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Abstract We present a study of longitudinal momentum
densities (p+densities) in the transverse impact parameter
space for u and d quarks in both unpolarized and transversely
polarized nucleons by taking a two-dimensional Fourier
transform of the gravitational form factors with respect to
the momentum transfer in the transverse direction. The grav-
itational form factors are obtained by the second moments of
GPDs. Here we consider the GPDs of two different soft-wall
models in the AdS/QCD correspondence.

1 Introduction

Recently, the AdS/QCD correspondence has emerged as one
of the most encouraging techniques to unravel the structure
of hadrons. The AdS/CFT duality [1] relates a gravity the-
ory in AdSd+1 to a conformal theory at the d-dimensional
boundary. There are many applications of AdS/CFT dual-
ity to investigate the QCD phenomena [2–7]. To compare
with the QCD, we needs to break the conformal invariance.
An IR cutoff is set at z0 = 1/�QCD in the hard-wall model
while in soft-wall model, a confining potential in z is intro-
duced which breaks the conformal invariance and allows
QCD mass scale and confinement. There is an exact corre-
spondence between the holographic variable z and the light-
cone transverse variable ζ , which measures the separation of
the quark and gluonic constituents in the hadron [8–10]. The
AdS/QCD correspondence for the baryon has been devel-
oped by several groups [8–19]. Though this correspondence
gives only the semi-classical approximation of QCD, so far
this method has been successfully applied to describe many
hadron properties e.g., hadron mass spectrum, parton distri-
bution functions, GPDs, meson and nucleon form factors,
charge densities, structure functions, etc. [13–34]. The first
application of the AdS/QCD correspondence to nucleon res-
onances has been reported in [35]. AdS/QCD wave functions
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are used to predict the experimental data of ρ meson elec-
troproduction [36]. The AdS/QCD correspondence has also
been successfully applied in the meson sector to predict the
isospin asymmetry and branching ratio for the B → K ∗γ
decays [37], the branching ratio for decays of B̄0 and B̄0

s into
ρ mesons [38], transition form factors [39,40], etc. There
are many other applications in the baryon sector, e.g., semi-
empirical hadronic momentum density distributions in the
transverse plane have been calculated in [41], and in [42]
the form factor of spin 3/2 baryons (� resonance) and the
transition form factor between � and nucleon have been
reported; an AdS/QCD model has been proposed to study
the baryon spectrum at finite temperature [43] etc. Recently,
it has been shown that there exists a precise mapping between
the superconformal quantum mechanics and the AdS/QCD
correspondence [44]. The superconformal quantum mechan-
ics together with the light-front AdS/QCD correspondence
has resolved the importance of conformal symmetry and its
breaking within the algebraic structure for understanding the
confinement mechanism of QCD [45,46].

Matrix elements of the energy-momentum tensor (Tμν)
relate the gravitational form factors (GFFs) which play an
important role in hadron physics. For spin 1/2 particles, sim-
ilar to the electromagnetic form factors, the GFFs A(Q2)

and B(Q2) can be obtained from the helicity conserved
and helicity-flip matrix elements of the T++ tensor cur-
rent. A(Q2) and B(Q2) are analogous to F1(Q2) (Dirac)
and F2(Q2) (Pauli) form factors for the J+ vector current.
The helicity conserved GFF A(Q2) allows us to measure the
momentum fractions carried by each constituent of a hadron.
Ji’s sum rule states that 2〈Jq〉 = Aq(0) + Bq(0) [47,48].
Thus, one has to measure the GFFs A(Q2) and B(Q2) to
find the quark contributions to the nucleon spin. In [49],
Brodsky and Terámond have established the existence of the
correspondence between the matrix elements of the energy-
momentum tensor of the fundamental hadronic constituents
in QCD with the transition amplitudes describing the inter-
action of the string modes in AdS space with an external
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graviton field which propagates in the AdS interior. They
have shown that the GFFs, calculated in light-front as well
as in AdS space using a two parton hadronic state are equiv-
alent. The GFF A(Q2) for a nucleon in the AdS/QCD cor-
respondence considering both the hard-wall where the AdS
geometry is cut off at z0 = 1/�QCD and the soft-wall model
where the geometry is smoothly cut off by a background dila-
ton field has been evaluated in [13]. The GFFs of the vector
mesons in a holographic model of QCD have been studied
in [20], whereas the GFFs for pion and axial-vector mesons
sector in the AdS/QCD hard-wall model have been reported
in [50]. In both cases, the authors have reported the sum rules
connecting the GFFs to the corresponding GPDs.

