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Abstract The dynamical analysis for coupled dark energy
with dark matter is presented, where a complex scalar field
is taken into account and it is considered in the presence of a
barothropic fluid. We consider three dark-energy candidates:
quintessence, phantom, and tachyon. The critical points are
found and their stabilities analyzed, leading to the three cos-
mological eras (radiation, matter, and dark energy), for a
generic potential. The results presented here extend the pre-
vious analyses found in the literature.

1 Introduction

Observations of Type IA Supernova indicate that the universe
undergoes an accelerated expansion [1,2], which is dominant
at present times (∼68 %) [3]. Despite of ordinary matter, the
remaining 27 % is an unknown form of matter that interacts
in principle only gravitationally, known as dark matter. The
nature of the dark sector is still mysterious and it is one of the
biggest challenges in the modern cosmology. The simplest
dark-energy candidate is the cosmological constant, whose
equation of state w� = p�/ρ� = −1 is in agreement with
the Planck results [3]. This attempt, however, suffers from the
so-called cosmological constant problem, a huge discrepancy
of 120 orders of magnitude between the theoretical prediction
and the observed data.

Among a wide range of alternatives, a scalar field is a
viable candidate to be used. Its usage includes the canonical
scalar field, called “quintessence” [4–8], and the scalar field
with the opposite- sign in the kinetic term, known as “phan-
tom” [9,10]. Beyond the real scalar field case, a complex
quintessence was also used in [11] to account for the accel-
eration of the universe. The U (1) symmetry associated with
this complex scalar leads to a more sophisticated structure
for the dark sector, and unless the standard model of particle
physics is a very special case in the nature, there is no reason
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(apart from simplicity) not to consider a richer physics of the
dark sector.1

Another possibility of noncanonical scalar field is the
tachyon and it comes from string theory. In the bosonic string,
its ground state is the tachyon field, whereas in supersym-
metric string theory a real tachyon is present in non-BPS
Dp-branes, while the complex tachyon appears in a brane-
anti-brane system [13]. The tachyon potential has a minimum
[14,15] and at this minimum the tachyon field behaves like
a pressureless gas [16]. As soon as tachyon condensation
in string theory had been proposed, the tachyon was also
regarded as a dark-energy candidate [17–19].

Still regarding the dynamical dark energy, there exists a
possibility of interaction between dark energy and dark mat-
ter [20,21], since their densities are comparable and, depend-
ing on the coupling used, the interaction can alleviate the
coincidence problem [22,23]. This approach was applied to
phantom and tachyon as well, in Refs. [24–29].

When a scalar field is in the presence of a barothropic
fluid (with equation of state wm = pm/ρm) the relevant
evolution equations can be converted into an autonomous
system and the asymptotic states of the cosmological mod-
els can be analyzed. Such approach was taken for uncou-
pled dark energy (quintessence, the tachyon field, and the
phantom field for instance [30–34]) and coupled dark energy
[21,28,35–41]. Since the complex scalar field and the cou-
pled dark energy are generalizations of the real field and the
uncoupled case, respectively, we aim to study both possibil-
ities together, in the light of the linear dynamical systems
theory. Thus we investigate in this paper the critical points
that come from the evolution equations for the complex scalar
field (quintessence, phantom, and tachyon), considering the
possibility of interaction between the two components of the
dark sector. The dynamical equations are derived and the crit-
ical point are analyzed, to see what kind of universe might

1 A current example of a vector field that perhaps interacts with dark
matter is the so-called “dark photon” (see [12] for a quick review).
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emerge. As we have said, this is a natural extension of the pre-
vious work [21,28,37,39]. As a result, we have found similar
fixed points, for all the three scalar field cases, although their
stabilities are affected in some cases. The critical points can
be compared with previous analyses, and the general behav-
ior can be seen.

The rest of the paper is organized as follows. In Sect. 2
we present the basics of the interacting dark energy and the
dynamical analysis theory, where we show the couplings we
have used. In Sects. 3 and 4 we use the dynamical system the-
ory for the canonical (and phantom) and the tachyon field,
respectively. Within the respective section we show the crit-
ical points with their stabilities, and also the viable sequence
of cosmological eras (radiation–matter–dark energy). Sec-
tion 5 is reserved for our conclusions. We use Planck units
(h̄ = c = 1 = Mpl = 1) throughout the text.

