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Abstract In this work, an interacting chameleon-like scalar
field scenario, by considering SNeIa, CMB, BAO, and OHD
data sets, is investigated. In fact, the investigation is real-
ized by introducing an ansatz for the effective dark energy
equation of state, which mimics the behavior of chameleon-
like models. Based on this assumption, some cosmological
parameters, including the Hubble, deceleration, and coinci-
dence parameters, in such a mechanism are analyzed. It is
realized that, to estimate the free parameters of a theoretical
model, by regarding the systematic errors it is better that the
whole of the above observational data sets would be consid-
ered. In fact, if one considers SNeIa, CMB, and BAO, but
disregards OHD, it maybe leads to different results. Also, to
get a better overlap between the contours with the constraint
χ2

m ≤ 1, the χ2
T function could be re-weighted. The rela-

tive probability functions are plotted for marginalized likeli-
hood L (�m0, ω1, β) according to the two dimensional con-
fidence levels 68.3, 90, and 95.4 %. Meanwhile, the value of
the free parameters which maximize the marginalized like-
lihoods using the above confidence levels are obtained. In
addition, based on these calculations the minimum value of
χ2 based on the free parameters of the ansatz for the effective
dark energy equation of state is achieved.

1 Introduction

Observational data sets, including the Cosmic Microwave
Background (CMB) [1,2], Supernovae type Ia (SNeIa)
[3,4], Baryonic Acoustic Oscillations (BAO) [5,6], Obser-
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vational Hubble Data (OHD) [7,8], Sloan Digital Sky Sur-
vey (SDSS) [9,10], and Wilkinson Microwave Anisotropy
Probe (WMAP) [11,12], are considered as a criterion for the
accuracy of theoretical models. Amongst these constraints,
the CMB and SNeIa (because of the abundance of their data
sources) attract more attention. It is notable that the SNeIa
constraint for high redshift values do not give a good clue to
investigate the evolution of the Universe. It is obvious that
the results of individual observations give different values for
the free parameters of a theoretical model; hence, it is better
that, to estimate the best values for the free parameters of
the model one considers the whole of the observational data
sets, including CMB, SNeIa, BAO, and OHD. This moti-
vated us to study the behavior of the free parameters and
their overlaps. Thence, a collective of observations includ-
ing SNeIa, CMB, BAO, and OHD are considered. Mean-
while the mentioned observational data sets have predicted
an ambiguous form of matter which leads to an accelerated
phase of present epoch and is well known as dark energy.
Based on this ambiguous form of matter, scientists have pro-
posed different proposals up to now. Amongst all of those
proposals, the cosmological constant, �, model attracts the
most attention [13,14]. But this mechanism suffers two well-
known drawbacks. The first of them is related to making
an estimate of the contribution of quantum fluctuation of
the zero point energy, and the second is related to the ratio
of � and the dark matter energy densities. These problems
and also the excellent work by Brans and Dicke [15] moti-
vated scientists to introduce a mechanism in which � had
a time dependency, namely quintessence [16–18]. Beside
the quintessence mechanism, some proposals which have
arisen from quantum gravity or string theory are introduced
to estimate the cosmological parameters. For instance, one
has the tachyon [19,20], phantom [21–23], quintum [24,25],
k-essence [26,27] proposals. Also some models which have
a risen from quantum field fluctuations or space time fluctu-
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ations attract much attention to investigate the dark energy
concept. For such models, one can mention Zero Point Quan-
tum Fluctuations (ZPQF) [28–30], Holographic Dark Energy
(HDE) [31–36], Agegraphic Dark Energy (ADE), and new-
ADE [37–39]. If a scalar field, in the quintessence model,
couples to (non-relativistic) matter it induces a fifth force.
When the coupling is of order unity, the results of a strongly
coupling scalar field is not in good agreement with local
gravity tests (for instance in the solar system). Thus a mech-
anism should exist suppressing the effect of the fifth force;
such a mechanism is capable of reconciling strong coupling
models with local experiments, as proposed by Khoury and
Weltman [40,41] and also, separately, by Mota and Barrow
[42], namely the chameleon-like model. In this mechanism,
one cannot choose an arbitrary Lagrangian for matter, Lm. To
avoid a deviation of the geodesic trajectory, the author of [43]
has shown that the best choices are Lm = P and Lm = −ρ,
where P is the pressure and ρ is the energy density of matter;
for more discussion we refer the reader to [44–46]. There-
fore the main motivation of this work is the investigation of
the behavior of an interacting scalar field mechanism; based
on these calculations and the, SNeIa, CMB, BAO and OHD
data sets, the minimum value of χ2 for the effective dark
energy equation of state is achieved. The organization of
the paper is as follows: The above brief discussions are a
review as regards observational and theoretical motivations;
they are considered as an introduction. In Sect. 2, the gen-
eral theoretical discussions arising from a chameleon-like
mechanism related to the cosmological parameters, such as
the Hubble, deceleration, and coincidence parameters, will
be discussed. In Sect. 3, a brief review of the cosmologi-
cal data sets is presented. In Sect. 4, the observational data
sets including SNeIa, CMB, BAO, and OHD are consid-
ered, to estimate the minimum value of χ2 related to the
free parameters of an ansatz for the effective dark energy
equation of state. Finally, Sect. 5, is dedicated to concluding
remarks.

2 Conservation and field’s equations in an effective
dark energy scenario

In the chameleon-like scalar field scenario, the mass of the
scalar field is a function of the local matter density, so that
it is sufficiently large in a dense environment. Due to this
fact, the equivalence principle (EP) is satisfied in the labora-
tory [40,41]. In addition, the Brans–Dicke ω parameter for
two observational values of γ , the post-Newtonian parame-
ter, takes values of order 104 [47], which satisfies the solar
system constraint. The chameleon-like scenario is defined as
[43,44,48–52]

S =
∫

d4x
1

2

√−g
(
R − ∂μϕ ∂μϕ − 2V (ϕ) + 2 f (ϕ)L

)
.

