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Abstract In this paper, a cosmological solution to Mimetic
Dark Matter (MDM) for an exponential potential is provided.
Then a solution for the 0 − i perturbed Einstein differential
equation of MDM is obtained based on an exponential poten-
tial that satisfies inflation for some initial conditions. Another
general potential is suggested that incorporates inflation too.
Then quantum perturbations are included. The constants in
the model can be tuned to be in agreement with the fluctua-
tion amplitude of the cosmic microwave background (CMB)
radiation. Finally, the spectral index is calculated for the sug-
gested potentials. Moreover, MDM is shown to be a viable
model to produce dark matter, inflation, and CMB’s fluctua-
tion.

1 Introduction

A modification of general relativity was proposed in [1]
where the metric gμν is defined by a scalar field φ and an
auxiliary metric g̃μν

gμν = (g̃αβ∂αφ∂βφ)g̃μν. (1)

The equations of motion that result are similar to Ein-
stein’s equations of motion with an extra mode term, which
mimics cold dark matter even in the absence of normal mat-
ter. Mimetic dark matter is an interesting model because it
is a model that works not only on a cosmological scale, but
also because it is a model that works on a galactic scale after
adding higher derivative terms that alter the speed of sound
[2–6]. For further discussion as regards mimetic dark matter,
degrees of freedom, and extensions refer to [7–14].

Consider the actions in [6,15–17],

S =
∫

d4x
√−g

[
−1

2
R(gμν) + λ(gμν∂μφ∂νφ − 1)

− V (φ) + Lm(gμν,...)

]
(2)

a e-mail: hls01@mail.aub.edu

where − 1
2 R(gμν) is the Lagrangian of general relativity,

V (φ) is a potential, and Lm is the Lagrangian of matter. By
varying the action with respect to gμν , φ, and λ, and taking
the trace, Eqs. (13) and (14) in [6] are obtained,

Gμν = (G − T − 4V )∂μφ∂νφ + gμνV (φ) + Tμν, (3)

0 = 1√−g
∂κ

(√−ggκλ∂λφ(G − T )
)
, (4)

1 = gμν∂μφ∂νφ, (5)

where Tμν is the energy-momentum tensor. Note that the
normalization condition on the four-velocity uμuμ = 1 is
the normalization condition (5).

For a spatially flat FRW universe with metric,

ds2 = dt2 − a2(t)δikdxidxk, (6)

taking φ = t and calculating the time-time component of
Eq. (3), which is the Friedmann equation in the absence of
ordinary matter (Tμν = 0) [6]

H2 = 1

a3

∫
a2V da (7)

where

H ≡ ȧ

a
(8)

and a(t) is determined by the given potential. Note that
mimetic dark matter appears as an integration constant in the
right hand side of (7), which gives a non-trivial solution even
for V = 0. By multiplying Eq. (6) by a3 and differentiating

with respect to time, and substituting y = a
3
2 ,

ÿ − 3

4
V (t)y = 0. (9)

This equation allows one to find cosmological solutions
for a(t) for any given potential.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-015-3856-0&domain=pdf
mailto:hls01@mail.aub.edu


14 Page 2 of 5 Eur. Phys. J. C (2016) 76 :14

2 Solution for exponential potential

Plugging in the exponential potential,

V = αe−κt (10)

where α and κ are constants, we obtain

ÿ − 3

4
αe−κt y = 0. (11)

By applying the transformation s =
√−3α

κ
e

−κt
2 , differen-

tial Eq. (11) transforms to

s2 d2y

ds2 + s
dy

ds
+ s2y = 0. (12)

The solution to this differential equation is well known by
Bessel’s functions,

y(t) = C1 J0

(√−3α

κ
e

−κt
2

)
+ C2Y0

(√−3α

κ
e

−κt
2

)
(13)

where C1 and C2 are constants. The form of a(t) is

a(t) =
[
C1 J0

(√−3α

κ
e

−κt
2

)
+ C2Y0

(√−3α

κ
e

−κt
2

)] 2
3

.

