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Abstract We analyse here in LO the physical properties of
the Green function solution for the BFKL equation. We show
that the solution obeys the orthonormality conditions in the
physical region and fulfills the completeness requirements.
The unintegrated gluon density is shown to consists of a set
of a few poles with parameters which could be determined
by comparison with the DIS data of high precision.

1 Introduction

The BFKL equation is particularly well suited for description
of the behaviour of the gluon density in the low-x region. Its
application in this region is of major importance for the LHC
and cosmic ray physics. In recent years we have therefore
investigated [1–3] the solution of this equation using the dis-
crete eigenfunction method, first proposed in [4]. The method
is closely connected to the Green function approach which
is, in our view, the most suitable since it does not require any
cutoff on the BFKL dynamics.

The results reported in these papers were as interesting
as they were puzzling. The proper description of data was
only achieved by involving a large number of eigenfunc-
tions, O(100), contributing in a slowly convergent way. On
the other hand, the third and higher eigenfunctions were
already sensitive to physics at very large scales, much beyond
the Q2 region of data. If true, this property would offer a
framework for investigations of Beyond the Standard Model
(BSM) physics at large energy scales using relatively moder-
ate beam energies combined with precision measurements.

The slow convergence of the procedure given in [1–3]
suggests, in particular, that the discrete eigenfunctions might
not by themselves form a complete set. Therefore, in a recent
paper [5] we rederived the BFKL Green function using the
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complete BFKL spectrum and showed how the imposition
of both UV and IR boundary conditions leads to a discrete
set of poles.

The purpose of this paper is to investigate the properties of
the full Green function solution and to relate it to our previous
work.

The paper is organised as follows: In Sect. 1 we reca-
pitulate the results of [5] which were obtained in the semi-
classical approximation. To illustrate the role of approxima-
tions used in our method we discuss in Sect. 2 the case in
which the coupling runs without thresholds. In this case it
is possible to obtain the Green function in analytic form,
which reduces the solution to an expression in terms of Airy
functions in the diffusion approximation in which the char-
acteristic function, χ(ν), is simplified to a quadratic function
of oscillation frequency, ν. In Sect. 3 we discuss a restriction
that is imposed on possible paths for the integration over
the Mellin transform variable, ω, arising from thresholds in
the running of the coupling, and discuss the agreement of
numerical results using two substantially different ω-paths.
In Sect. 4 we discuss the orthonormality and completeness of
the BFKL eigenfunctions obtained within the approximation
that we are using and report that in order to obtain the required
completeness relation it is necessary to include the contin-
uum of states for which ω is negative. In Sect. 5 we discuss the
behaviour of the residues of the poles as the gluon transverse
momentum increases and show that the leading pole is atten-
uated so that the subleading poles acquire an ever-increasing
significance as the transverse momentum increases. In Sect.
6 we present the results for the unintegrated gluon density
in a model in which a very simple ansatz is used for the
proton impact factor and for the phase of the oscillations of
the wavefunctions in the infrared regime. In Sect. 7 we dis-
cuss the convergence of the sum over poles and show that,
in contrast to the results of Refs. [1–3], in the formalism that
we are using here this convergence is quite rapid. Section
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8 discusses the role of the continuum for negative ω on the
calculation of the unintegrated gluon density and Sect. 7.3
shows the relation to the DGLAP calculation. In Sect. 7.4 we
discuss the behaviour of the gluon density as a function of
x at fixed low virtualities, k2

T , and show that qualitatively it
has properties similar to data and display clear contributions
from subleading poles. In Sect. 9 we show how the pres-
ence of new physics albeit at very large energies affects the
running of the coupling such that both the positions and the
residues of the poles are altered and this in turn gives rise to a
measurable change in the unintegrated gluon density. Section
9 contains our conclusions.

2 Green function of the BFKL equation

We showed [5] that the (Mellin transform of the) Green func-
tion for the BFKL equation with running coupling can be
solved in the semi-classical approximation in terms of Airy
functions, Ai(z) and Bi(z), where z is a function of the trans-
verse momentum of the QCD pomeron, kT , and the Mellin
transform variable, ω.

More precisely the equation for the Green function is

ωGω(t, t ′) −
∫

dt ′′
√

ᾱs(t)K(t, t ′′)

×√
ᾱs(t ′′)Gω(t ′′, t ′) = δ(t − t ′), (2.1)

where t = ln(k2
T /�2). We note that we have introduced the

running of the coupling in such a way that the hermiticity
of the kernel is preserved so that its eigenfunctions form a
complete orthonormal set. Equation (2.1) has a solution, in
the semi-classical approximation, of the form

Gω(t, t ′) = πNω(t)Nω(t ′)
× [

Ai(z(t))Bi(z(t ′)θ(t − t ′) + t ↔ t ′
]
. (2.2)

The argument z(t) of the Airy functions is given by

(−z(t))3/2 ≡ 3

2

∫ tc

t
dxνω(x), (2.3)

where

χ (νω(t)) = ω

ᾱs(t)
(2.4)

and χ(ν) are the eigenvalues of the kernel K. The parameter
tc is the (ω-dependent) value of t for which νω(tc) = 0. Nω(t)
is a normalisation factor given by

Nω(t) = |z(t)|1/4√
1
2 ᾱs(t)χ ′ (νω(t))

. (2.5)

This Green function is analytic in the entire ω-plane with
the exception of an essential singularity at ω = 0.

The expression on the RHS of Eq. (2.2) has the desired
ultraviolet behaviour, namely it is exponentially attenuated
as t → ∞, but the infrared behaviour (where t is small) is
not properly determined. To obtain the most general solution
to (2.1) this Green function should be generalised by adding
to Bi the solution of the homogeneous BFKL equation, i.e.
the transformation

Bi(z(t)) → Bi(z(t)) ≡ Bi(z(t)) + cot (φ(ω)) Ai(z(t)),

(2.6)

and Eq. (2.2) becomes

Gω(t, t ′) = πNω(t)Nω(t ′)
× [

Ai(z(t))Bi(z(t ′)θ(t − t ′) + t ↔ t ′
]
. (2.7)

The transformation (2.6) plays the dual role of provid-
ing a set of poles at the values of ω for which the function
φ(ω) = nπ and fixing the phase of the oscillatory behaviour
of the Green function for very small t (or t ′), thereby provid-
ing the connection between the determination of the infrared
behaviour of the Green function and the position of the poles,
originally suggested in [4].