The charge and magnetization densities inside a nucleon
are related to Fourier transforms of the charge (Dirac) and
magnetic (Pauli) FFs. In a similar fashion, one can map
the distribution of longitudinal momentum density within
a hadron to Fourier transforms of the GFFs. The momentum
density distributions within nucleons and similar distribu-
tions for spin-1 objects based on theoretical results from the
AdS/QCD correspondence have been calculated in [41]. For
nucleons’ momentum densities, the authors of Ref. [41] have
evaluated the GFFs by the second moment of the GPDs for the
“modified Regge model” with quarks and gluon distributions
of MRST2002 [51]. A nice comparative study of charge and
momentum density distributions has been done in [52] where
the authors have used a different t-dependence of GPDs from
[41] with the same quark distributions of MRST2002. They
have calculated the GFFs and momentum densities of the
nucleon considering only the valence quark contributions.
Recently, a transverse spin sum rule [53–58] connecting the
relevant GFFs A(Q2), B(Q2), and C̄(Q2) has been verified
using a light-front quark–diquark model in the AdS/QCD
correspondence [59]. The longitudinal momentum densities
have also been evaluated for both the unpolarized and the
transversely polarized nucleons in this article [59].

There are two different holographic QCD models for
nucleon FFs developed by Abidin and Carlson [13] and Brod-
sky and Teramond [25]. A detailed analysis of the transverse
charge and anomalous magnetization densities in both these
holographic models have been presented in [33]. It is inter-
esting and instructive to study the flavor GFFs as well as the
flavor structures of nucleons momentum densities in trans-
verse plane in holographic QCD. In this work, we present
a comparative study of the flavor GFFs in both models. We
compare the AdS/QCD results of GFFs with the results of
a phenomenological model [52]. We evaluate the flavor lon-
gitudinal momentum density distributions in the transverse
plane for both unpolarized and transversely polarized nucle-
ons in the two models.

The paper is organized as follows. A brief description of
the two soft-wall AdS/QCD models has been given in Sect.
2. We also present the flavor GFFs in this section. In Sect. 3,

the flavor longitudinal momentum densities for both unpolar-
ized and transversely polarized nucleon have been discussed.
Then we provide a brief summary in Sect. 4. The longitudi-
nal momentum density for nucleon in a soft-wall as well as
in a hard-wall AdS/QCD model has been evaluated in the
appendix.

2 Gravitational form factors

GFFs can be obtained by the x moments of the GPDs. In this
section we briefly review the prescription to extract GPDs
from the nucleon Dirac and Pauli form factors (FFs) in the
two different AdS/QCD soft-wall models of the nucleon elec-
tromagnetic form factors proposed by Brodsky and Terá-
mond [25] and Abidin and Carlson [13].

2.1 Model I

Model I refers to the soft-wall model of the AdS/QCD cor-
respondence developed by Brodsky and Terámond for the
nucleon form factors [25] and the GDPs evaluated in [31].
The relevant AdS/QCD action for the fermion field is written
as

S =
∫

d4xdz
√
g

(
i

2
�̄eMA 	ADM� − i

2
(DM�̄)eMA 	A�

−μ�̄� − V (z)�̄�

)
, (1)

where eMA = (z/R)δMA is the inverse vielbein and V (z) is the
confining potential which breaks the conformal invariance
and R is the AdS radius. One can derive the Dirac equation
in AdS from the above action as

i

(
zηMN	M∂N + d

2
	z

)
� − μR� − RV (z)� = 0. (2)

In d = 4 dimensions, 	A = {γμ,−iγ5}. To map with
the light-front wave equation, one identifies z → ζ (light-
front transverse impact variable) and substitutes �(x, ζ ) =
e−i P·xζ 2ψ(ζ )u(P) in Eq. (2) and sets | μR |= ν+1/2 where
ν is related with the orbital angular momentum by ν = L+1.
For a linear confining potential U (ζ ) = (R/ζ )V (ζ ) = κ2ζ ,
one gets the light-front wave equation for the baryon in a
2 × 2 spinor representation as

