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Abstract Motivated by recent work on asymptotically
AdS4 black holes in M-theory, we investigate the thermody-
namics and thermodynamical geometry of AdS black holes
from M2- and M5-branes. Concretely, we consider AdS black
holes in AdSp+2 × S11−p−2, where p = 2, 5 by interpreting
the number of M2- (and M5-branes) as a thermodynamical
variable. More precisely, we study the corresponding phase
transition to examine their stabilities by calculating and dis-
cussing various thermodynamical quantities including the
chemical potential. Then we compute the thermodynamical
curvatures from the Quevedo metric for M2- and M5-branes
geometries to reconsider the stability of such black holes. The
Quevedo metric singularities recover similar stability results
provided by the phase-transition program. It has been shown
that similar behaviors are also present in the limit of large N .

1 Introduction

Recently, increasing interest has been shown in the study
of black hole physics in connection with many subjects
including string theory and famous thermodynamical mod-
els. The field has been explored to develop deeper relation-
ships between the gravity theories and the thermodynam-
ical physics using anti-de Sitter geometries. In this issue,
the laws of black holes can be identified with the thermody-
namic ones [1–5]. More precisely, the phase transition and
the critical phenomena for various AdS black holes have been
extensively investigated using different approaches [6–10].
In this way, certain equations of state, describing rotating
black holes, have been identified with some known thermo-
dynamical ones. In particular, serious efforts have been made
to discuss the behavior of the Gibbs free energy in the fixed
charge ensemble. This program has led to a nice interplay
between the behavior of the AdS black hole systems and the
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van der Waals fluids [11–18]. In fact, it has been shown that
P–V criticality, the Gibbs free energy, the first order phase
transition, and the behavior near the critical points can be
associated with liquid–gas systems.

More recently, special focus has been put on the ther-
modynamics and thermodynamical geometry for a five-
dimensional AdS black hole in the type IIB superstring back-
ground known as AdS5 × S5 [19–21]. It is recalled that
this geometry has been studied in many places in connec-
tion with AdS/CFT correspondence, providing a nice equiv-
alence between gravitational theories in d-dimensional AdS
geometries and conformal field theories (CFT) in a (d-1)-
dimensional boundary of such AdS spaces [22–25]. In such
black hole activities, the number of colors has been inter-
preted as a thermodynamical variable. In particular, the ther-
modynamic properties of black holes in AdS5×S5 have been
investigated by considering the cosmological constant in the
bulk as the number of colors. In fact, many thermodynam-
ical quantities have been computed to discuss the stability
behaviors of such black holes.

Motivated by these activities and recent work on asymptot-
ically AdS4 black holes in M-theory [26–29], we investigate
the thermodynamics and thermodynamical geometry of AdS
black holes from the physics of M2- and M5-branes. Con-
cretely, we study AdS black holes in AdSp+2 × S11−p−2,
where p = 2, 5 by viewing the number of M2- and M5-
branes as a thermodynamical variable. To discuss the stability
of such solutions, we examine first the corresponding phase
transition by computing the relevant quantities including the
chemical potential. Then we calculate the thermodynamical
curvatures from the Quevedo metric for M2- and M5-brane
geometries to reconsider the study of the stability.

The paper is organized as follows. We discuss the ther-
modynamic properties and the stability of the black holes in
AdSp+2 × S11−p−2, where p = 2, 5 by viewing the num-
ber of M2- and M5-branes as a thermodynamical variable
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in Sects. 2 and 3. Similar results, which have been recov-
ered using thermodynamical curvature calculations associ-
ated with the Quevedo metric, are presented in Sect. 4. The
last section is devoted to the conclusions.

2 Thermodynamics of black holes in AdS4 × S7 space

In this section, we investigate the phase transition of the
AdS black holes in M-theory in the presence of solitonic
objects. It is recalled that, at lower energy, M-theory describes
an eleven-dimensional supergravity. This theory, which was
proposed by Witten, can produce some non-perturbative lim-
its of superstring models after its compactification on partic-
ular geometries [30].