2 Interacting dark energy and dynamical analysis

We consider that dark energy is described by a scalar field
with energy density ρφ and pressure pφ , and with an equation
of state given by wφ = pφ/ρφ . We assume that the scalar
field is coupled with dark matter, in such a way that total
energy-momentum is still conserved. In the flat Friedmann–
Robertson–Walker background with a scale factor a, the con-
tinuity equations for both components and for radiation are

ρ̇φ + 3H(ρφ + pφ) = −Q, (1)

ρ̇m + 3Hρm = Q, (2)

ρ̇r + 4Hρr = 0, (3)

respectively, where H = ȧ/a is the Hubble rate, Q is
the coupling and the dot is a derivative with respect to
the cosmic time t . The indices m and r stand for mat-
ter and radiation, respectively. The case of Q > 0 cor-
responds to dark-energy transformation into dark matter,
while Q < 0 is the transformation in the opposite direc-
tion. In principle, the coupling can depend on several vari-
ables Q = Q(ρm, ρφ, φ̇, H, t, . . .), so we assume for the
canonical scalar (quintessence) and for the phantom field the
coupling is Q = Qρm φ̇ [20,21], while for the tachyon field
the coupling is Q = Qρmρφφ̇/H [39], where Q is a positive
constant. The case with negative Q is similar and we will not
consider it here, because the minus sign of the case Q < 0
can be absorbed into the φ̇, instead of considering Q < 0.

To deal with the dynamics of the system, we will define
dimensionless variables. The new variables are going to char-
acterize a system of differential equations in the form

X ′ = f [X ], (4)

where X is a column vector of dimensionless variables and
the prime is the derivative with respect to log a, where we set
the present scale factor a0 to be one. The critical points Xc

are the ones that satisfy X ′ = 0. In order to study stability of
the fixed points, we consider linear perturbations U around
them, thus X = Xc+U . At the critical point the perturbations
U satisfy the following equation:

U ′ = JU, (5)

where J is the Jacobian matrix. The eigenvalues of J deter-
mine if the critical points are stable (if all eigenvalues are
negative), unstable (if all eigenvalues are positive) or saddle
points (if at least one eigenvalue is positive and the others are
negative, or vice versa).

3 Quintessence and phantom dynamics

The complex scalar field � can be written as � = φeiθ ,
where φ is the absolute value of the scalar field and θ is a
phase. Both canonical and phantom fields are described by
the Lagrangian

L = −√−g
(ε

2
∂μ�∂μ� + V (|�|)

)
, (6)

where V (|�|) is the potential for the complex scalar and
we consider it depends only on the absolute value of the
scalar field φ ≡ |�|. We have ε = +1 for the canonical
field (quintessence) and ε = −1 for the phantom field. For
a homogeneous field φ ≡ φ(t) and θ ≡ θ(t), in an expand-
ing universe with Friedmann–Robertson–Walker metric with
scale factor a ≡ a(t), the equations of motion are

εφ̈ + 3εH φ̇ + V ′(φ) − εφθ̇2 = 0, (7)

εθ̈ +
(

3H + 2φ̇

φ

)
θ̇ = 0, (8)

where the prime denotes the derivative with respect to φ. In
the uncoupled case Eq. (8) gives rise to the effective poten-

tial in (7), which is d
dφ

(
ω2

2a6
1
φ2 + V (φ)

)
[11], where ω is an

integration constant interpreted as angular velocity. The first
term in the brackets drives φ away from zero and the factor
a−6 may make the term decreases very fast, provided that φ

does not decrease faster than a−3/2.
We assume the interaction between the scalar field with

dark matter through the coupling Qρm φ̇ and it enters in the
right-hand side of Eq. (7).

In the presence of matter and radiation, the Friedmann
equations for the canonical (phantom) field are

H2 = 1

3

(ε

2
φ̇2 + ε

2
φ2θ̇2 + V (φ) + ρm + ρr

)
, (9)
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Ḣ = −1

2

(
εφ̇2 + εφ2θ̇2 + ρm + 4

3
ρr

)
, (10)

and the equation of state becomes

wφ = pφ

ρφ

= φ̇2 + φ2θ̇2 − 2εV (φ)

φ̇2 + φ2θ̇2 + 2εV (φ)
. (11)

We are now ready to proceed with the dynamical analysis
of the system.