(1)

In this equation g is the determinant of the metric, V (ϕ) is a
run away potential and the last term indicates a non-minimal
coupling between scalar field and matter sector. It should
be noted that L is the Lagrangian density of matter which
consists of both dark matter and dark energy sectors as per-
fect fluid [47–49,52,53]. It should be noticed that the back-
ground is a spatially flat Friedmann–Lemaître–Robertson–
Walker (FLRW) Universe, with signature (+2). The varia-
tion of the action (1), with respect to (w.r.t.) gμν results in
the gravitational field equation:

Gμν = f (ϕ)Tμν + T (ϕ)
μν , (2)

where the stress-energy density of scalar field is expressed
by

T (ϕ)
μν =

(
∇μϕ∇νϕ − 1

2
gμν(∇ϕ)2

)
− gμνV (ϕ), (3)

and

Tμν = −2√−g

δ(
√−gL)

δgμν
(4)

is the definition of the stress-energy tensor of matter. By
considering the 00 and i i components of T (ϕ)

μν , the energy
density and pressure could be obtained. After some algebra
the conservation equation reads

∇μ(Gμν) = ∇μ

[
f (ϕ)Tμν + Tμν

(ϕ)

]
= 0. (5)

In addition, the variation of the action (1), w.r.t. the scalar
field gives the evolution equation,

ϕ̈ + 3H ϕ̇ = −V (ϕ) + ∂ f (ϕ)

∂ϕ
L . (6)

Now, by substituting Eq. (6) into Eq. (5), two conservation
equations for scalar field and matter are obtained:

∇μ[Tμ0
(ϕ) ] = ḟ (ϕ)L , (7)

∇μ[ f (ϕ)Tμ0] = − ḟ (ϕ)L , (8)

where the overdot denotes derivation w.r.t. ordinary cosmic
time, t . As mentioned in the introduction, the Lagrangian of
the matter is considered to verify L = L(m) + L(de), [52,54],
where the subscript m denotes matter (cold dark matter and
baryons) and de refers to dark energy. Then the conservation
equations could be rewritten as

∇μ

[
f (ϕ)Tμ0

(m)

]
= − ḟ (ϕ)L(m), (9)

∇μ

[
f (ϕ)Tμ0

(de)

]
= − ḟ (ϕ)L(de), (10)

∇μ

[
Tμ0

(ϕ)

]
= ḟ (ϕ)(L(m) + L(de)). (11)
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By combining Eq. (2) and the above equations, it is easy to
find

∇μ

[
Tμ0

(ϕ) + f (ϕ)Tμ0
(de)

]
= ḟ (ϕ)L(m). (12)

In the next step, by virtue of the definition of T (ϕ)
μν and Eq.

(2), the Einstein tensor is modified as

Gμν = f (ϕ)

[
Tμν

(m) + Tμν

(de) + 1

f (ϕ)
Tμν

(ϕ)

]
. (13)

Hereafter, we postulate that both scalar field and dark energy
behave as a perfect fluid, thence for such a perfect mixture
the effective stress-energy tensor is obtained as follows:

Tμν

(DE) = Tμν

(de) + 1

f (ϕ)
Tμν

(ϕ) , (14)

where the subscript DE denotes the effective dark energy.
Therefore using Eqs. (7)–(14), the modified Einstein equa-
tion and conservation relations are obtained:

Gμν = f (ϕ)
[
Tμν

(m) + Tμν

(DE)

]
, (15)

∇μ

[
f (ϕ)Tμ0

(m)

]
= − ḟ (ϕ)L(m), (16)

∇μ

[
f (ϕ)Tμ0

(DE)

]
= ḟ (ϕ)L(m). (17)

It should be noticed that, in the right hand side of the above
equations, only L(m) appeared. In fact it could be concluded
that the energies for different components of the Universe
are not conserved separately. In Refs. [55–57], it has been
shown that, for perfect fluids which do not couple directly
to the other components of the Universe, there are different
Lagrangian densities that are equivalent. Namely, one can
find that the two Lagrangian densities L(m) = P and L(m) =
−ρ give the same stress-energy tensor and the equation of
motions for all components of the system are similar as well.
But in an interacting case, in which matter has an interaction
with the scalar field, the Lagrangian degeneracy is broken.
Based on Ref. [43], the best choice for such models is L(m) =
P . Using this definition for the Lagrangian of the matter one
can obtain

H2 = 1

3
f (ϕ) [ρm + ρDE] , (18)

and also

d

dt
[ f (ϕ)ρm] + 3H f (ϕ)ρm = 0, (19)

d

dt
[ f (ϕ)ρDE] + 3H f (ϕ) [1 + ωDE] ρDE = 0, (20)

where H = ȧ(t)/a(t) is the Hubble parameter, a(t) is the
scale factor, and ωDE is the EoS parameter of the effective
dark energy and satisfies the EoS equation:

PDE = ωDE × ρDE. (21)

To establish an accurate link between theoretical results and
observations, one can use the red shift parameter, z, instead
of the scale factor; these two cosmological parameters have
the relation

a(t0)

a(t)
= 1 + z ż = −(1 + z)H. (22)

Thus substituting Eq. (22) into (19) and (20), one finds

f (ϕ)ρm = f0 × ρm0 × (1 + z)3, (23)

f (ϕ)ρDE = f0 × ρDE0 × exp

[∫ z

0
3

1 + ωDE (z̃)

1 + z̃
dz̃

]
,

(24)

where ρDE0 and ρm0 refer to the energy densities of dark
energy and matter at present, respectively.

2.1 Hubble parameter

The dimensionless Hubble parameter and density parameters
could be defined as

E(z) = H(z)

H0
, (25)

�̄m0 = ρm0

3H2
0

, (26)

�̄DE0 = ρDE0

3H2
0

. (27)

The dimensionless density parameters could be rewritten as

�m0 = f0 × ρm0

3H2
0

, (28)

�DE0 = f0 × ρDE0

3H2
0

. (29)

Therefore using Eqs. (18) and (25), the dimensionless Hubble
parameter is obtained as follows:

E2(z) = �m0(1 + z)3 + �DE0 exp

[∫ z

0
3

1 + ωDE(z̃)

1 + z̃
d z̃

]
.

