ψp with the
initial conditions satisfying |ψp|/|ψq | � const.

3.2 Generalization: implications to late time cosmology

k. Generalization of Hartle–Hawking inspired quintom
model According to the above analysis, for a scalar field
system

S ⊃
∫

d4x
√−g

[
−1

2
(∇φ1)

2 − 1

2
(∇φ2)

2 − V (φ1, φ2)

]
,

and after the classicalization of metric and inflaton field φ1,
at the end of inflation, it can be transcribed to a two-field
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Fig. 4 ar , ai , φ1r , φ1i , φ2r , and φ2i over the complex time plane τ = x + iy, for μ2 = 0, |φ1(0)| = |φ2(0)| = 0.9 with initial conditions
θ1 � −0.1676, and θ2 = θo + �2, where �2 = −2400π/8192. Dashed and dotted curves are ai = 0 and φ1i = 0

model as:

S ⊃
∫

d4x
√−g

[
−1

2

(∇ψq
)2+ 1

2

(∇ψp
)2−U

(
ψp, ψq

)]
,

(39)

where

ψq = φ2r , (40)

ψp = φ2i , (41)

U (ψq , ψp) = Re V (φ1 = 0, φ2r + iφ2i ). (42)
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Fig. 5 φ2i/φ2r for θ2 = θo − 2400π/8192 after the turning time X ,
where θo is the optimized value � −0.0016. Here, each color denotes
different μ2 (black 0.01, red 0.001, blue 0.0001). The ratio approaches
a constant as time goes on

Fig. 6 A diagram of the conceptual history

This model, with the signs of the kinetic energy of the two
fields being opposite from each other, is actually the “quin-
tom” model [23–25]. One salient property of this model is
that its EoS can have a crossing behavior around the cos-
mological constant boundary w = −1, either from above to
below or vice versa. There exist varieties of ways to realize
quintom behavior (for earliest realizations, see [31,32] for
two-field models and [33,34] for single field models with
higher derivative). In this paper, we realize a quintom model
in a more fundamental way, i.e., from the Hartle-Hawking
wave function.
l. Implications to late time cosmology In our example, we
choose the potential to be of quadratic form: U (ψq , ψp) =

m2
2Re[(φ2r + iφ2i )

2]/2 = m2
2(ψ

2
q − ψ2

p)/2. Then according
to action (39), the total energy density and pressure of this
quintom model are

ρ = 1

2
ψ̇2
q − 1

2
ψ̇2

p + 1

2
m2

2(ψ
2
q − ψ2

p),

p = 1

2
ψ̇2
q − 1

2
ψ̇2

p − 1

2
m2

2(ψ
2
q − ψ2

p), (43)

and the equations of motion for ψq and ψp are:

ψ̈q +3H ψ̇q +m2
2ψq = 0, ψ̈p+3H ψ̇p+m2

2ψp = 0, (44)

respectively. Thus the equation of state of the whole system
is:

w =
ψ̇2
q − ψ̇2

p − m2
2

(
ψ2
q − ψ2

p

)
+ 2p1 + 2p0

ψ̇2
q − ψ̇2

p + m2
2

(
ψ2
q − ψ2

p

)
+ 2ρ1 + 2ρ0

, (45)

where p1 and ρ1 are contributions from φ1; p0 and ρ0 are
contributions from the cosmological constant V0.

Let us focus on the following points, which has been
shown in Fig. 6:

– During the inflationary phase, the contribution of V0

was negligible. However, after inflation ends, p1 and ρ1

become negligible, while V0 may eventually emerge.
– In this limit, φ2 remains in the over-damped regime, since

we assumed m2
2/V0 < 6π . Then

φ2r,2i ∝ e−
(

3H̃−
√

9H̃2−4μ2
)

2 t , (46)

where H̃ is determined by V0. We see, once again, that

r ≡ |ψp|
|ψq | � const. (47)

This ratio r will be determined when the field is created
by an instanton.

In this limit, from Eq. (45) we have

w = ψ̇2
q − ψ̇2

p − m2
2(ψ

2
q − ψ2

p) − 2V0

ψ̇2
q − ψ̇2

p + m2
2(ψ

2
q − ψ2

p) + 2V0
,

1 + w = 2(ψ̇2
q − ψ̇2

p)

ψ̇2
q − ψ̇2

p + m2
2(ψ

2
q − ψ2

p) + 2V0
. (48)

If we set the initial conditions such that ψ̇2
q < ψ̇2

p, then it
is natural to have 1 + w < 0, i.e., the phantom behavior.
However, along with the evolution, the field energy density
will eventually become negligible relative to the constant
termV0, and the EoS will approach the cosmological constant
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Fig. 7 Left Evolution of the equation of state w with respect to ln ar
in our model, where ar is the classicalized scale factor of our uni-
verse. Right Evolution of the energy density fraction of dark energy

DE with respect to ln ar in our model. In the numerical study,
we choose m2 = 8.0 × 10−62Mp (black), 5.0 × 10−62Mp (red),
1.0 × 10−62Mp (blue) respectively, while V0 = 0.5 × 10−123M4

p .