It was pointed out in [5] that upon inverting the Mellin
transform of the amplitude, by integrating along a suitable
path in the ω-plane, the saddle-point approximation, used to
match the BFKL solution with the result of a DGLAP analysis
[6–12], could be valid provided the saddle point was to the
right of all the poles in the ω-plane. On the other hand, if this
is not the case then the selected contour for the integral over
ω must surround the poles to the right of the saddle point
and will provide significant supplementary contributions to
the unintegrated gluon density which are not matched to the
DGLAP result.

In this paper we report on a numerical analysis of the
above-mentioned semi-classical solution and discuss the
behaviour of the eigenfunctions of the kernel. We confine
ourselves to the leading order BFKL kernel. The effects of
the large components of the NLO BFKL kernel will be dis-
cussed in a subsequent paper.

3 Explicit solution in the absence of thresholds

We begin by considering the simplified case in which the
running coupling is given by

ᾱs(t) = 1

β̄0t
(3.1)

and β̄0 is a constant.
Consider the eigenfunctions, fω(t) of the kernel with run-

ning coupling∫
dt ′

√
ᾱs(t)K(t, t ′)

√
ᾱs(t ′) f (ω, t ′) = ω fω(t), (3.2)
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The eigenfunctions may be written in integral form as

fω(t) =
√

t

2πω

∫
C

dνgω(ν)eiνt (3.3)

with

ln (gω(ν)) = −i

β̄0ω

∫ ν

0
χ(ν′)dν′. (3.4)

Provided gω(ν) is square-integrable, the contour C may be
taken to be along the real axis in the ν-plane and we have

fω(t) =
√

t

2πω

∫ ∞

−∞
dνgω(ν)eiνt . (3.5)

These eigenfunctions obey the orthonormality relation
∫

dt fω(t) f ∗
ω′(t) = 2πδ(ω − ω′) (3.6)

and the completeness relation
∫

dω fω(t) f ∗
ω(t ′) = 2πδ(t − t ′). (3.7)

For the leading order BFKL equation with running cou-
pling, gω is given by

gω(ν) = g∗
ω(−ν) = (

g∗
ω(ν)

)−1

= e2iγEν/(β̄0ω)

[



( 1
2 + iν

)



( 1
2 − iν

)
]1/(β̄0ω)

. (3.8)

The integral over ν in Eq. (3.3) can be approximated by a
Gaussian integral around the saddle point, νω(t), given by

χ (νω(t)) = β̄0ωt. (3.9)

For sufficiently small t the eigenfunctions have an oscillatory
behaviour

fω(t) ∝
√

t

χ ′ (νω(t))

× cos

(
π

4
+ tνω(t) − 1

β̄0ω

∫ νω(t)

0
dν′χ(ν′)

)
. (3.10)

In terms of the function gω(ν), the Green function may be
written (see [13]) as

Gω(t, t ′) = −
√
t t ′

4πω

∫ ∞

−∞
dν

∫ ∞

−∞
dν′eitνeit ′ν′

× [
iε(ν + ν′) + c(ω)

]
gω(ν)gω(ν′), (3.11)

where c(ω) is an arbitrary function of ω and this second
term reflects the fact that one can add to a Green function
any solution to the homogeneous part of the equation for the
Green function. If we write

c(ω) ≡ cot (φ(ω)) , (3.12)

then in the semi-classical limit, we can interpret φ(ω) as
being the phase of the oscillations of the BFKL eigenfunc-
tions at some small value of t .

That (3.11) is indeed the solution to the equation for the
Green function can be seen by applying the (hermitian) oper-
ator

O(t, t ′) ≡ ωδ(t − t ′) − 1√
β̄0t

K(t, t ′) 1√
β̄0t ′

and using∫
dt ′K(t, t ′)gω(ν)eiνt

′ = −i β̄0ω
dgω(ν)

dν
eiνt (3.13)

to get
∫

dτO(t, τ )Gω(τ, t ′) = −
√
t t ′

4π

∫ ∞

−∞
dν

∫ ∞

−∞
dν′

×
{(

gω(ν) + i

t

dgω(ν)

dν

) [
iε(ν + ν′) + cot (φ(ω))

]

× gω(ν′)eitνeit ′ν′
}

. (3.14)

Integrating overν by parts and using gω(−ν) = (gω(ν))−1

yields
∫

dτO(t, τ )Gω(τ, t ′) =
√
t t ′

4π

∫ ∞

−∞
dν

×
∫ ∞

−∞
dν′2δ(ν + ν′)eitνeit ′ν′

gω(ν)gω(ν′) = δ(t − t ′).

(3.15)

Thus we see that it is the factor ε(ν+ν′) inside the integra-
tion over ν and ν′ that generates the required inhomogeneous
term in the equation for the Green function.

For small t (t < t ′) this Green function has an oscillatory
t behaviour

Gω(t, t ′)

∼ sin

(
φ(ω) + π

4
+ tνω(t) − 1

β̄0ω

∫ νω(t)

0
dν′χ(ν′)

)
.

(3.16)

The phase of these oscillations fixed by the boundary con-
ditions at some small value, t0, of t determines the function
φ(ω) and hence the positions of the poles at ω = ωn where
φ(ω) = nπ .

The Green function has a spectral representation in terms
of these poles, namely

Gω(t, t ′) =
∑
n

fωn (t) fωn (t
′)

(ω − ωn)
, (3.17)

and we see from the completeness relation that

lim
ω→∞Gω(t, t ′) = δ(t − t ′)

ω
. (3.18)
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In the limit t ′ → −∞ (keeping t fixed), the integral over
ν′ may be approximated by its contributions in the regions
of the two saddle points at

ν′ = ±νω(t ′)

where

χ(νω(t)) = β̄0ωt. (3.19)

In this limit, |νω(t ′)| > |ν| and so the function ε(ν + ν′) is
replaced by ±1 at the saddle points ±νω(t ′), respectively.

We define

sω(t) ≡ tνω(t) − 1

β̄0ω

∫ νω(t)

0
χ(x)dx . (3.20)

Performing the gaussian integrals over ν and ν′ around the
two saddle points we obtain

lim
t ′→−∞Gω(t, t ′) = −1

2

√
π t ′

χ ′(νω(t ′)

{
i

(
eisω(t ′)

√
i

− e−isω(t ′)
√−i

)

+ cot (φ(ω))

(
eisω(t ′)

√
i

+ e−isω(t ′)
√−i

)}
fω(t)

(3.21)

= −
√

π t ′
χ ′(νω(t ′)

{
cos

(
sω(t ′) + π

4

)

+ cot (φ(ω)) sin
(
sω(t ′) + π

4

) }
fω(t).