(14)

It can be deduced that, for t −→ ∞, a(t) ∝ t
2
3 , which is

similar to the scaling factor of a matter-dominated universe.
On the other hand, for t −→ 0,

y(t) = C1e

√
3α
4 t + C2e−

√
3α
4 t

, (15)

a(t) =
[
C1e

√
3α
4 t + C2e−

√
3α
4 t

] 2
3

. (16)

For α positive, a(t) grows exponentially as in an infla-
tionary universe. However, for α negative, a(t) leads to an
oscillatory universe in the beginning of time. The energy
density of mimetic matter can be obtained:

ρ̃ = 3

(
ȧ

a

)2

= −αe−κt

⎡
⎣C1 J−1

(√−3α
κ

e
−κt

2

)
+ C2Y−1

(√−3α
κ

e
−κt

2

)

C1 J0

(√−3α
κ

e
−κt

2

)
+ C2Y0

(√−3α
κ

e
−κt

2

)
⎤
⎦

2

,

(17)

and for the pressure we have

p̃ = −V (t) = −αe−κt . (18)

The equation of state is

w = p̃

ρ̃
=

⎡
⎣ C1 J0

(√−3α
κ

e
−κt

2

)
+ C2Y0

(√−3α
κ

e
−κt

2

)

C1 J−1

(√−3α
κ

e
−κt

2

)
+ C2Y−1

(√−3α
κ

e
−κt

2

)
⎤
⎦

2

,

(19)

and

H = −
√−α

3
e− κt

2

[
C1 J1(s) + C2Y1(s)

C1 J0(s) + C2Y0(s)

]
, (20)

because ν in the Bessel functions Jν(s) andYν(s) is an integer
and they satisfy the properties

J−ν(s) = (−1)ν Jν(s), (21)

Y−ν(s) = (−1)νYν(s). (22)

Moreover, it can be deduced from (11) that the density,
pressure, and equation of state evolve like dust in a matter-
dominated universe for t −→ ∞,

ρ̃ = 4

3t2 , (23)

p̃ = −V (t) = 0, (24)

w = 0. (25)

For t −→ 0,

ρ̃ ≈ α
(

for (C1 � C2) and (C1 	 C2)
)
, (26)

ρ̃ ≈ 0 (C1 ≈ C2), (27)

p̃ = −α, (28)

w ≈ −1
(

for (C1 � C2) and (C1 	 C2)
)
, (29)

w ≈ 0 (C1 ≈ C2). (30)

The equation of state for t −→ 0 (29) is at the phantom
divide line similar to the equation of state of a positive cosmo-
logical constant that drives inflation but without a graceful
exit. In order to trigger inflation in the beginning of time,
ä(t) > 0 must be satisfied. The acceleration equation is

ä

a
= −4πG

3

(
ρ + 3p

)
. (31)

Hence, ρ + 3p < 0 must be true. Density is always posi-
tive; therefore, we must have a negative pressure satisfying

p < −ρ

3
. (32)

This is valid for t very small, positive α, and all initial
conditionsC1 andC2. A 60 e-folds inflation can be generated
in this picture for any α because it satisfies the inequality. Let
us consider another potential [6],

V (t) = αt2n

etκ + 1
for n > −1, (33)

given that etκ � t2n is true always for positive time and

suitable n. As t −→ ∞ and t −→ 0 it evolves as a(t) ∝ t
2
3 ,

and as t −→ −∞ it generates inflation satisfying the 60
e-folds condition with

a(t) ∝ e
−

√
α

3(n+1)2
t2

(34)
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with

H = ȧ

a
= −

√
α

3
tn . (35)

The number of e-folds is calculated by

N =
∫ t f

ti
Hdt. (36)

Note that at t −→ ∞ the two potentials (10) and (33)
behave the same because at t −→ ∞ (33) can be approxi-
mated as (10). In order to give an estimate for α, calculate
(36) for 60 e-folds for (34), and note that t2

i � t2
f for this

model because inflation starts from −∞; hence

α 

(540(n + 1)

tn+1
i

)2
. (37)

3 Perturbative solution of the scalar field
in the Newtonian gauge

Scalar perturbations are considered in the Newtonian gauge.
Vector perturbations are neglected because they decay in an
expanding universe and because inflation rules out large pri-
mordial vector perturbations. In the Newtonian gauge, the
metric of the perturbed universe can be expressed as [18]

ds2 = (1 + 2�)dt2 − (1 − 2�)a2(t)δi jdx
idx j , (38)

and

φ = t + δφ (39)

is the perturbation of the scalar field. Perturbing the equations
that result from the action (2), it can be deduced from [6] that
there is one expression for δφ for all wavelengths,

δφ = A
1

a

∫
adt, (40)

