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Abstract Previous studies have shown that the Hidden
Local Symmetry (HLS) model, supplied with appropri-
ate symmetry breaking mechanisms, provides an effective
Lagrangian (Broken Hidden Local Symmetry, BHLS) which
encompasses a large number of processes within a unified
framework. Based on it, a global fit procedure allows for a
simultaneous description of the e+e− annihilation into six
final states—π+π−, π0γ , ηγ , π+π−π0, K+K−, KLKS—
and includes the dipion spectrum in the τ decay and some
more light meson decay partial widths. The contribution to
the muon anomalous magnetic moment ath

μ of these annihi-
lation channels over the range of validity of the HLS model
(up to 1.05 GeV) is found much improved in comparison
to the standard approach of integrating the measured spec-
tra directly. However, because most spectra for the annihila-
tion process e+e− → π+π− undergo overall scale uncer-
tainties which dominate the other sources, one may suspect
some bias in the dipion contribution to ath

μ , which could
question the reliability of the global fit method. However,
an iterated global fit algorithm, shown to lead to unbiased
results by a Monte Carlo study, is defined and applied suc-
cessfully to the e+e− → π+π− data samples from CMD2,
SND, KLOE, BaBar, and BESSIII. The iterated fit solution
is shown to further improve the prediction for aμ, which
we find to deviate from its experimental value above the 4σ

level. The contribution to aμ of the π+π− intermediate state
up to 1.05 GeV has an uncertainty about 3 times smaller
than the corresponding usual estimate. Therefore, global fit
techniques are shown to work and lead to improved unbiased
results.

a e-mail: benayoun@in2p3.fr

1 Introduction

As is well known, the Standard Model (SM) is the gauge
theory which covers the realm of weak, electromagnetic and
strong interactions among quarks, leptons and the various
gauge bosons (gluons, photons, W±, Z0). In energy regions
where perturbative methods apply, the SM allows one to
yield precise estimates for several physical effects, some-
times with accuracies of the order of a few 10−12. In contrast,
in energy regions where the non-perturbative regime of QCD
is involved, getting similar precision may become challeng-
ing. This is the case for the low energy part of the photon
hadronic vacuum polarization (HVP); this HVP plays a cru-
cial role in determining the theoretical value for the muon
anomalous moment aμ, one of the best measured particle
properties.

Fortunately, getting precise estimates in the low energy
hadron SM sector is not completely out of reach as exempli-
fied by the Chiral Perturbation Theory (ChPT) [1,2] which
is rigorously the low energy limit of QCD, valid up to
400 ÷ 500 MeV but lets the resonance region outside its
scope. Lattice QCD (LQCD) is also a promising method
under rapid development which already allows one to per-
form precise computations at low (and very low) energies
[3]. Interesting LQCD estimates for the HVP’s of the three
leptons have already been produced [4,5] which clearly show
that LQCD reaches results in accord with expectations; this is
especially striking for aμ with, however, still unsatisfactory
uncertainties [4].

So, much progress remains to be made before LQCD
evaluations can compete with the accuracy of the experi-
mental measurements already available [6,7] or, a fortiori,
with those expected in a near future at Fermilab [8,9] or,
slightly later, at J-PARC [10]. Since lattice QCD is intrin-
sically an Euclidean approach, it is intrinsically unable to
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account for the existing rich amount of low energy hadronic
data in the non-perturbative timelike region, i.e. from thresh-
olds to 2 ÷ 3 GeV. Therefore, other methods, able to encom-
pass large fractions of the physics from this important energy
region, are valuable.

A natural approach to this issue is provided by effective
Lagrangians which cover the resonance region. Such effec-
tive Lagrangians should be constructed so as to preserve the
symmetry properties of QCD as already done by standard
ChPT, however, only valid up to the η mass region. As it
includes meson resonances, the Resonance Chiral Pertur-
bation Theory (RχPT) [11] is an appropriate framework to
study e+e− annihilations from their respective thresholds up
to the intermediate energy region.

It has been proven [12] that the coupling constants occur-
ring at order p4 in ChPT are saturated by low lying meson
resonances of various kinds as soon as they can contribute.
This emphasizes the role of the fundamental vector meson
nonet (V) and confirms the relevance of the Vector Meson
Dominance (VMD) concept in low energy physics.