(3.22)

Exploiting the symmetry under t ↔ t ′, we arrive at the
semi-classical approximation for the Green funcion in the
region

t, t ′ � tc ≡ 4 ln 2

β̄0ω
,

Gω(t, t ′)

= π
√
t t ′√|χ ′(νω(t)||χ ′(νω(t ′)|

{
θ(t − t ′) sin

(
sω(t) + π

4

)

×
[
cos

(
sω(t) + π

4

)

+ cot(φ(ω)) sin
(
sω(t) + π

4

)]
+ t ↔ t ′

}
. (3.23)

This is the approximation to the Green function given in
Eq. (2.7) when t, t ′ � tc. A similar argument, using the
semi-classical approximation, can be used to show that Eq.
(2.7) matches the semi-classical approximation when t or
t ′ � tc However, the semi-classical approximation breaks
down if t or t ′ ≈ tc, since νω(t) becomes very small and the
curvature at the saddle points becomes small. Nevertheless,
as we have shown in [5], in this limit the characteristic func-
tion may be approximated by a function which is quadratic
in ν such that the homogeneous part of the equation for the

Green function reduces to Airy’s equation and the particular
combination of Airy functions given in Eq. (2.7) generates
the appropriate inhomogeneous term, so that Eq. (2.7) is a
good approximation to the Green function in all regions of t
and t ′.

Henceforth we take the running coupling to be given by

1

ᾱs(t)
= 1

ᾱs(t0)
+

∫ t

t0
β̄0(t

′)dt ′ (3.24)

where β̄0(t) has steps at the heavy particle thresholds. With
this more realistic function for the running coupling, it is
no longer possible to solve the Green function analytically,
even in integral form, and we confine ourselves to a numerical
analysis within the semi-classical approximation for which
the integral over the variable ν has a saddle point at νω(t).

4 Numerical solution using different paths
on the ω-plane

The unintegrated gluon density ġ(x, t) is given by the inverse
Mellin transform of the Green function by

ġ(x, t) = et/2

2π i

∫
C

dωx−ω

∫
dt ′Gω(t, t ′)�P (t ′), (4.1)

where �P (t) is the proton impact factor. We take the Green
function to be given by Eq. (2.7) and the running coupling
given by Eq. (3.24). The function φ(ω) is given by

φ(ω) + π

4
+

∫ tc

t0
νω(t ′)dt ′ = ηN P (4.2)

with tc given by the relation

χ(0) = ω

ᾱs(tc)
.

This means that at some small value, t0, of t the phase
of the eigenfunction with eigenvalue ω is given by a non-
perturbative phase, ηN P .1

For a numerical evaluation of the integral over ω, it would
be most efficient to identify the saddle point of the integrand
and select a path for ω which passes through that saddle point
and follow the path of steepest descent. In the case where the
saddle point lies to the left of any of the identified poles of
the Green function the integral must be supplemented by the
integral over a contour surrounding all poles to the right of
the saddle point.2

Unfortunately, there are restrictions on the permitted paths
in the case where the running coupling encounters thresholds.

1 ηN P can be a function of ω but in this paper we take it to be constant,
although for a realistic fit to the data we would expect it to possess
some ω dependence. Note that φ(ω) does not depend on the choice of
the infrared scale, t0, but the infrared phase ηN P does.
2 A full discussion of this is found in [5].
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In order to consider complex values of ω, we require complex
values of αs(t) and hence complex values of t . In the presence
of fermion masses mi , the running coupling to leading order
is given in terms of its measured value at t = t by [14]

1

ᾱs(t)
= 1

ᾱs(t)
+ 11

12
(t − t)

−1

9

∑
i

[
F

(
�2et

4m2
i

)
− F

(
�2et

4m2
i

)]
(4.3)

where the function F , given by

F(x) =
√

(1 + x)

x
ln

(√
(1 + x) + √

x
)

,

is multi-valued in the complex plane. The running coupling is
therefore only uniquely specified in terms of t corresponding
to kT covering the complex plane once so that the imaginary
part of t is restricted to

−π ≤ �m{t} < π,

which restricts the imaginary part of ᾱs and consequently
the imaginary part of ω. In particular, the calculation of the
argument of the Airy functions requires the identification of
ᾱs(tc), so that the restriction on the range of the imaginary
part of ᾱs leads to a corresponding restriction on the imagi-
nary part of ω. If the real part of ω is small then the real part of
α(tc) is small, i.e. the real part of tc is large. The restriction
on the allowed range of the imaginary part of tc therefore
implies that the imaginary part of ω must also be small - i.e.
we need to select paths which are very close to the real axis
in this region. Furthermore, the restriction on the imaginary
part pushes the possible paths towards the essential singular-
ity at very small ω so that we could perform the integration
only to some small value of ωmin of around 0.05.

We have selected several paths whose imaginary part dif-
fer substantially for large ω. Two of them are shown as an
example in Fig. 1. We have performed the integral of Eq.
(4.1) along all of these paths and find negligible difference
over a large range of t for t = 1 to t = 17 (corresponding to
transverse momentum kT ≈ 2 TeV).3

In principle, this result should be expected, since there
are no singularities of the Green function off the real axis
and therefore one can deform the contour into any contour
that surrounds the real axis and crosses the real axis to the
right of all poles. However, our contours are not fully closed
although the results, at lower t values,4 were independent
of the ωmin value. This means that the missing piece of the
paths gave a negligible contribution, in this t region. The
independence of the results from ωmin was a first sign that

3 Throughout this paper we have taken the QCD scale � to be 350
MeV.
4 e.g. in the t region corresponding to kT < 100 GeV at x = 10−3.

omega path

Re( )

Im
(

)

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 0.2 0.4 0.6 0.8 1

Fig. 1 Two different paths in the ω-plane which were used to invert
the Mellin transform of the Green function

Table 1 The first seven eigenvalues with the corresponding tc values
for ηN P = −π/4

n 1 2 3 4 5 6 7

ω 0.389 0.207 0.145 0.113 0.093 0.078 0.0682

tc 8.52 18.7 29.2 38.6 48.0 57.2 66.2

the full Green function of Eqs. (2.1) and (2.6) behaves dif-
ferently from the slowly converging sum of eigenfunctions
constructed in Refs. [1–3]. In Sect. 7 we will explain in detail
why this happens.

In addition, the good agreement of the integrals over the
different paths shows the numerical consistency of our Mellin
transform integration.

5 Properties of the eigenfunctions

The Green function of the BFKL equation

Gω(t, t ′) = πNω(t)Nω(t ′)
× [

Ai(z(t))Bi(z(t ′)θ(t − t ′) + t ↔ t ′
]

(5.1)

has poles at ω = ωn where φ(ωn) = nπ. If the infrared phase
ηN P is set to a constant (ω-independent) value of −π/4, the
first few eigenvalues are shown in Table 1.