(30)

2.2 Coincidence parameter

The ratio of dark matter and dark energy is defined as the
coincidence parameter:

r = ρm

ρDE

= r0(1 + z)3 exp

[
−3

∫ z

0

1 + ωDE(z̃)

1 + z̃
dz̃

]
. (31)

Also one can obtain

dr

dz
= −3ωDE(z)

1 + z
r(z). (32)
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Due to the role of this parameter, r , in the investigation of the
cosmic evolution, it attracts more attention in observational
investigations. In fact one can observe that this importance
arises from the relation between the EoS parameter and the
evolution of r .

2.3 Deceleration parameter

To investigate the acceleration of the Universe, one can use
the deceleration parameter, which is defined by

q(t) = −1

a(t)H2

d2a(t)

dt2 . (33)

The above equation can be rewritten as

q(z) = −1 + 3

2

(
(1 + ωDE)E2 − �m0(1 + z)3ωDE

(1 + z)E2

)
.

(34)

In the present epoch of the Universe evolution, the decelera-
tion parameter is determined by

q0 = 1

2
+ 3

2
[1 − �m0] ωDE(0). (35)

To solve the above equation we introduce an ansatz for the
EoS parameter [54,58]:

ωDE(z) = −1 + ω0 + ω1(1 + z)β, (36)

where ω0, ω1, and β are free parameters of the model, where
the minimum value of χ2 for them will be obtained as we
address fitting. Also it is notable, if we choose β = 0,
that the model reduces to EoS constant models (for instance
�CDM) [54]. By substituting (36) in (30), the dimension-
less Hubble parameter is obtained as follows:

E2({z; Pi}) = �m0(1 + z)3 + �DE0(1 + z)3ω0

× exp

[
3
ω1

β

(
(1 + z)β − 1

)]
, (37)

where

{z; Pi} = {�m0, ω0, ω1, β}, (38)

and {Pi} is the set of free parameters which should be deter-
mined using the data fitting process. Using Eq. (36), one can
rewrite Eqs. (23), (24), and (31), respectively, as

f (ϕ)ρm = f0ρm0 × (1 + z)3, (39)

f (ϕ)ρDE = f0ρDE0 × (1 + z)3ω0

× exp

[
3
ω1

β

(
(1 + z)β − 1

)]
, (40)

and

r(z) = r0(1 + z)−3(1−ω0) exp

[
−3

ω1

β

(
(1 + z)β − 1

)]
.

(41)

3 A brief review as to cosmological observational data
sets

In this section, we should emphasize that the analysis is
restricted to the background level, and we do not include
perturbations. In the following, we want to compare our the-
oretical results with observations. To this end, we consider
four important data sets including SNeIa, CMB, BAO, and
OHD. In some papers, it was claimed that OHD, as obtained
versus red shift, is comparable with the SNeIa data set, for
instance we refer reader to Table 1, Ref. [7] and references
therein. This subject motivated us to investigate the effects
of this new data set, beside other observations, to improve
the theoretical results. As will be discussed, the results of
OHD, although not independent of the SNeIa and BAO data
sets [7], do not have any dependency on CMB. Also there
are two ways to study the CMB and BAO data points; we
refer to the full parameter distribution and the Gaussian; in
the following the latter will be used.

3.1 Supernovae type Ia

It is clear that supernovae attract more attention in empirical
cosmology. Whereas they are very luminous, people inter-
ested in them, for instance at closer distances (i.e. lower
redshift), could use them to calculate the Hubble parame-
ter, and for farther distances (i.e. higher redshift) they attain
an important role in estimating the deceleration parameter q.
It is obvious there are uncertainties of a different nature: sta-
tistical or random errors and systematic errors. In this work
it is remarkable the systematic errors for SNeIa and OHD
are neglected. In reality there is always a limit on the sta-
tistical accuracy, besides the trivial one that the time for
repetitions is limited. The assumption of independence is
violated in a very specific way by so-called systematic errors
which appear in any realistic experiment. For instance exper-
iments in nuclear and particle physics usually extract the
information from a statistical data sample. The precision of
the results then is mainly determined by the number N of
collected reactions. Besides the corresponding well-defined
statistical errors, nearly every measurement is subject to fur-
ther uncertainties, the systematic errors, typically associated
with auxiliary parameters related to the measuring apparatus,
or with model assumptions. The result is typically presented
in the form

x = 2.34 ± 0.06 = 2.34 ± 0.05(stat) ± 0.03(syst).

The only reason for the separate quotation of the two uncer-
tainties is that the size of the systematic uncertainties is less
well known than that of the purely statistical error [60]. By
virtue of the likelihood functions, one is able to estimate the
minimum value of χ2 for the set of parameters {pi}, as
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L ({pi, μ0}) ∝ exp

[
−1

2
χ2

SNe({pi, μ0})
]

, (42)

where

χ2
SNe({pi, μ0}) =

557∑
n=1

[
μobs(zn) − μth(zn; {pi, μ0})

]2

σ 2
n

. (43)

In Eq. (43), μobs(zn) is the observational distance modulus
for the nth supernova, σn is the variance of the measurement,
and μth(zn) is the theoretical distance modulus for the nth
supernova, which is defined as

μth(zn; {pi, μ0}) = 5 log10
[
DL(zn; {pi})

] + μ0,

μ0 = 42.38 − 5 log10 [h] ,

DL(zn; {pi}) = (1 + z)
∫ z

0

dz̃

E(z̃; {pi}) ,

where DL is the luminous distance andh=100 km s−1 Mpc−1.
To achieve the best fit of the free parameters, one can
marginalize the likelihood function w.r.t. μ0 [59,60]. Thence
χ2

SNe({pi}) reduces to

χ2
SNe({pi}) = A − B2

C
, (44)

where A, B, and C are defined as follows:

A =
557∑
n=1

[
μobs(zn) − μth(zn; {pi, μ0 = 0})]2

σ 2
n

, (45)

B =
557∑
n=1

μobs(zn) − μth(zn; {pi, μ0 = 0})
σ 2
n

, (46)

C =
557∑
n=1

1

σ 2
n

. (47)

3.2 Cosmic microwave background

According to oscillations appearing in the matter and radia-
tion fields Doppler peaks in the radiation (photon) spectrum
are produced. Also it should be noted that the existence of
dark energy affects the place of the Doppler peaks in the
spectrum diagrams. To determine the shift of these peaks the-
oretically, the CMB shift parameters are defined as in Refs.
[1,61],

Rth(zrec; {pi}) =
√

�m0

f0

∫ zrec

0

dz̃

E(z̃; {pi}) . (48)

In CMB investigations [62], the χ2
CMB function versus CMB

shift parameter is

χ2
CMB({pi}) =

[
Robs − Rth(zrec; {pi})

]2

σ 2
R

(49)

where Robs = 1.725, σR = 0.018, and zrec ≈ 1091.3 are
observational values of the CMB shift parameter, the uncer-
tainty of R at the σ1 confidence level, and the recombination
redshift; see, respectively, Refs. [1,61].