It has been shown that the corresponding eleven-
dimensional supergravity involves a cubic R4 one-loop UV
divergence [31], which has been obtained using a specific
cutoff motivated by string theory [32,33]. This calculation
gives the following correction of the Einstein action:

I = −
∫

d11x
√
g

(
1

2κ11
R + 1

κ
2/3
11

ζW + · · ·
)

, (1)

where κ11 is related to the Planck length by κ2
11 = 24π5�2

11

and ζ = 2π2

3 . W can be given in terms of the Ricci tensor as
follows: W ∼ RRRR [34,35]. Roughly speaking, M-theory
contains two fundamental objects called M2- and M5-branes
coupled in eleven dimensions to 3- and 6-forms, respectively.
The near horizon of such black objects is defined by the
product of AdS spaces and spheres

Adsp+2 × S11−p−2, p = 2, 5. (2)

To start, let us consider the case of M2-brane. The corre-
sponding geometry is AdS4 × S7. In such a geometric back-
ground, the line element of the black M2-brane metric is
given by [34,36]

ds2 = r4

L4

(
− f dt2 +

2∑
i=1

dx2
i

)
+ L2

r2 f −1dr2 + L2d�2
7,

(3)

where d�2
7 is the metric of a seven-dimensional sphere with

unit radius. In this solution, the metric function reads as fol-
lows:

f = 1 − m

r
+ r2

L2 , (4)

where L is the AdS radius and m is an integration constant.
The cosmological constant is � = −6/L2. From the M-
theory point of view, the eleven-dimensional spacetime Eq.
(3) can be interpreted as the near horizon geometry of N
coincident configurations of M2-branes. In this background,

the AdS radius L is linked to the M2-brane number N via
the relation [34,37]

L9 = N 3/2
κ2

11

√
2

π5
. (5)

According to the proposition reported in [19–21], we con-
sider the cosmological constant as the number of coincident
M2-branes in the M-theory background and its conjugate
quantity as the associated chemical potential.

The event horizon rh of the corresponding black hole is
determined by solving the equation f = 0. Exploring Eq.
(4), the mass of the black hole can be written as1

M4 = mω2

8πG4
= rω2

(
L2 + r2

)
8πG4L2 . (6)

The Bekenstein–Hawking entropy formula of the black hole
produces

S = A

4G4
= ω2r2

4G4
. (7)

It is recalled that the four-dimensional Newton gravitational
constant is related to the eleven-dimensional one by

G4 = 3G11

2πω2L4 . (8)

For simplicity reasons, we take in the rest of this paper G11 =
κ11 = 1. In this way, the mass of the black hole can be
expressed as a function of N and S,

M4(S, N ) =
√
S

(
16N + 3 22/3 3

√
π S

)
8 27/18

√
3π11/18N 2/3

. (9)

Using the standard thermodynamic relation dM = T dS +
μdN , the corresponding temperature takes the following
form:

T4 = ∂M4(S, N )

∂S

∣∣∣∣
N

= 8 3
√

2N + 9 3
√

π S

8 213/18
√

3π11/18N 2/3
√
S
. (10)

This quantity can be identified with the Hawking temperature
of the black hole. Using Eq. (9), the chemical potential μ

conjugate to the number of M2-branes is given by

μ4 = ∂M4(S, N )

∂N

∣∣∣∣
S

=
√
S

(
8N − 3 22/3 3

√
π S

)
12 27/18

√
3π11/18N 5/3

. (11)

It defines the measure of the energy cost to the system when
one increases the variable N . In terms of these quantities, the
Gibbs free energy reads

G4(T, N ) = M4 − T4 S =
√
S

(
8 3
√

2N − 3 3
√

πS
)

8 213/18
√

3π11/18N 2/3
. (12)

Having calculated the relevant thermodynamical quantities,
we investigate the corresponding phase transition. To do so,

1 Where ωd = 2π
d+1

2


( d+1
2 )

.
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Fig. 1 The temperature as a function of the entropy S, with N = 3
and N = 100

we study the variation of the Hawking temperature as a func-
tion of the entropy. This variation is plotted in Fig. 1.

It follows from Fig. 1 that the Hawking temperature is not
a monotonic function. In fact, it involves a minimum at the
point

S4,1 = 8

9
3

√
2

π
N , (13)

which corresponds to the minimal temperature T4min =√
3

2 18√2π4/9 6√N
. It is observed that for such a temperature no

black hole can exist. Otherwise, two branches are shown up.
Indeed, the first branch, associated with small values of the
entropy S, is thermodynamically unstable. However, the sec-
ond phase, corresponding to a large entropy S, is considered
as a thermodynamical stable one. It has been shown that sim-
ilar behaviors are also present in the large limit of N .

It is observed from the Gibbs free energy, given in Eq.
(12), that the Hawking–Page phase transition occurs where
the corresponding phase-transition temperature is

THP4 = 1
18
√

2π4/9 6
√
N

. (14)

It is verified that this quantity is larger than the temperature
T4min = T |S=S4,1 . At the Hawking–Page transition, the asso-
ciated entropy takes the following form:

S4,2 = 8

3
3

√
2

π
N . (15)

In Fig. 2, we illustrate the Gibbs free energy as a function
of the Hawking temperature T for some fixed values of N .