(
− d2

dζ 2 − 1 − 4ν2

4ζ 2 + κ4ζ 2 + 2(ν + 1)κ2
)

ψ+(ζ )

= M2ψ+(ζ ), (3)(
− d2

dζ 2 − 1 − 4(ν + 1)2

4ζ 2 + κ4ζ 2 + 2νκ2
)

ψ−(ζ )

= M2ψ−(ζ ), (4)
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which leads to the AdS solutions of the nucleon wave func-
tions ψ+(z) and ψ−(z) corresponding to different orbital
angular momenta Lz = 0 and Lz = +1 [25],

ψ+(ζ ) ∼ ψ+(z) =
√

2κ2

R2 z7/2e−κ2z2/2, (5)

ψ−(ζ ) ∼ ψ−(z) = κ3

R2 z
9/2e−κ2z2/2. (6)

The Dirac form factors in this model are obtained by the
SU(6) spin-flavor symmetry and given by

F p
1 (Q2) = R4

∫
dz

z4 V (Q2, z)ψ2+(z), (7)

Fn
1 (Q2) = −1

3
R4

∫
dz

z4 V (Q2, z)(ψ2+(z) − ψ2−(z)). (8)

The Pauli form factors for the nucleons are modeled in this
model as

F p/n
2 (Q2) = κp/n R

4
∫

dz

z3 ψ+(z)V (Q2, z)ψ−(z). (9)

The Pauli form factors are normalized to F p/n
2 (0) = κp/n

where κp/n are the anomalous magnetic moments of pro-
ton/neutron. It should be noted that the Pauli form factor is
not mapped properly in this model. In the light-front quark
model, the Pauli form factor is defined as the spin-flip matrix
element of the J+ current but the AdS action in Eq. (1) is
unable to produce this form factor and it is put in for phe-
nomenological purposes. The bulk-to-boundary propagator
for the soft-wall model is given by [25,60]

V (Q2, z) = κ2z2
∫ 1

0

dx

(1 − x)2 x
Q2/(4κ2)e−κ2z2x/(1−x). (10)

Here we use the value κ = 0.4 GeV, which is fixed by fitting
the ratios of the Pauli and Dirac form factors for a proton
with the experimental data [31,32]. We refer to the formulas
for the form factors given in Eqs. (7, 8 and 9) by Model I.

2.2 Model II

The other model of the nucleon form factors was formulated
by Abidin and Carlson [13]. A precise mapping for the spin-
flip nucleon form factor using the action in Eq. (1) is not
possible. To study the Pauli form factors using holographic
methods, a non-minimal electromagnetic coupling with the
‘anomalous’ gauge invariant term has been introduced by
Abidin and Carlson [13] which produces the Pauli form fac-
tors,

i

2
ηS,V

∫
d4xdz

√
g e−��̄ eMA eNB [	A, 	B]F (S,V )

MN �, (11)

where FMN = ∂MVN − ∂NVM and VM is the vector field
dual to electromagnetic field and ηS,V are the couplings con-
strained by the anomalous magnetic moment of the nucleon,
ηp = (ηS + ηV )/2 and ηn = (ηS − ηV )/2. The indices S,

V imply isoscalar and isovector contributions to the electro-
magnetic form factors. This additional term in Eq. (11) also
provides an anomalous contribution to the Dirac form factor.
In this model the form factors are given by [13]

F p
1 (Q2) = C1(Q

2) + ηpC2(Q
2), (12)

Fn
1 (Q2) = ηnC2(Q

2), (13)

F p/n
2 (Q2) = ηp/nC3(Q

2), (14)

where the invariant functions Ci (Q2) are defined as

C1(Q
2) =

∫
dz e−� V (Q2, z)

2z3 (ψ2
L(z) + ψ2

R(z)), (15)

C2(Q
2) =

∫
dz e−� ∂zV (Q2, z)

2z2 (ψ2
L(z) − ψ2

R(z)), (16)