3.3 Baryonic acoustic oscillations

As in [63] mentioned, because BAO can be considered as a
standard length scale in a wide range of redshifts, it is a useful
candidate for cosmological models testing. The importance
of the BAO mechanism is related to its ability in the estima-
tion of the contents and curvature of the Universe. One can
establish a relation between the theoretical BAO parameter,
Ath, and the dimensionless Hubble parameter, Eq. (30), thus:

Ath(zb; {pi})

=
√

�m0

f0

[
E(zb; {pi})

]−1/3
[

1

zb

∫ zb

0

dz̃

E(z̃; {pi})
]2/3

,

(50)

where zb = 0.35 [5,6]. Also χ2
BAO in the investigation of the

BAO mechanism is as follows:

χ2
BAO({pi}) =

[
Aobs − Ath(zrec; {pi})

]2

σ 2
A

, (51)

and Aobs = 0.469(ns/0.98)−0.35 and ns = 0.968 [6,59].
It is obvious that the BAO are detected in the clustering of
the combined 2dFGRS and SDSS main galaxy samples, and
they measure the distance–redshift relation at z = 0.2. But
we consider BAO in the clustering of the SDSS luminous red
galaxies in which measure the distance–redshift relation at
z = 0.35 [64].

3.4 Observational Hubble data

We suggest that if people want to investigate the accuracy
of any theoretical model, it is better, maybe, to consider
SNeIa, CMB, BAO, and OHD together. In [7], it was claimed
that three different models of the dark energy, i.e. �CDM,
ϕCDM, and XCDM, have been investigated just by consid-
ering the H(z) measurement, for more details one can refer
Table 1. But one has used H̄0 = 68±2.8 and H̄0 = 73.8±2.4,
which arose from the SNeIa data [8]. Therefore it is real-
ized that for the comparison between theoretical results and
observations only OHD could not be considered. The χ2

OHD
function parameter based on the OHD data set is defined as

χ2
OHD({pi, H0}) =

28∑
n=1

[
Hobs(zn) − H0Eth(zn; {pi})

]2

σ 2
n

,

(52)
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after marginalizing w.r.t. H0, to calculate the likelihood,
χ2

OHD could be considered, thus:

χ2
OHD({pi}) = AH − B2

H

CH
, (53)

where

AH =
28∑
n=1

[Hobs(zn)]2

σ 2
n

, (54)

BH =
28∑
n=1

Hobs(zn) × Eth(zn; {pi})
σ 2
n

, (55)

CH =
28∑
n=1

[
Eth(zn; {pi})

]2

σ 2
n

. (56)

In the above equations the subscript obs is for observational
quantities and the subscript th is for theoretical ones.

4 Cosmological constraints and data fitting

As mentioned, we have introduced an ansatz by Eq. (36),
which consists of three free parameters. Here ω1 indicates the
present time value of ωDE. For convenience we can assume
ω0 = f0 = 1 and therefore Eq. (36) is reduced to [54,58]

ωDE(z) = ω1(1 + z)β . (57)

Also, the mean square of the relative error functions χ2 nor-
mally cause the free parameters plane split in two parts. Peo-
ple usually are interested in the regions for which χ2/N ≤ 1,
where N denotes the amount of observational data. Whereas
we use the Union − 2 data set for SNeIa, N for supernovae
is NSNe = 557, and also for OHD, CMB, and BAO, one
has NOHD = 28, NCMB = 1, and NBAO = 1. Since in this
work three free parameters appeared, the space of constraints
has three dimensions. Thence for clarity, one can map fig-
ures on two dimensions (in fact, it is supposed that the free
parameters are independent) and their values will be ana-
lyzed. The common regions for best fitting of all constraint,
play a key role in this study. Based on the above discussions
we plot a couple of free parameters in Figs. 1, 2, and 3. In
Fig. 1 we investigate the constraints on �m0 in ω1 β plate,
and also for two constraints SNeIa and OHD minimum points
of χ2 are distinguished. In Fig. 2 using best value of ω1, the
constraints in �m0 β are obtained, in a similar way for best
value of β, the behavior of constraints in ω1 �m0 surface
will be shown. Let us, return our attention to Fig. 1 again.
For �m0 = 0.2, the CMB, BAO and OHD have an overlap
region, but they are not in agreement with SNeIa results. Also
for a different quantity, the SNeIa and OHD results could be
in agreement with together. This different behavior of con-
straints indicates that if one wants to compare theoretical
results with observations, it is better that the greatest set of

Fig. 1 The contour lines of χ2
SNe = 557 (brown), χ2

OHD = 28.0
(green), χ2

CMB = 1.0 (red), and χ2
BAO = 1.0 (blue) of �m0 = 0.26

are plotted. Also for the two constraints SNeIa and OHD the minimum
points of χ2 are distinguished. The dashed lines refer to the contour
lines which are the greater of the minimum points being only unity

Fig. 2 The contour lines of χ2
SNe = 557 (brown), χ2

OHD = 28.0
(green), χ2

CMB = 1.0 (red), and χ2
BAO = 1.0 (blue) for ω1 = −1.1

are plotted. Also for the two constraints the SNeIa and OHD minimum
point of χ2 are distinguished. The dashed lines refer to the contour lines
which are the greater of the minimum points being only unity

constraints would be considered. To address overlaps and the
effects of individual observations, we plot Figs. 4 and 5. In
Fig. 4 the behavior of χ2

T = χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO
and χ2

T = χ2
SNe +χ2

CMB +χ2
BAO for �χ2

T = 3.53, 6.25, 8.02
are compared. Also in Fig. 5 to investigate degeneracy one
can consider χ2

T = χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO and χ2
T =

χ2
OHD + χ2

CMB + χ2
BAO for �χ2

T = 0.1, 0.2, 0.3. These two
figures indicate that, although individual OHD data surveying
(in comparison with SNeIa, CMB, and BAO) is not so impor-
tant, it decreases the degeneracy between the free parameters
of the model. From Figs. 4 and 5, it is obvious that a collective
of four constraints has completely different results in com-
parison to even three constraints. In the following, by means
of observations, we use some custom values which are con-
sidered for better estimation of the theoretical parameters of
the model. Since all free parameters of the model are inde-
pendent, the total likelihood function could be introduced as

LT = LSNe × LOHD × LCMB × LBAO, (58)
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Fig. 3 The contour lines of χ2
SNe = 557 (brown), χ2

OHD = 28.0
(green), χ2

CMB = 1.0 (red), and χ2
BAO = 1.0 (blue) for β = −0.25

are plotted. Also for the two constraints SNeIa and OHD the minimum
points of χ2 are distinguished. The dashed lines refer to the contour
lines which are the greater of the minimum points being only unity
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Fig. 4 In this figure the behavior of χ2
T = χ2

SNe+χ2
OHD+χ2

CMB+χ2
BAO

(dashed contours) and χ2
T = χ2

SNe +χ2
CMB +χ2

BAO (solid contours) for
�χ2

T = 3.53 (inner loops), 6.25 (middle loops), 8.02 (outer loop) are
compared. The minimum points of these two χ2

T functions are distin-
guished by solid points

therefore the total χ2 function could be obtained:

χ2
T = χ2

SNe + χ2
OHD + χ2

CMB + χ2
BAO. (59)

It is considerably significant to attain the maximum amount
of the probability and the minimum value of χ2; we should
minimize χ2

T. Also it should be noted that in (59) all compo-
nents have same weight. So the likelihood method is equiva-
lent to the fact that for instance all measurements which lead
to CMB are equal to a supernova explosion. We shall return
to this problem. Another quantity which could be used for
the data fitting process is
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Fig. 5 In this plot we consider χ2
T = χ2

SNe + χ2
OHD + χ2

CMB + χ2
BAO

(dashed contours) and χ2
T = χ2

OHD + χ2
CMB + χ2

BAO (solid contours)
for �χ2

T = 0.1 (inner loops), 0.2 (middle loops), 0.3 (outer loop) to
investigate degeneracy in this work. This figure and Fig. 4 indicate that
although the importance of individual OHD data surveying in cosmo-
logical investigations (in comparison SNe Ia, CMB and BAO) is not
so important, it causes decreasing degeneracy between free parame-
ters of the model. The minimum points of these two χ2

T functions are
distinguished by solid points

χ̃2 = χ2
T

Ndof
(60)

where the subscript dof is an abbreviation of the degree of
freedom, and Ndof could be defined as the difference between
all observational sources and the amount of free parameters.
Let us explain it in more detail. Whereas the amounts of all
observations is 557 + 28 + 1 + 1 = 587, and the number
of free parameters is 4, by considering H0, Ndof is equal to
583. Also one knows that the acceptable value for χ̃2 is 1.05.
For convenience, we now define the average relative error
functions as follows:

χ̄2
SNe = χ2

SNe
NSNe

, (61)

χ̄2
OHD = χ2

OHD
NOHD

, (62)

χ̄2
CMB = χ2

CMB
NCMB

, (63)

χ̄2
BAO = χ2

BAO
NBAO

. (64)

Finally we can introduce the χ2
m function, which is equal to

the maximum of the χ̄2 functions and it could be considered
as

χ2
m = max of

(
χ̄2

SNe, χ̄
2
OHD, χ̄2

CMB, χ̄2
BAO

)
. (65)
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Fig. 6 In the above diagrams the minimum values of χ̃2 (blue line)
and χ2

m (red upper line) versus �m0, ω1, and β parameters have been
drawn, respectively

In fact, the χ2
m function could be considered as a criterion

of the accuracy for the models. Now we want to compare the
behavior of the χ2

m and χ̃2 functions. Without loss of gener-
ality of the model, one can plot the three dimensional shape
of χ2

m and χ̃2, versus the free parameters of the model. These
diagrams help us to find the best estimation of the free param-
eters in comparison to the observations; for more clarity one
may refer to Fig. 6. In this figure, the first diagram shows
the minimum of χ2

m and χ̄2 versus �m0. Also in the two last
diagrams of Fig. 6, the minimum points are drawn based on
ω1 and β, respectively. By comparison with the behavior of
these relative error functions in Fig. 6 one can realize that
there are more points (or neighborhood) in which χ̃2 < 1,
but χ2

m exceeds 1.05. In fact this behavior was predictable,
because in the definition of χ̃2, we use the contribution of
all observational data set. So, for example the χ2

CMB devia-
tion of the best fitting results could be recompensed by the
SNeIa data abundance. We will return to this drawback, after
some discussion as regards the likelihood and relative error
functions. For illustration, we portrait the different surfaces
of three dimensional surfaces, (�m0, ω1, β), to (�m0, β),
(ω1,�m0), and (ω1, β), which are presented in Figs. 7, 8,
and 9. Diagrams B and C are related to (χ2

T)min, where the
subscript min is for the minimum value of χ2

T. It is notable,

0.23 0.25 0.27 0.29 0.31

1.0

0.5

0.0

0.5

1.0

1.5

m0

Region of m
2 1.0

............................