3.1 Autonomous system

The dimensionless variables are defined as

x1 ≡ φ̇√
6H

, x2 ≡ φθ̇√
6H

, x3 ≡
√

6
φ

, y ≡
√
V (φ)√
3H

,

z ≡
√

ρr√
3H

, λ ≡ − V ′
V , � ≡ VV ′′

V ′2 . (12)

The dark-energy density parameter is written in terms of
these new variables as

�φ ≡ ρφ

3H2 = εx2
1 + εx2

2 + y2, (13)

so that Eq. (9) can be written as

�φ + �m + �r = 1, (14)

where the matter and radiation density parameters are defined
by �i = ρi/(3H2), with i = m, r . From Eqs. (13) and (14)
we see that x1, x2, and y are restricted in the phase plane by
the relation

0 ≤ εx2
1 + εx2

2 + y2 ≤ 1, (15)

due to 0 ≤ �φ ≤ 1. Notice that if y = 0 the restriction (15)
forbids the possibility of phantom field (ε = −1) because
for this case �φ < 0.

The equation of state wφ becomes

wφ = εx2
1 + εx2

2 − y2

εx2
1 + εx2

2 + y2
, (16)

which is a trivial extension of the real scalar field case. The
total effective equation of state is

weff = pφ + pr
ρφ + ρm + ρr

= εx2
1 + εx2

2 − y2 + z2

3
, (17)

with an accelerated expansion for weff < −1/3. The dynam-
ical system for the variables x1, x2, x3, y, z and λ are

dx1

dN
= −3x1 + x2

2 x3 +
√

6

2
εy2λ −

√
6

2
εQ(1 − x2

1 − x2
2

− y2 − z2) − x1H
−1 dH

dN
, (18)

dx2

dN
= −3x2 − x1x2x3 − x2H

−1 dH

dN
, (19)

dx3

dN
= −x1x

2
3 , (20)

dy

dN
= −

√
6

2
x1yλ − yH−1 dH

dN
, (21)

dz

dN
= −2z − zH−1 dH

dN
, (22)

dλ

dN
= −√

6λ2x1 (� − 1) , (23)

where

H−1 dH

dN
= −3

2
(1 + εx2

1 + εx2
2 − y2) − z2

2
. (24)

3.2 Critical points

The fixed points of the system are obtained by setting
dx1/dN = 0, dx2/dN = 0, dx3/d = 0, dy/dN = 0,
dz/dN , and dλ/dN = 0 in Eq. (18)–(23). When � = 1,
λ is constant the potential is V (φ) = V0e−λφ [30,31].2 The
fixed points are shown in Table 1. Notice that x3 and y cannot
be negative and recall that �r = z2. Some of the fixed points
do not exist for the phantom field because for those cases �φ

is negative.
The eigenvalues of the Jacobian matrix were found for

each fixed point in Table 1. The results are shown in Table 2.
The eigenvalues μ4e and μ5e are

μ4e,5e = −3(λ + 2Q)

4(λ + Q)

×
(

1 ±
√

1 + 8[3 − ελ(λ + Q)][3ε + 2Q(λ + Q)]
3(λ + 2Q)2

)
.

(25)

At the first sight, one might think that the linear analysis
would not give a complete description of the stability, because
all fixed points, but (f), have at least one eigenvalue equals
zero. However, as pointed out in [42], fixed points that have
at least one positive and one negative eigenvalue are always
unstable, and methods such as center manifold [42] should
be used to analyze the stability of the critical points that can
be stable [(g) and (h)]. Even so, for almost all fixed points,
but (a) and (c), x3 = 0, which means φ → ∞. However,

2 The equation for λ is also equal zero when x1 = 0 or λ = 0, so that λ

should not necessarily be constant, for the fixed points with this value of
x1. However, for the case of dynamical λ, the correspondent eigenvalue
is equal zero, indicating that the fixed points is not hyperbolic.
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Table 1 Critical points (x1, x2, x3, y, and z) of the Eq. (18) for the quintessence and phantom field

Point Existence x1 x2 x3 y z wφ �φ weff

(a) Q = 0 0 0 Any 0 0 – 0 0

(b) ε = +1 −√
6Q

3 0 0 0 0 1 2Q2

3
2Q2

3

(c) Any 0 0 Any 0 1 – 0 1
3

(d) ε = +1 −1√
6Q

0 0 0
√

1 − 1
2Q2 1 1

6Q2
1
3

(e) ε = +1 2
√

6
3λ

0 0 2
√

3
3λ

√
1 − 4

λ2
1
3

4
λ2

1
3

(f) ε = +1 Any
√

1 − x2
1 0 0 0 1 1 1

(g) Any
√

6
2(λ+Q)