Except for the first three of these, the eigenvalues are well
approximated by

ωn = 1

1.9(n + π
4 )

,

consistent with the estimate found in [1,2,4].
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These correspond to a discrete set of eigenvalues of
the BFKL kernel with running coupling whose normalised
eigenfunctions are given by

fωn (t) =
√

π

φ′(ωn)
Nωn (t)Ai(z(t)). (5.2)

These functions look superficially like the eigenfunc-
tions of Refs. [1–3]; the Airy functions were defined exactly
in the standard way and the normalisation coefficient was
previously determined numerically (from the requirement
that every eigenfunction should be normalised to unity).
Here the normalisation coefficient, Nωn , is known analyt-
ically and is given by Eq. (2.5); the first factor in Eq.
(5.2) arises from the conversion between the continuum
and discrete eigenfunctions. The continuum ones are nor-
malised to a δ-function in ω whereas the discrete ones are
normalised to a Kronecker δ-function in the eigenfunction
number, n, i.e.∫

fωn (t) f
∗
ωn′ (t)dt = δnn′ . (5.3)

This conversion factor can be obtained from the relation
∫ ωn+�ωn

ωn

φ′(ω)dω = π

where �ωn is the separation of the nth and (n + 1)th eigen-
values. For large n the eigenvalues are closely packed and
the separation to the eigenvalues may be approximated by

�ωn = π

φ′(ωn)
.

The eigenfunctions start by oscillating for small t with n
turning points for t < tc and are evanescent for t > tc. The
first three such eigenfunctions are plotted in Fig. 2

In Table 2 we show the numerical results for the orthonor-
mality relation (5.3) evaluated for the first seven eigenfunc-
tions of Eq. (5.2).

We see that the use of the semi-classical approximation
has only had a very small effect on the orthonormality rela-
tion (5.3). Furthermore, in order to preserve the validity of
the perturbative expansion, we cannot integrate over all val-
ues of t , but only for t > t0. However, the eigenfunctions
are small at small values of t . To see this we note that the
additional semi-classical factor, Nω(t), given by Eq. (2.5) is
constant for t ≈ tc, where the Airy functions alone is a good
approximation to the eigenfunction, but for sufficiently small
t , the variable z and χ ′ (νω(t)) both become very insensitive
to t so that Nω(t) then has a t dependence ∼1/

√
ᾱs(t) –

i.e. it decreases in the infrared region as ᾱs(t) grows. The t
dependence of these normalisation factors for the first three
eigenfunctions is shown in Fig. 3.

From Table 2 we find that the orthonormality condition
is obeyed to a very high accuracy. We consider this as a

Normalized eigenfunctions

1
2
3

t

f n
-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

5 10 15 20 25 30 35 40

Fig. 2 The first three discrete eigenfunctions, fn plotted against t ,
showing that these eigenfunctions oscillate through (n − 1) nodes and
are then exponentially attenuated

strong indication that we are using a consistent set of physi-
cal approximations; in particular the semi-classical approxi-
mation and the running of αs are preserving the hermiticity
of the Hamiltonian.

For the completeness condition we consider the sum

N∑
n=1

fωn (t) f
∗
ωn

(t ′). (5.4)

For k′
T = 100 GeV we plot this sum in Fig. 4 for the N =

5, 10 and 20 eigenfunctions.
We see that the sum has converged5 after 10–20 eigen-

functions to a distribution on kT which is peaked at kT = k′
T .

However, we note that the distribution is very broad. This tells
us that the discrete eigenfunctions do not form a complete
set by themselves. Rather the completeness requires that the
sum over the discrete eigenfunctions must be supplemented
by the integral over the continuum of states for which ω takes
negative values.

For negative ω there is no critical transverse momentum,
tc, beyond which the eigenfunctions diminish, but have oscil-

5 The fast convergence of this sum will be discussed below.
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Table 2 The orthonormality relation for the first seven eigenfunctions for ηN P = −π/4

n\n′ 1 2 3 4 5 6 7

1 1.055 −0.0301 0.020 −0.0158 0.0124 −0.0107 0.0093

2 −0.030 1.011 −0.008 0.007 −0.005 0.005 −0.004

3 0.020 −0.009 1.005 −0.005 0.004 −0.003 0.003

4 0.016 −0.007 −0.005 1.003 −0.002 0.002 −0.002

5 0.012 −0.005 0.004 −0.002 1.001 −0.003 0.002

6 −0.011 0.005 −0.003 0.002 −0.003 1.000 −0.004

7 0.009 −0.004 0.003 −0.002 0.002 −0.004 1.000

1
2
3

t

N

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

5 10 15 20 25 30 35 40

Fig. 3 The normalisation factors (2.5) for the first three discrete eigen-
functions

latory behaviour for all t . We can write the negative omega
eigenfunctions as

f−|ω|(t) =
√

2

π

1√
ᾱs(t)χ ′ (νω(t))

× sin

(∫ t

t0
νω(t ′)dt ′ + ηN P

)
. (5.5)

Since the ultraviolet boundary condition does not impose
a specific ultraviolet phase, the spectrum is continuous.6

Although there is no ultraviolet phase-fixing condition, there

6 This is analogous to the fact that particles only form bound states for
negative energy. Here the analogue of the energy is −ω.

Fig. 4 The completeness sum shown as a function of kT and evaluated
at k′

T = 100 GeV, (5.4), for the first five eigenfunctions (red), first 10
eigenfunctions (blue) and first 20 eigenfunctions (black)

can be an infrared boundary condition which determines the
phase of the oscillations at small t . For small positive ω the
eigenfunctions are very closely spaced and become indis-
tinguishable from a continuum. For small negative ω, the
non-perturbative phase should match its value for small pos-
itive ω in order to ensure a smooth function as ω changes
sign. Note that for large negative ω it may be the case that
the infrared phase is not defined. An example of a mecha-
nism in which this happens is where the infrared behaviour of
QCD is simulated by an effective gluon mass [15]. Here it is
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Fig. 5 The eigenfunction fω(t), with ω = −1, of Eq. (5.5)

found that at some negative ω = −ω1, there is a phase transi-
tion below which the infrared phase is not determined. Other
possible sources of such phase transitions could arise from
the restoration of conformal invariance at some high-energy
scale.