� = δφ̇ = A

(
1 − H

a

∫
adt

)
. (41)

Note that the first equality in (41) is deduced from (3).
When the spatial derivatives are neglected, Eqs. (40) and (41)
are exact general solutions for long wavelength cosmological
perturbations [18]. If � is calculated by using the action
(2), we would get (41) for all wavelengths, and it does not
distinguish between short and long wavelength perturbations
[6]. We would not be able to define quantum perturbations
that are short wavelength perturbations. Therefore, in order
to account for different wavelengths’ perturbations, a term is
added to the action (2), 1

2γ (�φ)2 where γ is a constant and
� = gμν∇μ∇ν . The action becomes [6]

S =
∫

d4x
√−g

[
−1

2
R(gμν) + λ(gμν∂μφ∂νφ − 1)

−V (φ) + 1

2
γ (�φ)2

]
(42)

The 0−0 and i− j Einstein equations remain the same up
to a normalization constant. On the other hand, the perturbed
0i Einstein equation is [6]

δφ̈ + Hδφ̇ − c2
s

a2 �δφ + Ḣδφ = 0 (43)

where

c2
s = γ

2 − 3γ
. (44)

Note that after adding 1
2γ (�φ)2 to (2), Eq. (9) becomes

[6]

ÿ − 3

4

2c2
s

γ
V (t)y = 0 (45)

by using (44). We can define a new α in order to absorb this
constant. Hence, let us define

α′ = 2c2
s

γ
α. (46)

Therefore, α becomes α′ in the potentials (10) and (33),
and all the equations that are mentioned above that depend
on α.
Considering a plane wave perturbation ∝ eikx , Eq. (43)
becomes

δφ̈k + ȧ

a
δφ̇k +

(
c2
s k

2

a2 + ä

a
−

(
ȧ

a

)2
)

δφk = 0. (47)

Taking the limit of t −→ ∞ in (14) is similar to taking
the limit of the argument of Bessel’s function to zero because
of the decaying exponential function inside the argument of
Bessel’s functions. So, for small s,

J0(s) → 1, (48)

Y0(s) → 2

π

[
ln

( s
2

)
+ 0.5772 . . .

]
. (49)

Hence, the scaling factor (14) becomes, as t −→ ∞,

a(t) =
[
C1 + C2

2

π

(
ln

(√−3α′
2κ

e
−κt

2

)
+ 0.5772

)] 2
3

(50)

This equation can be expressed again as

a(t) =
[
C1 + C2

2

π

(−κt

2
+ β

)] 2
3 = [

C ′
1 + C ′

2t
] 2

3 (51)

where β = 0.5772 + ln(
√−3α′

2κ
) is just a constant, and C ′

1 =
C1 + C2

2
π
β and C ′

2 = −C2
κ
π

. By substituting (51) in (43),
and solving the differential equation, we can get an idea about
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the evolution of δφ at a very large time-scale and for different
wavelengths. For short wavelength perturbation H and Ḣ are
neglected because λph = a

k 	 cs H−1,

δφ ∝ e±icskt (52)

However, for a long wavelength perturbation, the term
c2
s
a2 �δφ is neglected because λph = a

k � cs H−1; and hence
the solution to Eq. (43) is

δφ = D1π + D2β − D2tκ. (53)

Equation (53) can also be obtained by a second method; if
we plug Eq. (51) into (40), and choose A ∝ κ we would get
Eq. (53) again. Note that the perturbation amplitude grows
as a function of time only.

The action (42) to second order and integrating by parts
yield

S = −1

2

∫
d4x

(
γ

c2
s
δφ′�δφ′ + · · ·

)
. (54)

The canonically normalized quantum fluctuation variable
[18,19] is

vk ∼
√

γ

cs
k δφk (55)

with vacuum fluctuation

δvk ∼ 1√
ωk

∼ 1√
csk

, (56)

and hence

δφk ∼
√
cs
γ

k− 3
2 . (57)

During inflation,

1

a

∫
a dt 
 H−1. (58)

Matching long wavelength perturbations (40) with quan-
tum perturbations (57),

Ak ∼
√
cs
γ

Hcsk∼Ha

k3/2 . (59)

Hence, the gravitational potential in comoving scales is
λ ∼ 1/k

�λ ∼ Ak k
3/2 ∼

√
cs
γ

Hcsk∼Ha . (60)

In order to obtain the gravitational potential for comov-
ing scales for the potential (33) from quantum perturbations,
substitute (34), (35), and (37) in (60) with absolute value

�λ ∼
√
cs
γ

×
√

1

3

540(n + 1)

tn+1
i

tn|t :csk∼Ha . (61)

Note that γ is just a constant in the action (42). Hence, by
choosing n, γ , and ti appropriately, one can fit the value of

the gravitational potential to be equal to the measured value
∝ 10−5 in CMB experiments [20–22].