0 0
√

2Q(Q+λ)+3ε

2(λ+Q)2 0 −Q(Q+λ)
Q(Q+λ)+3ε

Q(Q+λ)+3ε

(λ+Q)2
−Q
λ+Q

(h) Any ελ√
6

0 0
√

1 − ελ2

6 0 −1 + ελ2

3 1 −1 + ελ2

3

The condition of existence, if any, is shown for the fixed point [point (a) exists only for Q = 0, for instance, while the point (b) does not exist for
the phantom field]. The table shows the correspondent equation of state for the dark energy (16), the effective equation of state (17), and the density
parameter for dark energy (13)

Table 2 Eigenvalues and
stability of the fixed points for
the quintessence (phantom) field

Point μ1 μ2 μ3

(a) 9
2 − 3

2 0

(b) Q2 − 3
2 Q2 − 3

2 0

(c) −1 −1 0

(d) −1 + 1
2Q2 −1 0

(e) See the main text

(f) 3x2
1 + √

6Qx1 3(x2
1 − 1) ∓x1

√
1 − x2

1

(g) − λ+4Q
2(λ+Q)

− 3(λ+2Q)
2(λ+Q)

0

(h) −3 + ελ(λ + Q) −3 + ελ2

2 0

μ4 μ5 Stability

(a) 3
2 − 1

2 Saddle

(b) Q(Q + λ) + 3
2 Q2 + 1

2 Unstable or saddle

(c) 2 1 Saddle

(d) 2 + λ
2Q 1 − Q2

2 Saddle

(e) See the main text

(f) 3 −
√

6x1λ
2 1 Unstable or saddle

(g) μ4d μ5d Saddle or stable

(h) −3 + ελ2

2 −2 + ελ2

2 Saddle or stable

this limit implies that x2 ∝ φθ̇/H → ∞ as well, provided
that H is finite. This issue occurred for the points (b) and
(d) to (h), as can be seen in Table 1 whose mathematical
inconsistency indicates that the these critical points are not
physically acceptable.

Since all critical points are similar to the ones found in the
literature [21,28,30] we reproduce the main results, which
are valid for the case of real scalar field, in the appendix for
the sake of completeness.

3.3 Summary

From the eight fixed points presented in the quintessence
(phantom) case, only (a) and (c) are physically viable and
they describe the sequence: radiation → matter. Both of
them are unstable, however, there does not exist a point
that describes the dark-energy-dominated universe. Thus the
extra degree of freedom due to the phase θ spoils the physi-
cally acceptable fixed points that exist for the case of real
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scalar field, indicating that the dynamical system theory
is not a good tool when one tries to analyze the complex
quintessence (phantom).

4 Tachyon dynamics

The complex tachyon field � = φeiθ , where φ is the absolute
value of the tachyon field and θ is a phase, is described by
the Born–Infeld Lagrangian

LBI = −√−gV (|�|)√1 − ∂μ�∂μ�, (26)

where V (φ) is the tachyon potential, which depends only on
the absolute value of the scalar field φ ≡ |�|. For a homoge-
neous field φ ≡ φ(t) and θ ≡ θ(t), in an expanding universe
with Friedmann–Robertson–Walker metric, the Lagrangian
becomes

LBI = −a3V (φ)

√
1 − φ̇2 − φ2θ̇2, (27)

where a ≡ a(t) is the scale factor. The equations of motion
for φ and θ are, respectively,

φ̈

1 − φ2θ̇2 − φ̇2
+ θ̈ + φ̇θ̇φ−1

(1 − φ2θ̇2 − φ̇2)

φ2φ̇θ̇

(1 − φ2θ̇2)

+3H φ̇ − φθ̇2

1 − φ2θ̇2
+ V ′(φ)

V (φ)
= 0, (28)

θ̈

1 − φ2θ̇2 − φ̇2
+ 3H θ̇ + 2φ̇θ̇

φ(1 − φ2θ̇2 − φ̇2)
= 0, (29)

where the prime denotes time derivative with respect to φ.
When the phase θ is zero, we recover the well-known equa-
tion of motion for the tachyon field.