T
2

SNeIa CMB BAO OHD
2

T
2 3.53 —

T
2 6.25 —

T
2 8.02 —

0.23 0.25 0.27 0.29 0.31

1.0

0.5

0.0

0.5

1.0

1.5

m0

0.23 0.25 0.27 0.29 0.31

1.0

0.5

0.0

0.5

1.0

1.5

m0

(A)

(B) (C)

Fig. 7 In diagram a, the image of χ2
m ≤ 1 on the (�m0, β)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (�m0, β) plate, are plotted. In part c both diagrams a and b are
presented to compare the results
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Fig. 8 In diagram a, the image of χ2
m ≤ 1 on the (ω1, �m0)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (ω1, �m0) plate, are drawn. In part c both diagrams a and b are
considered for comparison

in a three dimensional space of free parameters, that the con-
fidence levels 68.3, 90, and 95.4 % are proportional to the
�χ2

T = 3.53, �χ2
T = 6.25, and �χ2

T = 8.02 surfaces,
respectively, where �χ2

T = χ2
T − (χ2

T)min. In diagram b of
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Fig. 9 In diagram a, the image of χ2
m ≤ 1 on the (ω1, β)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (ω1, β) plate, as contour lines, are drawn. In part c both diagrams a
and b are compared

Figs. 7, 8, and 9 the contour lines of the confidence levels are
drawn and in diagram c, both the χ2

m surfaces and the con-
tour lines are shown for better comparison. From diagram c
it is realized that the confidence level contours exceed the χ2

m
regions. From this behavior it is concluded that the theoret-
ical prediction of the CMB shift parameter is much greater
than its observational value. As mentioned, when the total
mean square error function is introduced the weights of all
constraints were identical and this causes some problems. As
a matter of fact, the results of the likelihood’s parameter, Eq.
(59), the effect of the CMB shift parameter in comparison
with the abundant SNeIa data set is ignored. For more infor-
mation, see Table 2 and the definition of Ndof . To overcome
these problems, we redefine χ2

T by

χ2
T = χ2

SNe + χ2
OHD + 3 χ2

CMB + 3 χ2
BAO. (66)

It should be noted that in data fitting and maximization of the
probability values the two definitions of χ2

T, i.e. Eqs. (59) and
(66), are not very different. For justifying this claim one can
compare Tables 2 and 3, which are related to (59) and (66),
respectively. But in figures which are related to confidence
levels one can observe that the exceeding of confidence lev-
els is reduced, therefore the re-weight of some constraints
can improve the behavior of the model. For more clarifica-
tion one can refer to Figs. 10, 11, and 12. Now by means
of (66), we marginalize the likelihood L (�m0, ω1, β) w.r.t.
ω1, β, and �m0, respectively. Also the relative probability
functions L (�m0, β), L (ω1,�m0), and L (ω1, β) in two

Table 1 In this table from left to right z, H(z)(km s−1 Mpc−1), and
its uncertainty σH (km s−1 Mpc−1) in measurement and in related ref-
erences (by considering the technique which is used) are collected,
respectively

z H(z) σH References Technique

0.070 69 19.6 [65] SDSS DR7; 0 < z < 0.4

0.100 69 12 [66] ATC; 0.1 < z < 1.8

0.120 68.6 26.2 [65] SDSS DR7; 0 < z < 0.4

0.170 83 8 [66] ATC; 0.1 < z < 1.8

0.179 75 4 [67] OHD+CMB; 0 < z < 1.75

0.199 75 5 [67] OHD+CMB; 0 < z < 1.75

0.200 72.9 29.6 [65] SDSS DR7; 0 < z < 0.4

0.270 77 14 [66] ATC; 0.1 < z < 1.8

0.280 88.8 36.6 [65] SDSS DR7; 0 < z < 0.4

0.350 76.3 5.6 [68] SDSS DR7 LRGs; z = 0.35

0.352 83 14 [67] OHD+CMB; 0 < z < 1.75

0.400 95 17 [66] ATC; 0.1 < z < 1.8

0.440 82.6 7.8 [69] WiggleZ+H(z); z < 1.0

0.480 97 62 [70] CMB+OHD; 0.2 < z < 1.0

0.593 104 13 [67] OHD+CMB; 0 < z < 1.75

0.600 87.9 6.1 [69] WiggleZ+H(z); z < 1.0

0.680 92 8 [67] OHD+CMB; 0 < z < 1.75

0.730 97.3 7.0 [69] WiggleZ+H(z); z < 1.0

0.781 105 12 [67] OHD+CMB; 0 < z < 1.75

0.875 125 17 [67] OHD+CMB; 0 < z < 1.75

0.880 90 40 [70] CMB+OHD; 0.2 < z < 1.0

0.900 117 23 [66] ATC; 0.1 < z < 1.8

1.037 154 20 [67] OHD+CMB; 0 < z < 1.75

1.300 168 17 [66] ATC; 0.1 < z < 1.8

1.430 177 18 [66] ATC; 0.1 < z < 1.8

1.530 140 14 [66] ATC; 0.1 < z < 1.8

1.750 202 40 [66] ATC; 0.1 < z < 1.8

2.300 224 8 [63] BAO; 0.7 < z < 2.3

Table 2 In the table, the quantities related to minimum point of χ2
T =

χ2
SNe + χ2

OHD + χ2
CMB + χ2

BAO are introduced

β ω1 �m0 χ2
BAO

−0.243 −1.053 0.272 16 × 10−4,

χ2
CMB χ2

OHD χ2
SNe (χ2

T)min

12 × 10−5 16.23 542.75 558.98

dimensional confidence levels 68.3, 90, and 95.4 % are plot-
ted in Fig. 13. For more investigations, we will draw the one
dimensional marginalized likelihood functionsL (�m0) ver-
sus �m0, L (ω1) based on ω1 and L (β) versus β in Fig. 14.
Meanwhile in Table 4 one observes the quantities which max-
imize the marginalized likelihoods using different confidence
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Table 3 This table is related to the minimum point of χ2
T = χ2

SNe +
χ2

OHD + 3χ2
CMB + 3χ2

BAO

β ω1 �m0 χ2
BAO

−0.239 −1.051 0.272 5 × 10−4 ,

χ2
CMB χ2

OHD χ2
SNe (χ2

T)min

8 × 10−10 16.23 542.75 558.98
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Fig. 10 In diagram a, the image of χ2
m ≤ 1 on the (�m0, β)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + 3χ2
CMB + 3χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (�m0, β) surface, as contour lines, are drawn. In part c both dia-
grams a and b have been presented for comparison

levels by means of the confidence levels σ1 = 68.3 % and
σ2 = 95.4 %.