For sufficiently large (negative) values of ω, νω(t) is given
by

νω(t) ≈ exp

(
−γE + |ω|

2ᾱs(t)

)
(5.6)

and

χ ′ (νω(t)) ≈ 2 exp

(
γE − |ω|

2ᾱs(t)

)
, (5.7)

from which we can see that for large t these negative ω

eigenfunctions have oscillations whose amplitude and fre-
quency increase rapidly as t increases. An example for which
ω = −1 is shown in Fig. 5.

With the inclusion of the continuum states, the complete-
ness relation becomes

lim
ωmin→−∞

∫ 0

ωmin

dω f−|ω|(t) f ∗−|ω|(t ′)

+
∞∑
n=1

fωn (t) fωn (t
′) = δ(t − t ′). (5.8)

In Fig. 6 we plot this quantity for ωmin = −1 and ωmin =
−2 for t ′ = 10. We see that as ωmin becomes more negative
the LHS of Eq. (5.8) becomes more sharply peaked - tending
to the required δ-function in the asymptotic limit ωmin →
−∞.

6 Transverse momentum dependence of the residues
of the poles

As t increases from t = t0, (where the infrared phase is set),
the eigenfunction fn oscillates through (n − 1) nodes before
the value of tc(n) for that eigenfunction, with (in leading
order)

tc(n) = 4 ln 2

ωn
, (6.1)

whereas for values of t > tc(n) it decays exponentially.
This means that for small t , t ≤ tc(1) the Green function as

a function of ω has a series of poles at ω = ωn with residues
that oscillate with amplitudes that decrease with increasing n,
reflecting a convergence of the sum over pole contributions.
This is shown in the left-hand graph of Fig. 7, where we have
taken t ′ = 2 (and ω taken close to the real axis).

In the region

tc(1) < t < tc(2),

t
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-5 -4 -3 -2 -1 0 1 2 3 4 5

t
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Fig. 6 The completeness relation (5.8) for t ′ = 10, with the negative ω eigenfunctions included for ω > −1 (left) and ω > −2 (right)
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Fig. 7 The Green function as a function of �e{ω} with ω close to the real axis. Left panel t = 2, t ′ = 2, right panel t = 12, t ′ = 2

the residue of the leading pole is attenuated and the leading
behaviour is now given by the first subleading pole, which
still has an oscillatory residue. This is shown in the right-
hand graph of Fig. 7 for t = 12. We note that for this
value of t the residue of the leading pole has significantly
diminished. Note also that the sign of the residue of the sub-
leading pole is opposite to the case where t = 2, reflect-
ing the oscillatory nature of the residues of the poles for
t < tc(n).

As t increases further, the residues of more and more of the
subleading poles start to decay and the inverse Mellin trans-
form of the Green function is dominated by the contribution
from smaller and smaller values of ωn .

This is in sharp contrast to the situation in which the
coupling is kept fixed and for which the inverse Mellin
(for large rapidity) transform is always dominated by the
region close to 4ᾱs ln(2). For the running coupling this is
not the case, but the value of t at which the particular sub-
leading poles dominates depend on the value of the rapid-
ity, Y (or ln(1/x) in the case of deep-inelastic scattering,
leading to an effective pomeron intercept which depends
on Y .

7 Properties of the unintegrated gluon density

The Green function also has a spectral representation given
by Eq. (3.17) and so we should be able to obtain a good
approximation to the unintegrated gluon density by summing
over the pole contributions from n = 1 to n = nmax.

As a qualitative demonstration of the unintegrated gluon
density that can be obtained from the BFKL Green func-
tion, we consider a very simple model in which the non-
perturbative phase, ηN P is set to the constant value7 of −π

4 .
The proton impact factor has to be positive everywhere and

7 This phase can, in principle, beω dependent although it must lie within
the range − π

2 < ηN P < π
2 to avoid cross-over between eigenvalues.

The freedom to select this phase as a function of ω is likely to be
necessary to get a fit between the BFKL formalism and experimental
data.

concentrated at the values of kT < O(1) GeV. It is usually
assumed to be of the form

�p(kT ) = Ak2
T e

−bk2
T , (7.1)

as discussed in Refs. [1–3]. The form (7.1) vanishes as k2
T

for small kT , as required by color transparency and the coef-
ficient b has the interpretation of the average inverse square
transverse momentum of partons inside the proton and is
therefore of the order of 10 GeV−2. The overlap integral of
the proton impact factor with the eigenfunction for t > t0 (t0
corresponds to kT = 1 GeV) is therefore determined by the
value of the amplitude at t = t0. This is due to the fact that the
proton impact factor falls for t > t0 at a rate which is much
faster than the oscillation frequency of the eigenfunctions in
the region t ∼ t0.

In Refs. [1–3] also other forms of the proton impact factor
were investigated, e.g. with different powers of k2 in the
prefactor and/or the exponent. It was found, however, that the
fit to the data has no sensitivity to such alternatives due, again,
to a small range of the impact factor in comparison with the
rate of change of the eigenfunction amplitudes. Therefore,
for the purpose of this paper it is sufficient to take an impact
factor which have support only at t = t0.

With these parameters we plot the unintegrated gluon den-
sity by performing the inverse Mellin transform given by Eq.
(4.1) over one of the contours shown in Fig. 1 and com-
pare it with the result obtained from the summation over
the first seven poles. We plot this in Fig. 8 for two differ-
ent values of x , namely x = 10−2 and x = 10−3. The
pole result was increased by a factor of 1.03 for visibility.
Without this increase both results would be indistinguish-
able. This perfect agreement was obtained because the path
enclosed all the poles used in the sum. The integration over
the path of Fig. 1 was performed down to ωmin = 0.065,
which is between the ωmin values of the seventh and eighth
pole. We checked this agreement for other values of ωmin and
the corresponding sum of poles and obtained an equally good
agreement.

This perfect agreement is, of course, due to Cauchy’s the-
orem. This agreement is, however, non-trivial because the

123



23 Page 10 of 16 Eur. Phys. J. C (2016) 76 :23

path

7-poles

k GeV

1

10

102

10 10
2

Fig. 8 The unintegrated gluon density (4.1), plotted as a function of
kT , for x = 10−2 and x = 10−3 determined with the path (solid line)
and pole (dashed line) evaluation. The pole result is increased by 3 %
for visibility

path integration is not closed what means that the missing
piece of the path gives a negligible contribution, which is a
first sign of a very good convergence of both the path and the
pole computations. In addition we note that both computa-
tions are numerically very different so it is therefore a very
good check of the computational accuracy.