The Friedmann equations for the complex tachyon, in the
presence of barothorpic fluids, are

H2 = 1

3

(
V (φ)√

1 − φ2θ̇2 − φ̇2
+ ρm + ρr

)
, (30)

Ḣ = −1

2

(
V (φ)(φ̇2 + φ2θ̇2)√

1 − φ2θ̇2 − φ̇2
+ ρm + 4

3
ρr

)
, (31)

The equation of state for the tachyon field yields

wφ = pφ

ρφ

= φ̇2 + φ2θ̇2 − 1, (32)

thus the tachyon behavior is between the cosmological con-
stant one (wφ = −1) and matter one (wφ = 0).

The interaction between the tachyon and the dark matter is
driven by the coupling Q = Qρmρφφ̇/H , which in turn we
consider that it modifies the right-hand side of Eq. (28). With

this form of coupling, the time dependence of the coupling
is implicit in the Hubble parameter H . We are now ready to
proceed the dynamical analysis of the system.

4.1 Autonomous system

The dimensionless variables for the case of tachyon field are

x1 ≡ φ̇, x2 ≡ φθ̇, x3 ≡ 1
Hφ

, y ≡
√
V (φ)√
3H

,

z ≡
√

ρr√
3H

, λ ≡ − V ′
V 3/2 , � ≡ VV ′′

V ′2 . (33)

Since φ̇ and θ are dimensionless variables, φ has dimension
of time.

The dark-energy density parameter is written in terms of
these new variables as

�φ ≡ ρφ

3H2 = y2
√

1 − x2
1 − x2

2

, (34)

so that Eq. (30) can be written as

�φ + �m + �r = 1, (35)

where the matter and radiation density parameter are defined
by �i = ρi/(3H2), with i = m, r . From Eqs. (34) and (35)
we see that x1, x2, and y are restricted in the phase plane by
the relation

0 ≤ x2
1 + x2

2 + y4 ≤ 1, (36)

due to 0 ≤ �φ ≤ 1. In terms of these new variables the
equation of state wφ is

wφ = x2
1 + x2

2 − 1, (37)

which is clearly a trivial extension for the complex scalar
field. The total effective equation of state is

weff = pφ + pr
ρφ + ρm + ρr

= −y2
√

1 − x2
1 − x2

2 + z2

3
, (38)

with an accelerated expansion for weff < −1/3. The dynam-
ical system for the variables x1, x2, x3, y, z and λ are

dx1

dN
= −(1 − x2

1 − x2
2 ) ×

⎡
⎣3x1 − √

3yλ + 3Q

⎛
⎝1 − z2 − y2

√
1 − x2

1 − x2
2

⎞
⎠

⎤
⎦ + x2

2 x3,

(39)

dx2

dN
= −x1x2x3 − 3x2(1 − x2

1 − x2
2 ), (40)

123



 31 Page 6 of 10 Eur. Phys. J. C   (2016) 76:31 

Table 3 Critical points (x1, x2, x3, y and z) of the Eq. (39), for the tachyon field

Point x1 x2 x3 y z wφ �φ weff

(a1) ±1 0 0 0 0 0 0 0

(a2) 0 ±1 0 0 0 0 0 0

(a3) 1 0 3
2 0 0 0 0 0

(a4) −Q ±√
1 − Q2 0 0 0 0 0 0

(b) Any ±
√

1 − x2
1 0 0 ±1 0 0 1

3

(c) 1 0 2 0 ±1 0 0 1
3

(d) 0 0 Any 0 ±1 −1 0 1
3

(e) 0 0 Any 1 0 −1 1 −1

(f1) λyc√
3

0 0 yc 0 λ2 y2
c

3 − 1 1 wφ

(f2) λyc√
3

0
√

3λyc
2 yc 0 λ2 y2

c
3 − 1 1 wφ

(g) −Q 0 0 0 0 Q2 − 1 0 0

(h1) x f 0 0 y f 0 x2
f − 1 weff

wφ

x f y f λ√
3

− 1

(h2) x f 0
√

3λy f
2 y f 0 x2

f − 1 weff
wφ

x f y f λ√
3

− 1

The table shows the correspondent equation of state for the dark energy (37), the effective equation of state (38) and the density parameter for dark
energy (34)

dx3

dN
= −x1x

2
3 + x3

2

⎡
⎣3 + z2 − 3y2(1 − x2

1 − x2
2 )√

1 − x2
1 − x2

2

⎤
⎦ , (41)

dy

dN
= y

2

⎡
⎣−√

3x1yλ + 3 + z2 − 3y2(1 − x2
1 − x2

2 )√
1 − x2

1 − x2
2

⎤
⎦ ,

(42)

dz

dN
= −2z + z

2

⎡
⎣3 + z2 − 3y2(1 − x2

1 − x2
2 )√

1 − x2
1 − x2

2

⎤
⎦ , (43)

dλ

dN
= −√

3λx1y

(
� − 3

2

)
. (44)