C3(Q
2) =

∫
dz e−� 2mnV (Q2, z)

z2 ψL(z)ψR(z). (17)

where mn is the mass of nucleon. The dilation profile � =
κ2z2 and the normalizable wave functions ψL(z) and ψR(z)
are the Kaluza–Klein modes, which are left- and right-handed
nucleon fields,

ψL(z) = κ3z4, ψR(z) = κ2z3
√

2. (18)

The value of κ is fixed by simultaneous fit to proton and
rho-meson mass and the fit gives the value κ = 0.350 GeV.
The other parameters are determined from the normalization
conditions of the Pauli form factor at Q2 = 0 and are given
by ηp = 0.224 and ηn = −0.239 [13]. We refer to the FFs
given by Eqs. (12)–(14) by Model II.

The Pauli form factors in these two models are identical;
the main difference is in the Dirac form factor. In Model II,
there is an additional contribution to the Dirac form factor
from the non-minimal coupling term. It should be mentioned
here that the Pauli form factors in the AdS/QCD models are
mainly of phenomenological origin. The additional contribu-
tion from the non-minimal coupling to the Dirac form factor
corresponds to higher twist and is not included in Model I,
while they are included in Model II.

The Dirac and Pauli FFs for the nucleons are related to the
valence GPDs by the sum rules [61]

F p
1 (t) =

∫ 1

0
dx

(
2

3
Hu

v (x, t) − 1

3
Hd

v (x, t)

)
,

Fn
1 (t) =

∫ 1

0
dx

(
2

3
Hd

v (x, t) − 1

3
Hu

v (x, t)

)
,

F p
2 (t) =

∫ 1

0
dx

(
2

3
Eu

v (x, t) − 1

3
Ed

v (x, t)

)
, (19)

Fn
2 (t) =

∫ 1

0
dx

(
2

3
Ed

v (x, t) − 1

3
Eu

v (x, t)

)
.

Here x is the fraction of the light-cone momentum carried
by the active quark and the GPDs for the valence quark q
are defined as Hq

v (x, t) = Hq(x, 0, t) + Hq(−x, 0, t) and
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Eq
v (x, t) = Eq(x, 0, t) + Eq(−x, 0, t). Using the integral

form of the bulk-to-boundary propagator (Eq. 10) in the for-
mulas for the FFs in AdS space for Model I (7)–(9), we can
rewrite the Dirac and Pauli FFs as

F p
1 (Q2) = 2κ6

∫ 1

0
dx

∫
dz

z5

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) ,

Fn
1 (Q2) = −κ6

3

∫ 1

0
dx

∫
dz

z5(2 − κ2z2)

(1 − x)2

×x
Q2

(4κ2) e− κ2z2
(1−x) , (20)

F p/n
2 (Q2) = κp/nκ

8
∫ 1

0
dx

∫
dz

z7

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) .

Comparing the integrands in Eqs. (19) and (20), one extracts
the GPDs for Model I in the following forms:

Hu
v (x, t) = κ6

3

∫
dz

(1 − x)2 x
Q2

(4κ2)

×e− κ2z2
(1−x) z5(κ2z2 + 10), (21)

Hd
v (x, t) = 2κ6

3

∫
dz

(1 − x)2 x
Q2

(4κ2)

×e− κ2z2
(1−x) z5(κ2z2 + 1), (22)

Eu/d
v (x, t) = κ8

∫
dz

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) z7κu/d , (23)

where κu = 2κp+κn = 1.673 and κd = κp+2κn = −2.033
and t = −Q2. Similarly we can also extract the GPDs for
Model II and the GPDs in Model II are given by

Hu
v (x, t) = κ6

∫
dz

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) z5

Table 1 Gravitational FFs at Q2 = 0

GFFs Model I Model II

Au(0) 0.6389 0.5868

Ad (0) 0.2778 0.2874

Bu(0) 0.4182 0.4180

Bd (0) −0.5082 −0.5079
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Fig. 1 Plots of gravitational form factors A(Q2) and B(Q2) for u and d quarks. The form factors are normalized to unity, upper panel for u quark
and lower panel for d quark. The blue dashed line represents the result of a phenomenological model [52] (color online)
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×
[
(κ2z2 + 2) + ηu(κ

2z2 − 2)

(
1 − κ2z2x

1 − x

)]
, (24)