Another reason for this very good agreement is the fact
that we limited the comparison to the region of relatively
small virtualities, kT < 100 GeV. At x = 10−2, this region
is experimentally relatively well accessible at LHC and pos-
sible future colliders. At x = 10−3 and for smaller x values
the experimentally accessible kT region diminishes substan-
tially. Notwithstanding this, the subleading poles turn out to
have a measurable effect (as we shall discuss in Sect. 7.4) and
this will be significant for the prospect, discussed in Sect. 9
of the identification of new physics from the shift in positions
and residues of subleading poles.

In the low kT region, as first indicated in Fig. 8, we have
a fast convergence of the gluon density as a function of the
number of poles used in the summation. In Fig. 9 we show
the gluon density computed with different number of poles.
The dashed-dotted line shows the leading pole contribution,
the dashed line shows the sum of five poles, the solid line the
sum of 10 poles and the dotted line the sum over 15 poles.
We see that x = 10−2 the first 10 poles almost converges
in the whole kT region, for x = 10−3 the 10 and 15 pole
summation are completely indistinguishable. We note also

that for transverse momenta below around 10 GeV for the
case x = 10−2 and around 20 GeV for smaller values of x ,
the leading pole provides a reasonable approximation.

7.1 Convergence of the sum over poles

We can understand how the pole sum converges by consider-
ing the behaviour of the normalised eigenfunctions for large
n. In this region the eigenvalues are very small (ωn ∼ 1/n)
and the critical momentum tc is very large (proportional to
n). This means that for accessible values of t the RHS of Eq.
(2.4) is very small and eigenfunctions oscillate with approx-
imately a fixed frequency, ν0, given by

χ(ν0) = 0.

In this region we may use Eq. (3.16) and the fact that the
phase of the oscillation is ηN P at t = t0 to write φ(ω) as

φ(ω) ≈ ηN P − π

4
− ν0t0 + 1

β̄0ω

∫ ν0

0
χ(ν′)dν′, (7.2)

so that

φ′(ω) ∼ 1

ω2 ∼ n2. (7.3)

The normalisation factor Nω(t) given by Eq. (2.5) has a
numerator factor |z(t)|1/4, which cancels an identical fac-
tor in the denominator of the Airy function Ai for t � tc and
the remaining factor is approximately n independent as we
replace νω(t) by ν0 in the argument of χ ′.

The upshot of this is that the two factors of 1/
√

φ′(ω)

(see Eq. (5.2)) give rise to a convergence of the eigenfunc-
tion series at small t (relative to tc) like ∼1/n2. Since tc
increases quickly with the eigenfunction number n, this fast
convergence always happens in the experimentally accessi-
ble region of t .

7.2 The role of the continuum for negative ω

We have seen in Sect. 4 that the contributions from eigenfunc-
tions with negative eigenvalues (i.e. negative ω) are essential
in order to provide a complete set of eigenfunctions obey-
ing the closure relation (5.8). In this section we discuss the
effect that the Green function with negative ω has on the
unintegrated gluon density.

The contribution to this expression for the unintegrated
gluon density from the (positive ω) poles vanishes asymp-
totically with t , reflecting the behaviour described in Sect. 5
whereby as t increases the residues of more and more of the
poles pass from an oscillatory behaviour to an exponentially
damped behaviour.
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Fig. 9 The unintegrated gluon density (4.1), plotted as a function of
kT , for x = 10−2 and x = 10−3 determined with the pole method. The
dashed-dotted line shows the leading pole contribution, the dashed line

shows the sum of five poles, the solid line the sum of 10 poles and the
dotted line the sum over 15 poles

The contribution,�ω<0 to g(x, k) from negativeω is given
by

�ω<0g(x, k) = lim
ωmin→−∞

∫ 0

ωmin

dωx−ω

×
∫

dt ′ f−|ω|(t) f−|ω|(t ′)�P (t ′), (7.4)

with f−|ω|(t) given by Eq. (5.5) [and t = 2 ln(kT /�)].
At first sight, one would expect this contribution to have a

negligible effect on the unintegrated gluon density owing to
the factor of xω. However, as can be seen from Fig. 10, for
values of ω just below ω = 0 the integrand of the RHS of

Eq. (7.4) is still quite large and rapidly oscillating, although
we can also see that the integral converges to a fairly small
value by ω = −1.

We have computed the gluon density including the con-
tribution from negative ω. The contribution of positive ω’s
was given by the sum of the first 10 poles and the contribu-
tion between ω = 0 and ω10 (where the poles are densely
packed) was treated as a continuum. The negative omega
contribution was evaluated from ω = −2 to ω = 0 using
Eq. (7.4). Figure 11 shows the unintegrated gluon density
for x = 10−2, x = 10−3 and x = 10−4 including the contri-
bution from negative ω. The dashed line shows the pole con-
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Fig. 10 Blue line the integrand for the RHS of Eq. (7.4). Black line the
integral from ω = 0 to ωmin = ω. We see that the integral has converged
well for ωmin = −1. We have taken x = 10−3 and t = 12

tribution (computed from the sum of 10 poles), the solid line
shows the same pole gluon density with added contribution
of negative ω’s. The negative ω contribution was computed
assuming that the infrared phase for positive and negative ω

match at ω = 0.
Figure 11 shows that the contribution of negative ω may

be substantial at x = 10−2 if the negative ω infrared phase is
fixed and substantially different from 0. However, this con-
tribution diminishes very fast with decreasing x as can be
seen in the same figure.

7.3 Comparison with DGLAP

We see from Fig. 8 that for x = 10−2 above kT of around 30
GeV, the unintegrated gluon density ceases to rise, whereas
for smaller values of x , e.g. x = 10−3, the unintegrated
gluon density continues to rise up to transverse momenta of
100 GeV. This can be understood from the t-dependence of

the residues of the poles as seen for example in Fig. 7. For
t = 12 (corresponding to kT of around 100 GeV), we see
that the residue of the subleading pole is of opposite sign
and slightly larger in magnitude than that of the leading pole
(whose residue is evanescent since t is above tc for that pole).
The contribution of the subleading pole is suppressed by a
factor of

x (ω1−ω2) ≈ x0.2.

For x = 10−2 the contribution from the subleading pole is
sufficient at such values of t to halt the rise in the uninte-
grated gluon density, whereas for x = 10−3 it is insufficient.
Nevertheless, at sufficiently large t the unintegrated gluon
density for x = 10−3 will also cease to rise and will even-
tually display oscillations. Above some large t , outside the
range of t (kT ) range considered in this paper, these oscil-
lation are certainly unphysical because they lead to negative
gluon density.