4.1 Typical example

Now we define an effective dark energy as a combination of
dark energy ρde and the scalar field density, ρDE = ρde +
ρϕ/ f (ϕ). So, the Friedmann equation is rewritten as

3H2 = f (ϕ) (ρm + ρDE) . (67)

A useful parameter in this study is the energy density param-
eter �. Here �DE and �m, respectively, will be taken equal to
�DE = f (ϕ)ρDE/ρc and �m = f (ϕ)ρm/ρc, in which ρc is
the critical energy density which is defined as ρc = 3H2. As a
result, from the Friedmann equation we have �DE+�m = 1.
To obtain energy conservation equations for effective dark
energy one can obtain the following results:
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Fig. 11 In diagram a, the image of χ2
m ≤ 1 on the (ω1, �m0)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + 3χ2
CMB + 3χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (ω1, �m0) plate, as contour lines, are drawn. In part c both dia-
grams a and b are presented for comparison
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Fig. 12 In diagram a, the image of χ2
m ≤ 1 on the (ω1, β)

surface is displayed. In b the minimum point of χ2
T =

χ2
SNe + χ2

OHD + 3χ2
CMB + 3χ2

BAO and the shadow of �χ2
T =

3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop) surfaces on
the (ω1, β) plate, as contour lines, are drawn. In part c the two dia-
grams a and b are collected for comparison

d

dt
( f (ϕ)ρDE) + 3H f (ϕ)(1 + ωDE)ρDE = γρm ḟ (ϕ), (68)

d

dt
( f (ϕ)ρm) + 3H f (ϕ)(1 + γ )ρm = −γρm ḟ (ϕ), (69)
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Fig. 13 In the above two dimensional likelihood diagrams, the 68.3 %
confidence level (dotted line), 90.0 % confidence level (green dashed
line), and 95.45 % confidence level (red solid line) after marginalization
on the ω1, β and �m0 free parameters are plotted. Note that in this figure
we use χ2

T = χ2
SNe + χ2

OHD + 3χ2
CMB + 3χ2

BAO and also the shadow
of �χ2

T = 3.53 (inner loop), 6.25 (middle loop), 8.02 (outer loop)

surfaces

so that the effective pressure of dark energy is defined as
pDE = p� + pϕ/ f (ϕ), and one has the effective dark energy
equation of state parameter ωDE = pDE/ρDE. Also γ is the
matter equation of state parameter, which is defined as γ =
pm/ρm . For γ = constant, integrating of Eq. (69) results
in the following relation for the cold dark matter energy
density:

ρm = ρ0
em

a3(1+γ ) f (1+γ )(ϕ)
, (70)

where ρ0
em = f (1+γ )

0 (ϕ)ρ0
m. In this step, we suppose that

the effective dark energy could be defined as ADE, in other
words we assume that

ρDE ≡ ρADE = 3n2

T 2 , (71)

where n is a numerical constant and T is the cosmic time, and
therefore �DE is obtained: �DE = f (ϕ)n2/H2T 2. Taking
this assumption and using Eq. (68), the equation of state
parameter of the effective dark energy could be obtained:

ωDE = −1 + 2

3

1

n

√
�DE

f (ϕ)
+ ḟ (ϕ)

3H f (ϕ)
(γ r − 1) , (72)

where r is the ratio of cold dark matter and effective dark
energy, namely r = ρm/ρDE = �m/�DE. The interaction
term in this model generates an extra term for ωDE, which can
justify the phantom divide line crossing. By the definition of
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Fig. 14 In the above diagrams the relative likelihoods are plotted. The
68.3 and 95.4 % confidence levels are distinguished as a brown dashed
line and a red dot dash line, respectively. It should be noted that in these
figures we use χ2

T = χ2
SNe+χ2

OHD+3χ2
CMB+3χ2

BAO. Also the best fits of

the free parameters are β = −0.24+0.27,+0.59
−0.23,−0.44, ω1 = −1.04+0.08,+0.156

−0.08,−0.16 ,

and �m0 = 0.272+0.01,+0.02
−0.01,−0.02

an ansatz for ωe�, one can consider

ωe� + 1 = ω0 + ω1(1 + z)β . (73)

For fitting the free parameters for ADE in an external scalar
field interaction model, we use the 557 Union-2 sample
database of SNeIa, and ρm = ρradiation+ρbaryon+ρdark matter.
Therefore in this case the Friemann equation is

3H2 = f (ϕ) (ρm + ρDE) . (74)

Combining Eqs. (68)–(71), we have

3H2 = f (ϕ)

(
ρ0

em

a3(1+γ ) f (1+γ )(ϕ)
+ 3n2

T 2

)
, (75)

where ρ0
em is the effective energy density of matter at the

present time. The 557 Union-2 sample database have col-
lected data from red shift parameter of various SNeIa, there-
fore we rewrite E = H/H0 versus z as
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Table 4 In this table the values which maximize the relative probability
functions L (�m0), L (ω1), and L (β) using the confidence levels σ1 =
68.3 % and σ2 = 95.4 % are calculated. The data sets are includes of
SNeIa, CMB, BAO, and OHD in which the weight of χ2

CMB and χ2
BAO

in the χ2
Total function is the coefficient 3

σ−
2 σ+

2 σ−
1 σ+

1 (L )max x

0.02 0.02 0.01 0.01 0.272 �m0

0.16 0.156 0.08 0.08 −1.04 ω1

0.44 0.59 0.23 0.27 −0.24 β

0.2 0.4 0.6 0.8 1.0 1.2 1.4
z

34

36

38

40

42

44

μ

Fig. 15 The observed distance modulus of supernovae (points) and the
theoretical predicted distance modulus (red solid line) in the context of
ADE model
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Fig. 16 Contour plots for the free parameters ω1 and β, show that
the best values for these parameters are −1.86 < ω1 < −1.62 and
−2.27 < β < −0.73

E2 =
r0(1 + z)3 + (1 + z)3ω0 exp

{
3ω1

β
[(1 + z)β − 1]

}

r0 + 1
.