4.2 Critical points

The fixed points of the system are obtained by setting
dx1/dN = 0, dx2/dN = 0, dx3/dN = 0, dy/dN = 0,
dz/dN , and dλ/dN = 0 in Eq. (39). When � = 3/2,
λ is constant the potential has the form found in [32,43]
(V (φ) ∝ φ−2), known in the literature for both coupled
[28,29] and uncoupled [17,18] dark energy3. The fixed points

3 The equation for λ is also equal zero when x1 = 0, y = 0 or λ = 0,
so that λ should not necessarily be constant, for the fixed points with
these values of x1 or y. However, for the case of dynamical λ, the
correspondent eigenvalue is equal zero, indicating that the fixed points
is not hyperbolic.

are shown in Table 3. Notice that x3 and y cannot be negative
and recall that �r = z2.

The fixed points yc, x f , and y f are shown below

yc =
√√

λ4 + 36 − λ2

6
, (45)

x f = −Q

2
±

√
Q2 + 4

2
, (46)

y f =
−λx f +

√
λ2x2

f + 12
√

1 − x2
f

√
12(1 − x2

f )
. (47)

The eigenvalues of the Jacobian matrix were found for each
fixed point in Table 3. The results are shown in Table 4.

The points (a1)–(a4) correspond to a matter-dominated
solution, since �m = 1 and weff = 0. They are saddle points
because at least one eigenvalue has an opposite sign. The
point (a4) is actually the point (a1), with Q = 1. Points (b),
(c), and (d) are radiation-dominated solutions, with �r = 1
and weff = 1/3. The difference between them is that (b) and
(c) have wφ = 0, while (d) has wφ = −1 and admits any
value for x3. They are unstable [(b)] or saddle points [(c) or
(d)].

The point (e) is in principle a dark-energy-dominated solu-
tion with �φ = 1 and weff = wφ = −1, whose existence is
restrict to λ = 0. However, a careful analysis shows that the
Jacobian matrix for this critical point has zero eigenvector,
thus it cannot be considered. Points (f1) and (f2) are also a
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Table 4 Eigenvalues and stability of the fixed points for the tachyon field

Point μ1 μ2 μ3 μ4 μ5 Stability

(a1) 6(1 ± Q) 0 3
2

3
2 − 1

2 Saddle

(a2) 0 6 3
2

3
2 − 1

2 Saddle

(a3) 6(1 + Q) − 3
2 − 3

2
3
2 − 1

2 Saddle

(a4) 0 6(1 − Q2) 3
2

3
2 − 1

2 Saddle

(b) 6x2
1 6x2

2 2 2 1 Unstable

(c) 6 −2 −2 2 1 Saddle

(d) −3 −3 2 4 1 Saddle

(e) −3 −3 0 −3 −2 Stable

(f1)
√

3Qλyc − 3
(

1 − λ2 y2
c

3

)
−3

(
1 − λ2 y2

c
3

)
λ2 y2

c
2

λ2 y2
c

2 − 3 λ2 y2
c

2 − 2 Saddle

(f2)
√

3Qλyc − 3
(

1 − λ2 y2
c

3

)
λ2 y2

c
2 − 3 − λ2 y2

c
2

λ2 y2
c

2 − 3 λ2 y2
c

2 − 2 Stable for λ < 0
or Q = 0

(g) −3(1 − Q2) −3(1 − Q2) 3
2

3
2 − 1

2 Saddle

(h1) 3
(
x2
f − x f y f λ√

3

)
−3(1 − x f )

3
2

3
2

(
x f y f λ√

3
− 2

)
3
2

(
x f y f λ√

3
− 4

3

)
Saddle

(h2) 3
(
x2
f − x f y f λ√

3

)
−

√
3

2 λx f y f − 3(1 − x f ) −
√

3
2 λx f y f

3
2

(
x f y f λ√

3
− 2

)
3
2

(
x f y f λ√

3
− 4

3

)
Stable

dark-energy-dominated solution (�φ = 1) whose equation
of state depends on λ, which in turn can be either constant
or zero. The case with constant λ are shown in Table 3 and
an accelerated expansion occurs for λ2 < 2/

√
3. For λ = 0

we recover the point (e). The eigenvalues μ2, μ4, and μ5 of
the fixed point (f1) and (f2) are always negative. For these

points λ2 y2
c

3 ≤ 1, then the first eigenvalue is also negative if
Q = 0, λ < 0 or

√
3Qλyc < 3. Therefore, the point (f2)

describes a dark-energy-dominated universe and can lead to
a late-time accelerated universe if the requirement μ1 < 0 is
satisfied. On the other hand, (f1) is a saddle point. The effec-
tive equation of state depends only on λ, so the coupling Q
only changes the property of the fixed point.