Hd
v (x, t) = κ6

∫
dz

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) z5

×
[

1

2
(κ2z2 + 2) + ηd(κ

2z2 − 2)

(
1 − κ2z2x

1 − x

)]
, (25)

Eu/d
v (x, t) = 2

√
2mnκ

7
∫

dz

(1 − x)2 x
Q2

(4κ2) e− κ2z2
(1−x) z7ηu/d ,

(26)

where ηu = 2ηp + ηn = 0.209 and ηd = ηp + 2ηn =
−0.254. The GPDs in these two different models have been
studied in both the momentum and the impact parameter
spaces in [16,31]. The valence GPDs are related to the flavor
GFFs by the sum rule [41,52]

∫ 1

0
dx xHq

v (x, t) = Aq(t),

∫ 1

0
dx xEq

v (x, t) = Bq(t).

(27)

We use the formulas in Eq. (27) to evaluate the flavor
GFFs numerically from the GPDs. They being the sum of
all flavors and gluon GFFs, one can get the GFFs for the
nucleon [41]. In this work, we consider only the valence
quarks contributions to the nucleon. In Fig. 1 we show the
GFFs A(Q2) and B(Q2) for the u and d quarks. The results
of the AdS/QCD models are compared with a phenomeno-
logical model [52]. The authors in Ref. [52] used the GPDs
of the modified Regge model [62] by slightly changing the t
dependence of the GPDs in the form

Hq(x, t) = q(x) exp

[
a+

(1 − x)2

x0.4 t

]
, (28)

Eq(x, t) = Eq(x) exp

[
a−

(1 − x)2

x0.4 t

]
, (29)

with Eq(x) = pq
Nq

(1 − x)cq q(x). The distributions q(x) for
the u and d quark were taken from the MRST2002 [51]
global fit and all the parameters a±, pq , Nq and cq were
fixed by fitting the nucleon’s electromagnetic FFs with the
experimental data [52]. It should be mentioned here that
the flavor decompositions of the nucleon electromagnetic
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Fig. 2 The longitudinal momentum densities for the u quark in the transverse plane for the AdS/QCD Model I, upper panel for unpolarized proton,
lower panel for proton polarized along x direction. b and d are the top view of a and c, respectively (color online)
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Fig. 3 The longitudinal momentum densities for the d quark in the transverse plane for the AdS/QCD Model I, upper panel for unpolarized proton,
lower panel for proton polarized along x direction. b and d are the top view of a and c, respectively (color online)

FFs for Model I agree well with the experimental data [32]
whereas a comparative study of the flavor electromagnetic
FFs between these two AdS/QCD models shows that Model
I is better in agreement with the experimental data than
Model II [63]. In Table 1, we list the values of the GFFs
at Q2 = 0 for the two AdS/QCD models. It should be noted
that the values of GFFs for the zero momentum transfer in
Model I are almost equal to Model II. Here, the value for
(Bu(0) + Bd(0)) is around −0.08 and (Au(0) + Ad(0)) is
around 0.9. This is because for the GPDs, we used to cal-
culate the GFFs which are valence GPDs and also there is
no contribution from the gluon. When summed over all the
constituents we should have A(0) = Aq(0)+ Ag(0) = 1 and
B(0) = Bq(0)+Bg(0) = 0 for the hadron [13,20,49,50,64].

3 Longitudinal momentum densities

According to the standard interpretation [33,52,65–68], in
the light-cone frame with q+ = q1 +q3 = 0, the charge and
anomalous magnetization densities in the transverse plane
can be interpreted with the two-dimensional Fourier trans-

form (FT) of the Dirac and Pauli form factors. Similar to
the electromagnetic densities, one can identify the gravito-
magnetic density in the transverse plane by taking the FT of
the gravitational form factor [41,52]. Since the longitudinal
momentum is given by the ++ component of the energy-
momentum tensor,

P+ =
∫

dx−d2x⊥T++, (30)

and the GFFs are related to the matrix element of the ++
component of the energy-momentum tensor, it is possible
to interpret the two-dimensional FT of the GFF A(Q2) as
the longitudinal momentum density in the transverse plane
[41]. The longitudinal momentum density for a unpolarized
nucleon can be defined as