(76)

To obtain the best fit for the free parameters based on Sect.
3.1 the minimization method leads to

χ2
snmin

(ω0 = 1.1; ω1 = −1.65; β = −2.25), (77)

χ2
min = A − B2

C
= 542.75, (78)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
2.0

1.5

1.0

0.5

Z

ω
e

Fig. 17 The plot shows the evolution of effective dark energy param-
eter, ωDE, versus z, for ω0 = 1.1, ω1 = −1.68, and β = −2.25

μ0 = − B

C
= 43.1089, (79)

which implies χ2
sn/dof = χ2

snmin
/dof = 0.981(dof = 553).

In Fig. 15, we show a comparison between theoretical dis-
tance modulus and observed distance modulus of the super-
nova data. The red solid line indicates the theoretical value
of the distance modulus, μth, for the best value of the free
parameters ω1 = −1.65, ω0 = 1.1, and β = −2.25.

This shows that the model is clearly consistent with the
data since χ2/dof = 1.

Figure 16 shows contour plots for the free parameters ω1

and β; it is shown that the best value for these parameters are
−1.86 < ω1 < −1.62 and −2.27 < β < −0.73 in which
for the stability condition c2 > 0 we have taken the interface
between the green and yellow sector, ω1 = −1.68.

The evolution of the effective dark energy parameter, ωDE,
versus z, for ω0 = 1.1, ω1 = −1.68, and β = −2.25 has
been shown in Fig. 17. This shows that by increasing z the
parameter gets into the phantom phase.

Here ω0, ω1, and β are free parameters of the model which
are obtained from data fitting. It is clear that if the form of
the dark energy density is given, the coupling function, f (ϕ),
could easily be determined. For instance by using Eqs. (68),
(69), and (71) one can obtain

f (ϕ) = f0t
2a−3ω0 exp

[
3ω1

(z + 1)β+2

β + 2

]
, (80)

where f0 is the constant of integration. We have

ḟ (ϕ)

f (ϕ)
= 3H

[
2

3t H
− ω0 − ω1(1 + z)β+2

]
.

A significant result of observational data is the acceler-
ated expansion of the Universe. A good cosmological model
should be able to describe this acceleration. A useful quantity
to investigate this property of the Universe is the decelera-
tion parameter, which is defined as q = −1 − Ḣ/H2. Using
Eqs. (67), (68), and (69), one obtains the deceleration param-
eter given by
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q = −1 + 3

2

[
1 − ω0 − ω1(1 + z)β

]

×
⎛
⎝ D0

1 + (1 + z)3(1−ω0)(t) exp[−3ω1(1+z)β

β
]

⎞
⎠ , (81)

where D0 is the constant of integration. It is clearly seen that
for ω0 = 1.1, ω1 = −1.68, β = −2.25, (which we have
obtained from data fitting processes) q < 0.

5 Conclusion and discussion

Interacting models which contain an external interaction
between matter and scalar fields attract more attention. Such
mechanisms are capable to suppress the fifth force and also
are in good agreement with observations. Using such a pow-
erful mechanism we have found some cosmological parame-
ters referring to the coincidence and deceleration parameters.
For instance based on Table 2, and Eqs. (32) and (34) it is
clear that r(z) is a decreasing function and q has taken neg-
ative values for different values of z. Considering a suitable
ansatz for the EoS parameter of effective dark energy, the
dimensionless Hubble parameter is obtained. So by means of
SNeIa, CMB, BAO, and OHD data sets the minimum value
of χ2 for the free parameters of the model are obtained. To
estimate the free parameters of an ansatz for the effective
dark energy equation of state, the whole of the observational
data sets have been considered. For more details one can
compare the results of Figs. 4 and 5 with the results of a
typical example, see Sect. 4.1. Also for getting a better over-
lap between the contours with the constraint χ2

m ≤ 1, the
χ2

T function has been re-weighted. Meanwhile the relative
probability functions have been plotted for the marginalized
likelihood L (�m0, ω1, β) according to the two dimensional
confidence levels 68.3, 90, and 95.4 %. In addition the values
of the free parameters which maximize the marginalized like-
lihoods using the above confidence levels have been obtained.
Based on the above discussions a couple of free parameters
have been plotted in Figs. 1, 2, and 3. In Fig. 1, the constraints
on �m0 in the ω1 β plane have been investigated; and also,
for the two constraints the SNeIa and OHD minimum points
of χ2 have been distinguished. In Fig. 2, using the best value
of ω1, the constraints in the �m0 β plane are obtained. In a
similar way, for the best value of β, the behavior of the con-
straints in the ω1 �m0 plane is shown. Also based on Fig. 1,
for �m0 = 0.2, the CMB, BAO, and OHD have an overlap
region, but they are not in agreement with the SNeIa results;
one possible explanation would be incompatibility among the
data sets. Also, for different values one can find a region in
which SNeIa and OHD are in better agreement against CMB
and BAO. This different behavior of the constraints indicates
that if one wants to compare theoretical and observational

results, it may be better that the greatest set of constraints
would be considered. For more investigation of the over-
laps and the effects on individual observations, Figs. 4 and
5 have been plotted. In Fig. 4, the behavior of χ2

T = χ2
SNe +

χ2
OHD + χ2

CMB + χ2
BAO and χ2

T = χ2
SNe + χ2

CMB + χ2
BAO for

�χ2
T = 3.53, 6.25, 8.02, have been compared. Also in Fig. 5,

we have considered χ2
T = χ2

SNe +χ2
OHD +χ2

CMB +χ2
BAO and

χ2
T = χ2

OHD + χ2
CMB + χ2

BAO, for �χ2
T = 0.1, 0.2, 0.3, to

investigate the degeneracy. These two figures indicate that
although individual OHD data surveying in cosmological
investigations (in comparison with SNeIa, CMB, and BAO) is
not so important it decreases the degeneracy between the free
parameters.
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