On the other hand, it has been proven [11] that the Hidden
Local Symmetry (HLS) model [13] and RχPT are equiva-
lent provided consistency with the QCD asymptotic behav-
ior is incorporated. It thus follows that the HLS model is
also a motivated and constraining QCD rooted framework.
As the original HLS model only deals with the lowest mass
resonances, it provides a framework for the e+e− annihi-
lations naturally bounded by the φ mass region—i.e. up to
�1.05 GeV.

The non-anomalous [14] and anomalous [15] sectors of
the HLS model open a wide scope and can deal with a large
corpus of physics processes in a unified way. However, as
such, HLS cannot precisely reach the numerical precision
requested by the wide ensemble of high statistics data sam-
ples collected by several sophisticated experiments on several
annihilation channels. In order to achieve such a program, the
HLS Lagrangian must be supplied with appropriate symme-
try breaking mechanisms not present in its original formula-
tion [13].

This was soon recognized by the HLS model authors who
first proposed the mechanism to break SU(3) symmetry [16]
named BKY according to its author names. Its success was
illustrated by several phenomenological studies based on the
BKY breaking scheme [17–19]. It was also soon extended to
SU(2)/isospin symmetry breaking [20]. However, in order
to account simultaneously for all the radiative decays of
the light flavor mesons, the additional step of breaking the
nonet symmetry for light pseudoscalar mesons was required;
based on the heuristic formulation of the V Pγ couplings by
O’Donnell [21] which includes nonet symmetry breaking in
the pseudoscalar (P) sector in a specific way, a global and
successful account of all V Pγ and Pγ γ couplings has been
reached [22]. The BKY SU(3) breaking and this nonet sym-

metry breaking included within the HLS model was shown
[23] to meet the requirements of extended chiral perturba-
tion theory [24,25]. Finally, introducing the physical vector
meson fields as the eigenstates of the loop modified vector
meson mass matrix provided a mixing scheme of the ρ0–ω–φ

system which together with the V –γ loop transitions implied
by the HLS model at one loop1 leads to a satisfactory solution
[27] of the long-standing τ − e+e− puzzle [28–31].

Therefore, the approach just sketched is a global frame-
work aiming at accounting for the largest possible ensemble
of data spectra collected in the largest possible number of low
energy physics channels. As this global model is an effective
Lagrangian constructed from the (P and V ) fields relevant in
the low energy regime of QCD and because it is consistent
with the symmetries of QCD, one naturally expects their low
energy results to be consistent with the SM.

It was then shown that the effective Lagrangian con-
structed from the original HLS model supplemented with
the breaking schemes listed above was able to provide a sat-
isfactory simultaneous description of the e+e− annihilations
into the π+π−, π0γ , ηγ , π+π−π0 final states and of the
dipion spectrum in the decay of the τ lepton [32,33]. This
tended to indicate that the τ − e+e− puzzle just referred was
related to an incomplete incorporation of isospin symmetry
breaking effects within models.

Slightly extending these breaking schemes, one is led to
the Broken HLS (BHLS) model [34], which provides a fully
consistent picture of all examined e+e− annihilation cross
sections,2 the τ dipion spectrum and, additionally, some
light meson decay information with a limited number of free
parameters to be extracted from data. An interesting outcome
of the BHLS-based fit framework was a novel evaluation of
the dominating low energy piece of the HVP, leading to an
improved estimate of the muon anomalous magnetic moment
at more than 4σ from its measured value3 [6,7].

Introducing the dipion spectra collected in the ISR mode
confirmed that the muon g − 2 departs from expectation by
more than 4σ [35]. One should note that the high statistics
ISR dipion spectra recently published by the KLOE [36–38],
BaBar [39,40] and BESSIII [41] Collaborations are strongly
dominated by overall scale (i.e. normalization) uncertain-
ties; additionally the KLOE and BaBar normalization uncer-
tainties are energy dependent. However, sizable overall scale
uncertainties raise an important issue related with their pos-
sibly biasing the physics quantity values extracted from their