The point (g) is also a saddle point with a matter-
dominated solution, however, different from (a1)–(a4), the
equation of state for the dark energy wφ is no longer zero but
depends on Q, leading to an universe with accelerated expan-
sion for Q2 < 2/3. For this point the coupling is restrict to
values 0 ≤ Q2 ≤ 1.

The last fixed points (h1) and (h2) are valid for x f �= 0,4

for Q �= 0 and for constant λ, and its behavior depends on
Q. In order to have x2

f ≤ 1, we must have Q > 0 for the case
with plus sign in x f (46), while we have Q < 0 for the minus
sign case. We restrict our attention for the plus sign case.
When Q → ∞, x f → 0, and y f → 1, in agreement with the
restriction (36). In addition, as pointed out in [39], the fixed
points exist for some values of λ > 0 and Q, due to Eq. (36).
The two fixed points have a similar behavior, however, (h1)
is a saddle point, while (h2) is stable. Such a difference is

4 The case for x f = 0 is the fixed point (e).

due to the eigenvalue μ3 (Table 4). The eigenvalues μ4 and
μ5 are always negative because weff is between 0 and −1.
The first eigenvalue is also negative because �φ ≤ 1, thus

x2
f − 1 ≤ x f y f λ√

3
− 1, therefore

x f y f λ√
3

≥ x2
f , since x f is

always positive. Therefore, the point (h2) can lead to a late-
time accelerated universe, depending on the value of λ and
Q.

As in the case of quintessence and phantom, the fixed
points that have x3 = 0 [(a1), (a2), (a4), (b), (f1), (g), and
(h1)] indicate that φ → ∞ and therefore x2 ≡ φθ̇ → ∞
as well. However, this limit is in contradiction to Table 3 for
x2 showing that these seven critical points are not physically
acceptable.

All fixed points reproduce the previous results in the litera-
ture [28,32,39,43] and they are generalizations of those anal-
yses, with the same stability behavior for the critical points.
This indicates that the degree of freedom due to the complex
scalar has no effect on the stability and on the evolution of
the system of equations, when compared with the case of real
scalar field.

4.3 Summary

The critical points showed in the tachyonic case describe
the three phases of the universe: the radiation-dominated
era, the matter-dominated era, and the present dark-energy-
dominated universe. The matter-dominated universe can be
described by the saddle point (a3). There are two points that
can represent the radiation-dominated era: (c) and (d). The
two points are saddle, with the additional difference that the
point (d) has an equation of state for dark energy equals −1.
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A tachyonic-dominated universe is described by the points
(f2) and (h2). The point (f2) can be stable only if the coupling
is zero or λ < 0. The last fixed point (h2) is stable and can
describe an accelerated universe depending on the value of
λ and Q.

From all the critical points, the cosmological transition
radiation → matter → dark energy is achieved considering
the following sequence of fixed points: (c) or (d) → (a3) →
(f2) [λ dependent] or (h2) [Q and λ dependent]. Although the
sequence is viable, the form of the potential dictates whether
the fixed points are allowed or not. Among several possibili-
ties in the literature, the potential V (φ) ∝ φ−n , for instance,
leads to a dynamically changing λ (either if λ → 0 for
0 < n < 2, or λ → ∞ for n > 2) [19]. A dynamically
changing λ is allowed for the fixed points (a3), (c), and (d).
On the other hand, points (f2) and (h2) require a constant λ,
implying V (φ) ∝ φ−2 [17,18,28,29].