There is no reason a priori why the BFKL amplitude
should not display oscillations. The inversion of the Mellin
transform consists of an integral over ω which has greatest
support at the saddle point ωs . For values of t below tc for this
value of ω the amplitude displays oscillatory behaviour and
it is only when t exceeds this critical value that the oscilla-
tions halt. The unphysical oscillatory behaviour indicates that
the solution to the BFKL equation is being applied to deep-
inelastic scattering outside the kinematic range for which it
was intended. The application of the gluon scattering ampli-
tude in the Regge regime to the determination of the unin-
tegrated gluon density identifies the rapidity with ln(1/x),
which in LO is only valid provided the rapidity significantly
exceeds (t − t ′). Therefore for x = 10−2 and t ′ confined
to the low t region where the proton impact factor has non-
negligible support, we would expect the BFKL determina-
tion of the unintegrated gluon density to become invalid if t
is substantially larger than ∼5 (corresponding to kT of order
10 GeV).

We would expect this limitation on the allowed range
of t to be less stringent when NLO effects are taken into
account. Indeed, as pointed out by Salam [16], the LO treat-
ment ignores the discrepancy between the rapidity variable
used in a BFKL analysis (which is symmetric in t and t ′) and
the variable x . This introduces a factor of

eω(t−t ′)/2,

whose absorption generates the largest part of the NLO con-
tribution to the characteristic function, χ(ν). We would there-
fore expect the BFKL amplitude computed at NLO to be
less sensitive to the difference (t − t ′) than a purely LO
analysis.

It is well known that at sufficiently large t and suffi-
cient small x , the double logarithm limit (DLL) of a BFKL
analysis matches that of a DGLAP analysis. In Mellin

123



Eur. Phys. J. C (2016) 76 :23 Page 13 of 16 23

k GeV

1

10

10 10
2

k GeV

10

102

10 10
2

k GeV

10

102

10 10
2

Fig. 11 The unintegrated gluon density for x = 10−2, x = 10−3 and
x = 10−4 including the contribution of negative ω’s. The dashed line
shows the pole contribution (computed from the sum of 10 poles), the

solid line shows the same pole gluon density with added contribution
of negative ω’s

space, the region in which this approximation is valid is
given by

1 � ω � ᾱs(t).

In terms of x this translates into the limits

ᾱs(t) ln

(
1

x

)
� 1, ln

(
1

x

)
� 1.

Moreover, the match between a DGLAP analysis and a
BFKL analysis can only be valid if t exceeds tc at ω ≈ ωs ,
where ωs is the saddle point for the inversion of the Mellin
transform, i.e. the region around ωs is where the integran d
has its maximum support (assuming that this saddle point
lies to the right of all poles). We have seen that we need to
have values of x smaller than x = 10−3 in order to avoid a
signal from the oscillatory part of the BFKL eigenfunctions.
This means that in the case of a DGLAP analysis, the DLL
limit can only be reached for very small values of ᾱs(t),

i.e. values of t way beyond any reasonable experimentally
accessible region. For the case of BFKL with running cou-
pling we need to go to even smaller values of x before the
DLL becomes a reasonable approximation. This is because
for running coupling the contributions from leading poles
are attenuated at large t and we need to be at sufficiently
large rapidity to ensure that these leading poles dominate
the unintegrated gluon density. The input for a DGLAP fit
is the structure function at some reference photon invariant
mass, Q0. In the case of the discrete BFKL pomeron the input
would be the proton impact factor and the infrared phaseηN P .
As discussed in Sect. 6 this impact factor is expected to be
dominated by its value at t = t0 so that the only free param-
eter associated with this impact factor would be the overall
normalisation. The only other parameter which can be sub-
stantially varied is the infrared phase, ηN P , which should be
a function of the eigenvalue ωn . The infrared phases ηn are

123



23 Page 14 of 16 Eur. Phys. J. C (2016) 76 :23

kT
2 = 3 GeV2

kT
2  = 10 GeV2

kT
2 = 30 GeV2

kT
2 = 100 GeV2

kT
2 = 1000 GeV2

x

1

10

102

10
-5

10
-4

10
-3

10
-2

Fig. 12 The unintegrated gluon density as a function of x determined
from the pole contribution only, at various k2

T . The dashed line shows the
leading pole contribution normalised to the values of the gluon density
at x−2, for each k2

T

generated, as the eigenvalues ωn , by the quasi-bound states of
gluons inside the proton and therefore should be described by
a simple parameterisation. Our previous experience indicates
that two parameters may be sufficient in order to generate the
η − ω dependence required to fit data.

Because of these very different parameterisations, it is
quite likely that there exists an overlap kinematic region at
low-x for which data can be equally well described by a con-
ventional DGLAP fit or a fit to the discrete BFKL pomeron.
A detailed comparison of the discrete BFKL pomeron with
data will be performed in the next paper, after the NLO cor-
rections are introduced. At the same time we will discuss the
comparison with the DGLAP fit.

7.4 Dependence on x

It is well known from HERA data that the x dependence of F2,
which is directly connected to the gluon density, exhibits a
striking Regge type behaviour, i.e. ∼(1/x)λ. The parameter λ

is not a constant, it increases logarithmically with Q2 (which
we set here equal to k2

T ); see e.g. [17]. Such a behaviour is
also a feature of the gluon density obtained from the Green
function solution of BFKL investigated here; see Fig. 12. The
figure shows the unintegrated gluon density as a function of x ,
determined from the pole contribution only, for various val-
ues of k2

T . In this log–log plot the function (1/x)λ is a straight
line, so we see immediately that the gluon densities exhibit
the same striking linearity as the data. The slope λ increases

kT
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Fig. 13 The unintegrated gluon density as a function of x determined
from the pole contribution and the negative ω contribution, at various
k2
T . The dashed line shows the leading pole contribution, normalised in

the same way as in Fig. 12

slightly with k2
T , which can be seen by comparison of the

slope of gluon density (full line) with the k2
T -independent

slope of the leading pole contribution (dashed line). The lead-
ing pole contribution is, for each k2

T , normalised to the values
of the gluon density at x = 10−2.

In Fig. 12 we display the gluon density in the validity
region of our solution to BFKL, �t < log(1/x), which
means that kT should be smaller than order of 10 GeV at
x = 10−2. At larger kT , not shown in this figure, we observe
a clear deviation from linearity in the region of x between
10−2 and 10−3. A close inspection of the highest k2

T line in
Fig. 12 shows that this effect sets in already at a relatively
low kT of about 30 GeV.