ρ(b) =
∫

d2q⊥
(2π)2 A(Q2)eiq⊥.b⊥

=
∫ ∞

0

dQ

2π
QJ0(Qb)A(Q2), (31)

where b = |b⊥| represents the impact parameter and J0 is the
cylindrical Bessel function of order zero and Q2 = q2⊥. The
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Fig. 4 The longitudinal momentum densities for the u quark in the transverse plane for the AdS/QCD Model II, upper panel for unpolarized
proton, lower panel for proton polarized along x direction. b and d are the top view of a and c, respectively (color online)

momentum density is the same for proton and neutron due
to the isospin symmetry. The quark density gets modified
by a term which involves the spin-flip form factor B(Q2)

when one considers a transversely polarized nucleon. The
momentum density for a transversely polarized nucleon is
given by [41]

ρT (b) = ρ(b) + sin(φb − φs)

×
∫ ∞

0

dQ

2π

Q2

2Mn
J1(bQ)B(Q2), (32)

where Mn is the mass of nucleon. The transverse impact
parameter is denoted by b⊥ = b(cos φb x̂ + sin φb ŷ) and
the transverse polarization of the nucleon is given by S⊥ =
(cos φs x̂ + sin φs ŷ). Without loss of generality, we choose
the polarization of the nucleon along the x-axis i.e., φs = 0.
The second term in Eq. (32) gives the deviation from circular
symmetry of the unpolarized density.

The momentum densities ρ(b) for the u and d quarks for
both the unpolarized and the transversely polarized nucleon
in AdS/QCD Model I are shown in Figs. 2 and 3, respectively.
Similarly for Model II, we show the momentum densities for

the u and d quarks in Figs. 4 and 5, respectively. The unpo-
larized densities are axially symmetric and have a peak at
the center of the nucleon (b = 0). For the nucleon polar-
ized along the x direction, the densities no longer have the
symmetry and the peak of the densities gets shifted toward
the positive y direction for the u quark and opposite to the d
quark. For the transversely polarized nucleon, the momentum
densities get distorted due to the contribution coming from
the second part of Eq. (32) which involves the gravitational
FF B(Q2). Since the FF B(Q2) is positive for the u quark but
negative for the d quark, the momentum densities get shifted
opposite to each other for u (+ve by direction) and d (−ve by
direction) and also the ratio of the contribution form B(Q2)

to the momentum density with the symmetric part ρ(b) is
larger for the d quark compared to the u quark, which causes
a larger distortion for the d quark than the u quark. It can also
be noticed that the density for the d quark is a little wider but
the height of the peak is small compared to the u quark in
both models. The comparison of momentum densities for the
transversely polarized and unpolarized nucleon for the two
models is shown in Fig. 6. The plots show that the shifting
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Fig. 5 The longitudinal momentum densities for the d quark in the transverse plane for AdS/QCD Model II, upper panel for unpolarized proton,
lower panel for proton polarized along x direction. b and d are the top view of a and c, respectively (color online)
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of the densities from the unpolarized symmetric densities for
the d quark is larger than for the u quark. Model I gives larger
momentum densities at the center of the nucleon compared to
Model II for both u and d quarks. Removing the axially sym-

metric part of the density from ρT (b) i.e., (ρT (b) − ρ(b)),
one finds that the angular-dependent part of the density (i.e.
the distortion from the symmetry) displays a dipole pattern
(Fig. 7). The angular-dependent parts of the density for u and
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Fig. 7 The momentum density asymmetry (ρT (b)−ρ(b)) in the trans-
verse plane for a proton polarized in the x direction, a for the u quark
in AdS/QCD Model I, b for the u quark in AdS/QCD Model II, c for

the d quark in AdS/QCD Model I and d for the d quark in AS/QCD
Model II (color online)

d quarks for the Model I are shown in Fig. 7a and c. We show
the same for Model II in Fig. 7b and d. The plots show the
dipole pattern, but it is broader for Model II than Model I.
The sign of the angular-dependent part of the density for the
u quark is opposite to the d quark.