It is noted that the down branch Gibbs free energy for a
fixed N changes its sign at the point S = S4,2, which cor-
responds to the Hawking–Page transition point. Moreover,
there is observed a minimum temperature T4min for which
no black holes (T < T4min ) can survive. However, above
this temperature, two branches of the black holes are shown
up. Indeed, the upper branch describes an unstable small

Fig. 2 The Gibbs free energy as a function of the temperature T4, for
N = 1, 2, 3, 100

Fig. 3 The chemical potential μ as a function of the entropy for N =
3, 100

(Schwarzschild-like) black hole associated with a negative
specific heat. For T > T4min , the black holes, at the lower
branch, can be considered as a stable solution corresponding
to a positive specific heat. Since the Hawking–Page temper-
ature T4HP is associated with vanishing values of the Gibbs
free energy, the black hole Gibbs free energy becomes neg-
ative for T > T4HP . As reported in [1,8,10], at T = T4HP ,
a first order Hawking–Page phase transition occurs between
the thermal radiations and the large black holes.

To study the phase transition, we vary the chemical poten-
tial in terms of the entropy. In Fig. 3, we plot such a variation
for a fixed value of N .

For small values of S, the chemical potential is positive.
However, it changes becoming negative when S is large.
Moreover, the chemical potential changes its sign at

S4,3 = 4

3
3

√
2

π
N . (16)

It is easy to check the following constraint:

S4,3 < S4,2 < S4,1. (17)

It turns out that the vanishing of the chemical potential
appears in the unstable branch.
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Fig. 4 The chemical potential μ as a function of the temperature T4,
with N = 3, 100

Fig. 5 The chemical potential μ as a function of N ; we have set S4 = 4

In Fig. 4, we plot the chemical potential as a function of
temperature T4 for a fixed N .

From Fig. 4, we can find the Hawking–Page temperature.
On the branch below this point, the black holes are stable.
Such a point resides in the negative region of the chemical
potential. However, the upper branch, which corresponds to
unstable black hole solutions, lives in the positive region of
the chemical potential.

To see the effect of the number of M2-branes, we discuss
the behavior of the chemical potential μ in terms of such a
variable. The calculation is illustrated in Fig. 5.

It is observed that the chemical potential μ presents a
maximum at

N4max = 15

8
3

√
π

2
S, namely S4,4 = 8

15
3

√
2

π
N . (18)

It is noted that S4,4 is also less than S4,1. It is remarked that
this is quite different from the classical gas, having a negative
chemical potential. In the case where the chemical potential
approaches zero or becomes positive, quantum effects should
be considered and should be relevant in the discussion [21].

Having discussed the case of M2-branes, let us move to a
higher-dimensional case provided by M-theory. It is shown

that in eleven dimensions the dual magnetic analogs of M2-
branes are M5-branes. In the following, we investigate the
black holes in such magnetic brane backgrounds.

3 Thermodynamics of black holes in AdS7 × S4 space

In this section, we discuss the magnetic solution associated
with the near geometry AdS7 × S4. According to [34,36],
the corresponding metric takes the following form:

ds2 = r

L

(
− f dt2 +

5∑
i=1

dx2
i

)
+ L2

r2 f −1dr2 + L2d�2
4,

(19)

where d�2
4 is the metric of a four-dimensional sphere with

unit radius. As in the case of M2-branes, the metric function
reads

f = 1 − m

r4 + r2

L2 . (20)

In M-theory, the eleven-dimensional spacetime Eq. (19) can
be considered as the near horizon geometry of N coincident
M5-branes. For this solution, the AdS radius L is related to
the number N via the relation [34,37]

L9 = N 3 κ2
11

27π5
. (21)

The mass of the black hole can be computed using Eq. (20).
The calculation gives the following expression:

M7 = 5 mω5

8πG7
= 5 r4ω5

(
L2 + r2

)
16πG7L2 . (22)

It is found that the entropy is

S = A

4G7
= ω5r5

4G7
, G7 = 6G11

2πω5L7 . (23)

Combining these expressions, one can write the mass in terms
of the entropy S and N as follows:

M7(S, N )

=
5
(

223/4534/5π2/15N 8/5S4/5 + 96 22/45 5
√

3S6/5
)

48π23/45N 17/15
. (24)

The Hawking temperature can be obtained using the first law
of thermodynamics, dM = T dS + μdN . Indeed, it is given
by

T7 = ∂M7(S, N )

∂S

∣∣∣∣
N

= 223/4534/5π2/15N 8/5 + 144 22/45 5
√

3S2/5

12π23/45N 17/15 5
√
S

. (25)
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Fig. 6 The temperature as a function of the entropy, with N = 3 and
N = 100

It is found, after calculations, that the chemical potential μ,
conjugate to the number of M5-branes, reads

μ7 = ∂M7(S, N )

∂N

∣∣∣∣
S

= 7 223/4534/5π2/15N 8/5S4/5 − 1632 22/45 5
√

3S6/5

144π23/45N 32/15
.