4 Spectral index calculations

In order to calculate the spectral index for potentials (10) and
(33), we should calculate the slow-roll Hubble parameters,

ε ≡ − Ḣ

H2 , (62)

η ≡ ε̇

Hε
, (63)

ns − 1 = −2ε − η, (64)

nt = −2ε. (65)

For the potential (10) when t → 0

ε = 0, (66)

η = 0, (67)

ns = 1, (68)

nt = 0. (69)

It behaves like a cosmological constant and no gravita-
tional waves. However, when t is small and nonzero, we
need to evaluate ε by using Eq. (20). When t is very small
s � 1. Bessel functions can be approximated when s � 1
and ν > 0 as

Jν(s) →
√

2

πs
cos

(
s − νπ

2
− π

4

)
, (70)

Yν(s) →
√

2

πs
sin

(
s − νπ

2
− π

4

)
, (71)

where s =
√−3α′

κ
e

−κt
2 as before but with α′. Hence, (20)

becomes

H 
 −
√−α′

3
e− κt

2

[
C1 cos

(
s − 3π

4

) + C2 sin
(
s − 3π

4

)
C1 cos

(
s − π

4

) + C2 sin
(
s − π

4

)
]

(72)

and

ε 
 −
6(C2

1 +C2
2 )α′ + κ

√−3α′e− κt
2

(
(C2

1 − C2
2 ) cos(2s)+2C1C2 sin(2s)

)

4α′
(
C1 cos(s+ π

4 )+C2 sin(s + π
4 )

)2 ,

(73)

nt 

6(C2

1 + C2
2 )α′ + κ

√−3α′e− κt
2

(
(C2

1 − C2
2 ) cos(2s) + 2C1C2 sin(2s)

)

2α′
(
C1 cos(s + π

4 ) + C2 sin(s + π
4 )

)2 ,

(74)

and η and ns follow.
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For the potential (33)

ε = −
√

3

α′
n

t (n+1)
, (75)

η =
√

3

α′
(n + 1)

t (n+1)
, (76)

ns = 1 +
√

3

α′
(n − 1)

t (n+1)
. (77)

Substituting (37) and (46) in (77) we obtain,

ns ≈ 1 +
√

3γ

2c2
s

(n − 1)

540(n + 1)

( ti
t

)(n+1)

(78)

where t is evaluated at the horizon crossing csk = aH . In
order to make (78) less than one and match the data in CMB
experiments [20–22], the second term must be negative. In
potential (33) inflation starts from −∞; so ti and t are neg-
ative. Hence, n ∈ (−1, 1). The tensor spectral index

nt ≈
√

6γ

c2
s

n

540(n + 1)

( ti
t

)(n+1)

(79)

If n = 0, then there are no gravitational waves.

5 Conclusion

In this paper, an exponential potential was substituted in the
differential equation of MDM that relates any potential to any
scaling factor in cosmology. At the limit of time goes to infin-
ity, the density, pressure, and equation of state behave like
dust in a matter-dominated universe, and in the limit of time
goes to zero, a condition on the density can trigger inflation
for some initial conditions satisfying the 60 e-folds condi-
tion. Another general potential is given that satisfies the 60
e-folds condition too. Furthermore, solutions to scalar per-
turbations are obtained for the general potential. This can be
accomplished by taking the limit of a(t) at infinity and substi-
tuting it in the 0 − i perturbed Einstein’s equation of a scalar
field in the Newtonian gauge to get long wavelength per-
turbations. It is worth noting that after performing quantum
perturbations, the obtained fluctuation amplitude from MDM
can be tuned to be of the same order as the CMB. Finally, the
spectral index for the mentioned potentials is calculated and
the parameters were constrained. Hence, it was shown that
mimetic inflation can have a red-tilt for the spectral index of
adiabatic fluctuations. Therefore, MDM can have a model
for dark matter, inflation with 60 e-folds at early times, and
CMB’s fluctuation.
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