4 Summary

In this paper, we have evaluated the flavor gravitational form
factor in two different soft-wall models in the AdS/QCD
model. We have shown the explicit Q2 behavior of the gravi-
tational form factors in these models and compared them with
a phenomenological model [52]. Though the two models pro-
vide almost the same values of GFFs for the zero momentum
transfer (Q2 = 0), Model I is better in agreement with the
phenomenological model compared to Model II. For non-
zero Q2, we have presented a comparative study of the lon-
gitudinal momentum density (p+ density) in the transverse
plane in these two models. We consider both unpolarized and

transversely polarized nucleons in this work. The unpolar-
ized densities are axially symmetric in the transverse plane,
while for the transversely polarized nucleons they become
distorted. The densities get shifted toward the y direction
if the nucleon is polarized along the x direction. For trans-
versely polarized nucleons, the asymmetries in the distribu-
tions are shown to be dipolar in nature. Model I shows a
larger momentum density than Model II at the center of the
nucleon. The asymmetries in the distributions for Model II
are broader but less in magnitude compared to Model I. The
asymmetry in the d quark momentum density is found to
be stronger than that for the u quark and they are shifted in
opposite direction to each other.
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Appendix A: Nucleon momentum density in AdS/QCD

To calculate the nucleon’s gravitational form factor, one
must consider a gravity-dilation action [69] in addition to the
AdS/QCD action. After perturbing the metric from its static
solution according to ημν → ημν +hμν , the 5D gravitational
action in the second order perturbation becomes [13]

SGr = −
∫

d5x
e−2κ2z2

4z3 (∂zhμν∂
zhμν + hμν�hμν), (A.1)

where the transverse-traceless gauge ∂μhμν = hμ
μ = 0. The

profile function of the metric perturbation satisfies the fol-
lowing equation:

[
∂z

(
e−2κ2z2

z3 ∂z

)
+ e−2κ2z2

z3 p2
]
h(p, z) = 0. (A.2)
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Fig. 9 Comparison of the longitudinal momentum density for the
nucleon. The blue line with circle and the solid black lines denote the
soft- and hard-wall AdS/QCD models and the red dashed line represents
a phenomenological model [41] (color online)
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The solution of the profile function H(Q, z) ≡ h(q2 =
−Q2, z) for the soft-wall AdS/QCD model is given by [13]

H(Q, z) = a′(a′ + 1)

∫ 1

0
dx xa

′−1(1 − x)

× exp
(
−κ2z2x

1 − x

)
, (A.3)

where a′ = Q2

8κ2 . The gravitational form factor for the nucleon
in the AdS/QCD model has been evaluated in [13] as

A(Q2) =
∫

dz
e−κ2z2

2z3 H(Q, z)(ψ2
L(z) + ψ2

R(z)). (A.4)

The normalizable nucleon wave functions ψL(z) and ψR(z)
for the soft-wall AdS/QCD model are given in Eq. (18). The
integration region in Eq. (A.4) spans from 0 to infinity.

In the hard-wall AdS/QCD model the scale parameter κ =
0 and the limit of the z integration in Eq. (A.4) is zero to the
cutoff value z0 = (0.245 GeV)−1. The upper cutoff was fixed
in Ref. [13] to determine the nucleon and rho-meson masses.
The profile function H(Q, z) for the hard-wall AdS/QCD
model is given by [20]

H(Q, z) = (Qz)2

2

[
K1(Qz0)

I1(Qz0)
I2(Qz) + K2(Qz)

]
, (A.5)

and the normalizable modes ψL(z) and ψR(z) in the hard-
wall AdS/QCD model are [13]

ψL(z) =
√

2z2 J2(mnz)

z0 J2(mnz0)
, (A.6)

ψR(z) =
√

2z2 J1(mnz)

z0 J2(mnz0)
. (A.7)

Using the GFF A(Q2) calculated in the both soft- and hard-
wall AdS/QCD models, we evaluate the longitudinal momen-
tum density for the nucleon as defined in Eq. (31). The longi-
tudinal momentum densities ρN (b) for the nucleon for both
the soft- and the hard-wall AdS/QCD models are shown
in Fig. 8. We compare the results of ρN (b) in the soft-
and hard-wall AdS/QCD models with a phenomenological
model [41] in Fig. 9. Our analysis shows that the soft-wall
AdS/QCD model is in good agreement with the phenomeno-
logical model.
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