(26)

Similarly, the Gibbs free energy can be computed. It is given
by

G7(T, N ) = M7 − T7 S

= 223/4534/5π2/15N 8/5S4/5 − 96 22/45 5
√

3S6/5

48π23/45N 17/15
. (27)

As in the previous case, the stability discussion can be done
by varying the two variables S and N . We first deal with
the phase transition. Indeed, it can be studied in terms of the
monotony of the Hawking temperature using the entropy as
a variable. This variation is plotted in Fig. 6.

We can clearly see that the Hawking temperature is not a
monotonic function. It involves a minimum at the point

S7,1 =
3
√

πN 4

6912 25/6
√

3
, (28)

associated with the temperature T7min = 2 25/18
√

3
π4/9 3√N

. It is

observed that for the minimal temperature no black hole can
survive. Otherwise, two branches appear. Indeed, the first
branch, associated with small entropy values, is thermody-
namically unstable. The second one, corresponding to the
large entropy values, is considered as a thermodynamically
stable branch.

It follows from the Gibbs free energy, given in Eq. (27),
that the Hawking–Page phase transition occurs where the
corresponding phase-transition temperature obeys

THP7 = 2 25/18
√

3

π4/9 3
√
N

. (29)

Fig. 7 The Gibbs free energy as a function of the temperature, for
N = 1, 2, 3, 100

Fig. 8 The chemical potential μ as a function of the entropy, with
N = 3, 100

This quantity is larger than the temperature T7min =
T |S=S7,1 . At the Hawking–Page transition, the corresponding
entropy is given by

S7,2 =
3
√

π
2 N

4

6144
. (30)

Figure 7 illustrates the Gibbs free energy with respect to
the Hawking temperature T for some fixed values of N .

For a fixed N , it follows that the down branch Gibbs free
energy changes its sign at the point S = S7,2, corresponding
to the Hawking–Page transition point.

To study the phase transition, we vary the chemical poten-
tial in terms of the entropy. In Fig. 8, we plot such a variation
by fixing the number of M5-branes in M-theory.

We see that the chemical potential is positive when we
consider small values of S. However, it changes to become
negative for large values of S. The chemical potential changes
its sign at

S7,3 =
49

√
7
17

3
√

π
2 N

4

1775616
. (31)

As in the case of M2-branes, one has

S7,3 < S7,2 < S7,1. (32)
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Fig. 9 The chemical potential μ as a function of the temperature T7,
with N = 3, 100

Fig. 10 The chemical potential μ as a function of N ; we have set
S7 = 4

As we will see, the vanishing of the chemical potential
appears in the unstable branch. Similar behaviors appeared
in the case of M2-branes. This implies that the vanishing of
the chemical potential does not make any sense from the point
of view of dual conformal field theory. This point deserves
deeper study. We hope to come back to this point in the future.

To see the effect of the temperature, Fig. 9 presents the
chemical potential as a function of the temperature T7 for
fixed values of N . It is noted that one has similar behaviors
appearing in the case of M2-branes.

Figure 10 shows the chemical potential as a function of N
in the case of a fixed entropy.

We can observe that the chemical potential μ presents a
maximum at

N = 16

(
17

7

)5/8
4
√

3 12

√
2

π

4
√
S, namely

S7,4 =
49

√
7
17

3
√

π
2 N

4

56819712
. (33)

In the following section, we will study the thermodynam-
ical geometry of the M2- and M5-branes black holes in the
extended phase space to reconsider the stability problem.

4 Geothermodynamics of AdS black holes in M-theory

In this section, we investigate the geothermodynamics AdS
black holes in AdSp+2 × S11−p−2. This study concerns sin-
gular limits of certain thermodynamical quantities including
the heat capacity. This quantity is the relevant one in the study
of the stability of such black hole solutions.