In Fig. 13 we show the x dependence of the gluon den-
sity which includes the negative ω contribution (full line)
for various k2

T ’s. The dashed line shows for comparison the
same leading pole contribution as in Fig. 12. We see clearly
from this plot that the negative ω contribution substantially
affects the linearity in the region of x > 10−3. Since this
non-negligible contribution from negative ω occurs at the
relatively low values of k2

T considered here whereas data
strongly indicates linear trajectories in x up to x ∼ 10−2,
we take this as a strong hint that the infrared phase, ηN P

for ω < 0 and the precise form of the proton impact factor
are such that the overlap of the proton impact factor with
the negative ω part of the Green function is very small. In
view of the fact that the proton impact factor is expected only
to have significant support near t0 where the infrared phase,
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ηN P , is fixed, such suppression of the overlap would occur
if the infrared phase were very small in the region ω ∼ 0.

In this paper we do not attempt to make any detailed com-
parison with data because we are working here in the LO
only and it is well known that the NLO and LO results differ
substantially in BFKL. We note, however, that the difference
between the full gluon density and the leading pole contribu-
tion seen in Fig. 12 is due to the subleading poles. A similar
change of slope λ with Q2,8 even more prominent then in
our LO calculation, is also seen in the data [17]. Therefore it
is highly possible that the properties of the subleading poles
can be well determined from the measurements of the slope
λ since in our solution there is only one free parameter per
pole, ηN P , and the number of contributing poles is small, due
to the fast convergence of their sum.

8 The effect of new physics

In previous publications [1–3], we have pointed out that both
the positions of the poles in ω and their residues are sensitive
to any new physics which affects the running of the coupling
and hence the value of the critical momentum, tc, provided
tc is above the threshold for such new physics. This unique
effect is due to the fact that an eigenfunction of the BFKL
kernel, (5.2), is a (quasi) bound state of gluons with very dif-
ferent virtualities, ranging from t0 to tc. Even if such a state
is probed at low t value, much below the Beyond Standard
Model (BSM) threshold, the result is sensitive to the proper-
ties of the whole state since the eigenvalue and the residue at
the probed t is determined by all the gluons of the state.9

Formally speaking the sensitivity to BSM thresholds
emerge from the fact that the function φ(ω), Eq. (4.2), which
defines the eigenvalues ωn by the requirement φ(ω) = nπ ,
contains an integral over the frequency νω(t), which ranges
from t0 to tc. This frequency, defined by Eq. (3.19), is strongly
sensitive to a supersymmetry (SUSY) threshold because the
value of β̄0 changes substantially in the SUSY region.

In Fig. 14 we show an example of this in which we plot the
Green function as a function of ω on a path close to the real
axis, for a typical low t values of 9, 6.7 and 4.4 corresponding
to kT of 30, 10 and 3 GeV. We are comparing the Standard
Model (SM) with the MSSM with a supersymmetry (SUSY)
threshold of 3 TeV. We see that the position of the first pole
is unaffected because the corresponding tc lies much below
the SUSY threshold of 3 TeV. However, the positions of the
subleading poles are shifted to the right because their tc’s are
either close to the 3 TeV threshold, as in the case of the second

8 The measured variable Q2 is closely related to the BFKL variable k2
T .

9 Since t = ln(k2
T /�2), from Table 1 we see that kT which corresponds

to tc of the first pole is 25 GeV, of the second one is about 4 TeV, of the
third one 500 TeV, of the fourth one 54000 TeV, etc.
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Fig. 14 The position of the poles in the Green function for the Standard
Model (solid line) and the MSSM with the mass of all super-partners
taken to be at 3 TeV (dotted line). We have taken t = 9, 6.7, 4.4, corre-
sponding to kT of 30, 10, 3 GeV, and t ′ = 2

pole, or much above it for the rest. It is interesting to observe
that the residues of the non-leading poles oscillates strongly
in the displayed t region. This may help to disentangle their
contribution since this t region is well accessible to high
precision measurements.

9 Conclusions and outlook

We have investigated here the properties of the complete
Green function solution to BFKL equation in LO approx-
imation, using a mixed technique of analytic and numeri-
cal analyses. We have shown that this solution fulfills the
completeness requirement and leads to a set of eigenfunc-
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tions which are properly normalised and are orthogonal to
each other. These mathematical properties are fulfilled with
a high numerical precision, which is not trivial in view of
the fact that the eigenfunction states are defined only for t
values above some small, but perturbative t0, and not in the
whole region −∞ < t < ∞, as would be mathematically
required. To achieve the completeness it is mandatory to take
into account the contribution from the states of the negative
ω continuum.

The unintegrated gluon density is defined, in this paper,
as the inverse Mellin transform for the Green function of the
BFKL equation over a suitable path in the complex ω plane.
We show that at low t the integration over an ω path is exactly
equivalent to the sum of poles supplemented by a possible
contribution of the negative ω continuum. The sum of poles
is dominated by a relatively few terms, which is in contrast
to the situation found in the discrete eigenfunction solution
of [1–4]. The fast convergence of the complete Green func-
tion solution is due to the presence of the t dependent normal-
isation factor which was missing in the pure eigenfunction
approach of [1–4].

We have investigated the region of validity of the uninte-
grated gluon density obtained in this paper and found that it
is limited to the region �t = t − t ′ < log(1/x). If �t is siz-
ably larger the unintegrated gluon density starts to exhibit an
oscillatory behaviour, which eventually leads to an unphys-
ical, i.e. negative gluon density. Since in DIS t ′ is limited
by the proton factor, which confines it to very small values,
the t values cannot be too large. At x = 10−2 they corre-
sponds to kT values of the order of 10 GeV. At smaller x ,
like x = 10−3, the virtuality kT would be an order or more
of magnitude larger; however, at HERA or LHC the region
of accessible virtuality decreases with x substantially, so that
the region of applicability of the BFKL equation is limited
effectively to kT of the order of 10 GeV.

At low kT the gluon density is dominated by the leading
pole, which leads to a linear behaviour in the logarithmic x
dependence with a slope which varies with kT . This variation
is due to the contribution of the subleading poles. We show
here that the ω values of the subleading poles are sensitive to
the Beyond Standard Model (BSM) effects due to the same
mechanism of threshold sensitivity as investigated in [1–3].
Therefore, the deviations from the leading pole behaviour are
sensitive to the BSM effects and could be measurable due to
the high precision of the measured slopes of the logarithmic
x distribution, especially in future projects; see e.g. [18,19].
However, in this paper we did not attempt to perform any
data analysis because we are working here in the LO order
approximation only and it is well known that the ω values
differ substantially between LO and NLO approximation of
BFKL. The LO analysis presented here allows the full under-

standing of the qualitative properties of the BFKL solution
in the low kT region which we expect to be the same as in the
NLO analysis. The quantitative results in the NLO approxi-
mation will be presented in our next paper in which we will
also perform a comparison with the high precision DIS data.
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