Initial conditions: ψqi � 0.33Mp (black), 0.58Mp (red), 3.13Mp
(blue), ψpi � −0.005Mp (black), 0.055Mp (red), 0.68Mp (blue),
ψ̇qi � 3.67×10−62M2

p (black), 2.79×10−62M2
p (red), 1.55×10−62M2

p

(blue), ψ̇pi � 4.93 × 10−62M2
p (black), 4.80 × 10−62M2

p (red),

4.56 × 10−62M2
p (blue)

boundary (CCB) w = −1. To see this, it is useful to define
the energy density and pressure for each field component as:

ρq = 1

2
ψ̇2
q + 1

2
m2

2ψ
2
q , pq = 1

2
ψ̇2
q − 1

2
m2

2ψ
2
q ,

ρp = −1

2
ψ̇2

p − 1

2
m2

2ψ
2
p, pp = −1

2
ψ̇2

p + 1

2
m2

2ψ
2
p, (49)

such that ρq > 0, wq = pq/ρq > −1, ρp < 0, wp =
pp/ρp > −1. Furthermore, from the equations of motion

one gets ρq ≈ a
−3(1+wq )
r , |ρp| ≈ a

−3(1+wq )
r , so both ρq and

the absolute value of ρp decrease with time. This means that
both ψq and ψp will have decreasing contribution in the uni-
verse, while V0 remains a constant. This is why the universe
will eventually be dominated by V0, having w approaching
−1. However, since the evolution of the two fields are the
same except for the initial condition, the relation between
ψ̇q and ψ̇p could be more subtle. If during the evolution it
happens that ψ̇2

p exceeds ψ̇2
q , then w will become larger than

−1, and the quintom behavior will appear.
In Fig. 7, we draw three cases of evolutions in our model.

We start from a phantom phase with w < −1, with different
initial conditions. One can see from the plot that although
the initial values are different, they all eventually converge
to the w = −1 line, which confirms the above analysis.
Moreover, two of the three lines display crossing behavior,
and the other one approaches −1 directly from below. We
also plot the evolution of the energy density fraction 
DE

for the three cases. All of which shows that in the future

DE → −1, namely the universe will be dominated by
dark energy. Actually, all the other components (including
ψq , ψp, matter, radiation, etc) decays other than the constant
term V0, so it is an attractor solution that the universe will

always be dominated by V0. Furthermore, our plot shows
that at the current time (ln a = 0) we have w � 1.1, 
DE �
0.68, which are well within the newest Planck data, which
suggests that w = −1.54+0.62

−0.50 (2σ , Planck2015 TT+lowP)4

and 
� = 0.686 ± 0.020 (1σ , Planck2013) [35,36].
One important remark is that this model can also be free

from the big rip singularity. According to [37], when the
universe is dominated by the dark energy with w, the time
scale �t for the universe to be of size a is approximately

�t = 2
3(1+w)H0

√
1−
m0

(
a

3(1+w)
2 − 1

)
w �= −1,

= 1
H0

√
1−
m0

ln a w = −1,
(50)

where H0 is the current Hubble parameter and 
m0 is the
current density fraction of matter in our universe. A big rip
singularity occurs when a → ∞, which will cause:{

�t → ∞ w = −1,

�t = − 2
3(1+w)H0

√
1−
m0

w < −1.
(51)

Since in our scenario when dark energy dominates the uni-
verse (
DE → 1), w already always converges to (or larger
than) −1, and therefore it must correspond to the condition
that �t goes to infinity. That is, it is impossible for the big
rip singularity to occur in a finite time in the future.

In summary, through an explicit example, we showed that
our Hartle–Hawking instanton solution can be applied to late
time cosmology, with the light fields behaving as phantom
and quintessence fields in the quintom model. Since there

4 From joint analysis of data, the best fitted value of w could be closer
to −1, for example w = −1.006+0.085

−0.091 based on Planck power spectra,
Planck lensing, and external data [35,36].
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exist a future attractor where w = −1, the big rip singular-
ity is also avoided. Thus one may say that Hartle-Hawking
interpretation of the quantum universe can also provide a
theoretical basis for the quintom dark energy models, whose
EoS can cross the CCB.

4 Interpretations

The ground state wave function can be represented by the
Euclidean path integral [4]

�0
[
hμν, χ

] =
∫

DgμνDφ e−SE .