5 Conclusions

In this paper we studied coupled dark energy using a com-
plex scalar field, in the light of the dynamical system theory.
There were analyzed three possibilities: quintessence, phan-
tom, and tachyon field. All three possibilities are known in
the literature for the real field [21,28,37,39], and for uncou-
pled and complex quintessence field [33]. Thus a natural
question that arises is how a complex scalar field changes
the previous results and if there are new fixed points due to
the complex field. Although some equations for the dimen-
sionless variables are trivial extensions of the real field case
(e.g. the equation of state for the scalar field), the differ-
ential equations were generalized. All fixed points found
here are in agreement with the previous results, with no new
fixed points, however, there are some crucial differences. For
the quintessence and the phantom there is a contradiction
between the fixed points x2 and x3 when the latter is zero.
This situation occurs for almost all fixed points and the only
two exceptions are unstable points that represent respectively
the radiation and matter era, so the dark-energy-dominated
universe is absent. Therefore the extra degree of freedom
spoils the results known in the case of real scalar field. For
the tachyon field all the critical points are also similar to the
real field case, with the same stabilities. Therefore, the extra
degree of freedom due to the complex tachyon field plays no
role on the stability of the critical points. Although the results
presented here enlarge the previous results found in the lit-
erature, with the generalization of the equations of motion,
the dynamical system theory does not provide further infor-
mation in what is already known for the case of real scalar
field, letting open the possibility of studying complex scalar
fields by other ways of analysis.
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Appendix

In this appendix we reproduce the results in the literature
[21,28,30] regarding the fixed points presented in Table 1,
for the sake of completeness.

The fixed point (a) is a saddle point which describes a
matter-dominated universe, however, it is valid only for Q =
0. The other possibility of matter-dominated universe with
Q �= 0 arises from the fixed point (b). This point is called “φ-
matter-dominated epoch” (φMDE) [21] and it can be either
unstable or a saddle point. However, due to �φ = 2Q2/3 

1, the condition Q2 
 1 should hold in order to the point be
responsible for the matter era. Thus μ1 and μ2 are negative,
while μ5 is always positive and μ4 is positive for Q(λ+Q) >

−3/2. Therefore (b) is a saddle point.
The radiation-dominated universe is described by the crit-

ical points (c), (d), and (e), only for the quintessence field.
The first two points are saddle, as is easily seen in Table 2,
and the last one had its stability described numerically in
[21]. However, both (d) and (e) are not suitable to describe
the universe we live in, due to nucleosynthesis constraints
[44,45]. The nucleosynthesis bound �BBN

φ < 0.045 [46]

implies Q2 > 3.7 for the point (d) and λ2 > 88.9 for the
point (e). Thus the requirement for the point (d) is not con-
sistent with the condition of point (b) and the constraint on
λ2 does not allow a scalar field attractor, as we will se soon.
Therefore, the only viable cosmological critical point for the
radiation era is (c).

The point (f) is an unstable or saddle point and it does not
describe an accelerated universe. The last possibility for the
matter era is the point (g), with eigenvalues showed in Table 2
and Eq. (25). Since weff � 0 for |λ| � |Q|, the fixed point
is either stable or stable spiral, hence the universe would not
exit from the matter dominance.

On the other hand, the point (g) can lead to an accelerated
universe, for the quintessence field case (ε = +1), provided
that 3 < λ(λ + Q), because �φ ≤ 1, and Q > λ/2, from
weff < −1/3. Regarding λ > 0, the two eigenvalues μ1 and
μ2 are always negative and since Q > 3/λ−λ, the behavior
of μ4d,5d depends on the second term in the square root of
(25)
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A ≡ 8[3 − λ(λ + Q)][3ε + 2Q(λ + Q)]
3(λ + 2Q)2 . (48)

From the condition 3 < λ(λ + Q) we have A < 0, and
if A < 1 the fixed point is stable. Otherwise, i.e. A > 1, the
critical point is a stable spiral. Thus the value of the coupling
dictates which behavior the fixed point will have: stable for
3/λ − λ < Q < Q∗ or stable spiral for Q > Q∗, where
Q∗ is the solution of A = 1. However, even in the case
where one can get �φ � 0.7 [45,47], there are no allowed
region in the (Q, λ) plane corresponding to the transition
from φMDE to scaling attractor [21]. Thus it is hard to gather
the conditions for the point φMDE and the point (g). For the
case of the phantom field (ε = −1), the condition y2 > 0
implies 2Q(Q + λ) > 3. Hence, μ4 < 0 and μ5 > 0, and
(g) is a saddle point.

The last fixed point (h) leads to an accelerated universe
provided that λ2 < 2. With this condition, the eigenvalues
μ2, μ4, and μ5 are always negative. The first eigenvalue μ1

is also always negative for the phantom field, and it is for
the quintessence field with the condition λ(λ + Q) < 3.
Therefore, the point is stable if the previous conditions are
satisfied.
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