1 See also [26] where the role of the ρ0–γ mixing is especially empha-
sized.
2 Specifically the six e+e− annihilation channels to π+π−, π0γ , ηγ ,
π+π−π0, K+K−, K 0K 0, each from its threshold up to 1.05 GeV, i.e.
including the φ signal region.
3 One should note that the BHLS evaluation for the muon HVP is the
closest to the central value preferred by the lattice QCD study [4].
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spectra. This issue has been identified in the reference work
of D’Agostini [42] where a very simple case is proposed
which illustrates that biasing effects can be dramatic.4 Of
course, for a key quantity like the muon g − 2, the problem
should be explored and possible biases identified and fixed.
The way out is already mentioned in [42] and further empha-
sized in other studies [44–46]; the exact solution exhibits a
delicate issue as the removal of the bias on some quantity
supposes to know its exact value. Nevertheless, as already
suggested in [42] and emphasized in [44], iterative meth-
ods can be defined and are expected to be bias free; this has
been applied successfully to the derivation of parton density
functions in [47].

The present work mostly aims at reexamining the results
provided in [34,35] concerning the muon HVP using an
appropriately defined iterative fit method adapted to the deal-
ing with form factors or cross sections in such a way that fit
results and derived quantities—like the HVP, but not only—
could be ascertained to be bias free. In this way, one can
positively answer the question raised in the title of this study
at the methodological level.

The real issue of the physics model dependence can
only be answered by having at disposal results derived
from several independent model frameworks, all successfully
(undoubtedly) accounting for the largest possible corpus of
data. Indeed, the physics correlations relating the different
physics processes encompassed within a given framework
cannot easily accommodate a model-independent approach.
Moreover, several issues within the global fit approach are
related with the formulation of Isospin symmetry Breaking
(IB) which can hardly be made model independent, espe-
cially in a global framework.

The paper is organized as follows. In Sect. 2, one briefly
recalls the concern of using effective Lagrangian global
frameworks in order to strengthen the constraints on the
parameters to be derived from global fits. As our HLS
Lagrangian framework has a range limited upward to 1.05
GeV, Sect. 3 recalls how the full HVP is derived from fit
results and from additional information.

Section 4 is, actually, the center piece of the present paper
as its purpose is to define the fit method when one should deal
with samples affected by strong overall scale uncertainties.
This first of all turns out to precisely define the χ2 func-
tions to be minimized, depending on the specific properties
of the spectra considered and, second, to set up and justify
the iterative procedure we propose.5 Section 4.2 puts special

4 The issue raised by G. D’Agostini in this paper has also been met
formerly in the context of Nuclear Physics where it is referred to as the
“Peelle’s Pertinent Puzzle” (PPP) [43] which is examined thoroughly
in [44].
5 After completion of this work, we found that [48] applies a method
similar to ours to derive unbiased parton density functions from various
kinds of measured spectra.

emphasis on the specific χ2 function associated with samples
affected by overall scale uncertainties besides a more usual
experimental error matrix. The iterative fit procedure to deal
with biases is formulated therein.

Most of the ISR data samples exhibit s-dependent overall
scale uncertainties, which are certainly a novel feature in our
field; Sect. 4.3 defines an appropriate χ2 function suitable for
such a case. Finally, Sect. 4.4 reports on the main features of
the iterative global fit method when fitting sets of data sam-
ples containing samples with overall scale uncertainties of
various magnitudes compared to statistical errors. The con-
clusions reported here rely on a Monte Carlo study outlined
and illustrated in Appendix A.

Section 5 recalls the data samples used within the BHLS
procedure and reports for a (minor) correction affecting the
amplitudes for the annihilation channels π0γ and ηγ . Sec-
tion 6 reports on the updated results of the fits performed
using only the scan data and discarding all ISR data samples;
the effects of the iterative method is illustrated here and it is
shown that the needed number of iterations in the global fit
procedure does not exceed 1. The more general running is the
subject of Sect. 7 where updated results are given to correct
for coding bugs affecting some of the numbers given in our
[34,35]. The properties of the recently published KLOE12
[38] and BESSIII [41] data samples are examined. The eval-
uation of the muon g − 2 based on the iterated fits of vari-
ous combinations of data samples is the subject of Sect. 8,
where the HVP slope at s = 0 is also computed within BHLS
and compared to its value directly derived from experimental
data. Finally, Sect. 9 is devoted to conclusions and remarks.