This Euclidean analytic continuation is the origin to introduce
complexified fields. The necessity to introduce complexified
fields is very clear from some examples, by comparing cal-
culations using instantons and using quantum field theory in
de Sitter space [26,27]. These complexified fields are not a
problem in general, since we require the reality at the end-
point of the path integral (e.g., asymptotic future infinity).

However, a problem appears in our universe, since we are
not at the endpoint but in the process. If we are not seeing
the exact endpoint, then it is allowed to see some effects of
the imaginary part of a field, i.e., a ghost-like behavior of
a scalar field. Since the instanton approximates this wave
function, it already contains quantum contributions. Hence,
the instanton and its imaginary part are an emergent result of
the entire path integral.

Can we find an analog of this phenomenon? Hawking radi-
ation can be an example. Hawking radiation can be inter-
preted by using a particle propagator [38]. The particle prop-
agator can be approximated by a classical path over the
Euclidean analytic continuation. This process can be inter-
preted as follows: a particle comes out from the event horizon
backward in time (or oppositely, one can say that a negative
energy particle comes into the black hole forward in time)
and the same energy particle is detected at the asymptotic
future infinity. The classicality will be imposed at the future
infinity; but as long as a particle moves backward in time, the
bulk description cannot be classical. Now if we cut a Cauchy
surface including inside the event horizon, the Cauchy sur-
face includes ghost-like particles. This can be conceptually
related to the fact that the renormalized energy-momentum
tensor 〈Tμν〉 can violate the null energy condition around the
horizon. Even though the null energy condition is violated,
it does not cause a serious instability, since the effects of
the negative energy are emergent results from the entire path
integral.

Of course, there are some conceptual differences between
black hole physics and cosmology. For a black hole case,
the renormalized energy-momentum tensor is an averaged
result 〈Tμν〉, not an independent instanton. On the other hand,

for a cosmological case, we are in a special universe and
hence we should see a special and independent instanton.
Can we justify this phenomenon further? We remain this for
a future work. However, in conclusion, it seems that if our
universe could be phantom-like (i.e., w < −1), this Hartle-
Hawking inspired quintom model can be a legalway to justify
phantomness in terms of quantum physics.

5 Conclusion

In this paper, we investigated the Hartle–Hawking wave func-
tion with a two-scalar-field model. This wave function is well
approximated by summing over instantons. In general, these
instantons will be complexified, but in order to obtain a well-
defined probability, one needs to require the classicality of
each instanton, i.e., all fields should be realized at infinity.
However, as long as we are an observer not at infinity but at
a finite time, it is permissible to observe the imprints of the
imaginary part of the fields.

In order to embed this possibility to the late time cos-
mology, we assumed two massive canonical scalar fields (φ1

is an inflaton and φ2 has a slower direction) plus a cosmo-
logical constant with some physical conditions imposed: (1)
initially the energy contribution of φ1 is dominant over φ2

and (2) after φ1 decays, φ2 still satisfies the over-damped
condition. Then during primordial inflation, the scale factor
a and the inflaton field φ1 will be realized sufficiently; and
as long as the first condition is satisfied, even if φ2 is not
realized, the realization of a and φ1 can still be robust.

Then all effects of φ2 can be negligible during inflation;
as our universe approaches the dark energy dominated era,
however, the non-classical and super-slow-roll scalar field
will contribute to the equation of state. If the amplitude of
the imaginary part of φ2 is larger than that of the real part of
φ2, then w < −1 can be attained. However, as time goes on,
all real and imaginary parts must decay to zero, and hence
the EoS will either cross the cosmological constant boundary
w = −1 then reduce to it, having a quintom-like behavior,
or go to −1 directly like phantom models. In either of the
two ways, the EoS only stays below −1 for a finite time,
so there should be no concern about the big rip singularity
problem. Thus our model has shown that Hartle-Hawking
wave function can be viewed as a theoretical basis and a
possible origin of the quintom dark energy models in late
time cosmology.

Usually, the phantomness can be easily introduced by a
ghost field. However, a ghost field causes perturbative insta-
bility, and hence physically disallowed [39,40]. In this paper,
the imaginary part of a scalar field behaves as a ghost field
with negative kinetic energy; but this term came from a non-
perturbative effect of the entire wave function. Therefore, we
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may say that this phantomness can be an emergent effect of
quantum gravity.

In this paper, we only restricted to quadratic potential, but
in principle it can be generalized to various potentials based
on different motivations. In addition, one may apply the same
philosophy to investigate other physical phenomena such as
black holes. If further investigations can indeed establish the
connection between dark energy and the non-classicallized
instantons, then this would be the first evidence of effects
emergent from quantum gravity.
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