To elaborate this discussion, the number of branes N
should be fixed to consider a canonical ensemble. For a fixed
N , the heat capacity for the M2- and M5-branes are given,
respectively, by

CN ,4 = T4

(
∂S

∂T4

)
N

=
⎛
⎝ 1

8
9

3
√

2
π
N + S

− 1

2S

⎞
⎠

−1

, (34)

CN ,7 = T7

(
∂S

∂T7

)
N

= 720S7/5 + 5 27/1533/5π2/15N 8/5S

144S2/5 − 27/1533/5π2/15N 8/5
. (35)

These equations contain many interesting thermodynamical
properties. Indeed, the heat capacity involves a divergence at
the point of Si,1i∈{4,7} . For a fixed N , this point can be iden-
tified with the point corresponding to the minimal Hawking
temperature. In the case S < Si,1i∈{4,7} , the heat capacity is
negative, showing the thermodynamical instability. However,
it becomes positive in the region defined by S > Si,1i∈{4,7} .
These behaviors of CN ,ii∈{4,7} as a function of S can be illus-
trated in Fig. 11.

To show the singularity of the corresponding heat capacity,
the thermodynamical geometry of such black hole solutions
should be discussed including the thermodynamical curva-
ture. To compute such a quantity, one can use several metrics.
However, we can explore the Quevedo metric, which reads
[38–41]

gQ = (ST + Nμ)

(
MSS 0

0 MNN

)
, (36)

where Mi j stands for ∂2M/∂xi∂x j , and x1 = S, x2 = N .
The scalar curvature of this metric can be computed in a direct
way. For M2- and M5-branes, respectively, the calculation
gives the following expressions:

RQ
4 = A4

B4
(37)

where one has

A4 = 55296 9
√

2π14/9N 7/3
(
−8192N 3 − 729π S3

+ 9792 3
√

2π2/3NS2 + 2112 22/3 3
√

πN 2S
)

, (38)
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Fig. 11 The heat capacity in the case with a fixed N = 3 and 100 as a
function of entropy S for the two backgrounds

B4 = 5
(

15 22/3 3
√

πS − 16N
)2 (

9 3
√

π S − 8 3
√

2N
)2

×
(

8 3
√

2N + 3 3
√

πS
)3

, (39)

and

RQ
7 = A7

B7 C7
. (40)

The quantities A, B, and C are given in this case by

A7 = 414720 22/45π52/45N 58/15

×
(

361361 27/15 5
√

3π8/15N 32/5

+ 82685568 33/5π2/5N 24/5S2/5

+ 388512000 28/15π4/15N 16/5S4/5

+ 6806372352 15
√

232/5π2/15N 8/5S6/5

+ 5474746368 23/534/5S8/5
)

, (41)

B7 = S6/5
(
−133 33/5π4/15N16/5

+ 61680 28/15π2/15N8/5S2/5 + 104448 15√232/5S4/5
)2

,

(42)

Fig. 12 The scalar curvature vs. entropy for the Quevedo metric case
with N = 3, 100 for different backgrounds

C7 =
(
−19 33/5π4/15N 16/5 + 1320 28/15π2/15N 8/5S2/5

+ 2304 15
√

232/5S4/5
)2

. (43)

In Fig. 12, we plot the scalar curvature of the Quevedo
metric as a function of the entropy for M2- and M5-branes.

It follows from Fig. 12 that one has two divergent points
located at Si,4i∈{4,7} and Si,1i∈{4,7} , respectively. The first one
coincides with the divergent point of CN . However, the sec-
ond one is associated with the maximum of the chemical
potential considered as a function of N . It is worth noting
that this result is in good agreement with the recent study
reported in [42–44], saying that the divergences of scalar cur-
vature for the Quevedo metric corresponds to the divergence
or zero for the heat capacity. It has been suggested that these
results might be explored to understand the link between the
phase transition and the thermodynamical curvature.

5 Conclusion

In this paper, we have investigated the thermodynamics and
thermodynamical geometry of AdS black holes from M2- and
M5-branes in M-theory. Concretely, we have considered AdS
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black holes in AdSp+2 × S11−p−2, where p = 2, 5 by view-
ing the number of M2- and M5-branes as a thermodynamical
variable. First, we have discussed the corresponding phase
transition by computing the relevant quantities. For M2- and
M5-branes, we have computed the chemical potential and
discussed the corresponding stabilities. Then we have stud-
ied the thermodynamical geometry associated with such AdS
black holes. More precisely, we have computed the scalar
curvatures from the Quevedo metric. The calculations show
similar thermodynamical properties appearing in the phase-
transition program. This present work, concerning M-theory,
may support the relation between the phase transition and
divergence of thermodynamical curvature studied in type IIB
superstring theory.

This work poses a question concerning a nine-dimensional
AdS black holes associated with D7-branes on AdS9-space.
In fact, it may be possible to consider a geometry of the form

AdS9 × S1 × T 2,

inspired by the recent work on black holes in F-theory [45].
This may support the results concerning the link between
the phase transition and the thermodynamical curvature in
superstring and related theories.
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