2 Effective Lagrangian frameworks and global fits

As recalled in Sect. 1, it is a common approach to rely on the
Effective Lagrangian (EL) method to cover the low energy
region where QCD exhibits its non-perturbative regime and
where the quark and gluon degrees of freedom are replaced
by hadron fields. Each EL of practical use generally depends
on parameters originating from the starting Lagrangians (like
the pion decay constant fπ or the universal vector coupling
g) and on parameters generated by the unavoidable symme-
try breaking effects (like quark mass differences); all such
parameters are determined from data with various precisions.

Needless to say that any (broken) effective Lagrangian
provides amplitudes expected to account simultaneously for
several different processes. This has a trivial consequence
which, nevertheless, deserves to be stressed: All the effective
Lagrangians predict physics correlations among the differ-
ent physical processes they can encompass: H ≡ {Hi , i =
1, . . . , p}.

Therefore, having plugged from start the physics correla-
tions inside the (broken) Lagrangian, the amplitudes derived
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from this should allow for a global, simultaneous and con-
strained fit of all available data samples covering all the chan-
nels in H. Provided the global fit is clearly successful, the
parameter central values and uncertainties returned can be
considered as the optimal values accounting for all the pro-
cesses in H simultaneously. Therefore, one can consider
that the fit information—parameter central values and error
covariance matrix—exhausts the experimental information
contained in the data samples covering all the processes in
H.

From now on, one specializes to the Broken HLS (BHLS)
model as defined and used in [34]. All data samples used in
the global fit procedure defined in this paper have already
been listed and analyzed in this reference;6 this will not be
repeated here. As for theπ+π− annihilation final state, which
is a central piece of HVP studies, this Reference dealt with
only the available scan data which are dominated by the sam-
ples from CMD2 [52,53] and SND [54]. The samples col-
lected in the ISR mode by Babar [55] as well as the former
KLOE data samples (KLOE08 [36] and KLOE10 [37]) have
been considered in [35]. Preliminary results including also
the most recent KLOE sample (KLOE12) [38] have been
given in [56,57]. The BESSIII spectrum [41], published by
mid of 2015, is also included within our analysis.

3 Estimating the muon non-perturbative HVP

The issue raised in this paper is whether effective Lagrangian
methods really improve the evaluation of the dominating
non-perturbative part of the HVP [34,35] compared to a
direct integration of experimental data (see [26,58,59] for
instance). As we are working within the original HLS frame-
work [13], what is discussed is the HVP fraction associated
with the π+π−, π0γ , ηγ , π+π−π0, K+K−, K 0K 0 inter-
mediate states—covered by BHLS—up to �1.05 GeV; this
represents more than 80 % of the total LO-HVP.

Basically, the leading order (LO) non-perturbative QCD
contribution to the muon HVP is estimated separately for
each intermediate hadronic state Hi via

aμ(Hi ) = 1

4π3

∫ scut

sHi

K (s)σHi (s) (1)

and the total non-perturbative HVP component is the sum
of all the possible aμ(Hi ). The function K (s) in Eq. (1) is
a known kernel [31] enhancing the threshold regions (sHi )
for any channel Hi and σHi (s) is the undressed cross sec-

6 Concerning the non-π+π− channels, all existing data samples col-
lected in scan mode at Novosibirsk are considered. The τ data included
in the global fit procedure are the samples collected by ALEPH [49],
CLEO [50] and Belle [51].

tion7 for the e+e− → Hi annihilation; scut is an energy
limit above which perturbative expansions are supposed to
become valid. BHLS permits to evaluate the six integrals
{aμ(Hi ), i = 1, . . . , 6} up to sφ � 1.05 GeV. As the energy
interval [sφ, scut] contribution to aμ(Hi ) is beyond the BHLS
energy range of validity, it is estimated using customary
methods (like those defined in [58–60], for instance), as
also the full contributions of the channels outside the present
BHLS scope, like the four pion final states. As already stated,
these pieces represent altogether about 20 % of the muon LO-
HVP contribution to aμ.

As can be checked by looking at the cross section formu-
las given in [34], most parameters to be fitted appear simul-
taneously in the six different cross sections {σHi (s), i =
1, . . . , 6} and each annihilation channel Hi comes in with
several experimental data samples.8 Therefore, for instance,
the data samples covering any of the π0γ , ηγ , π+π−π0,
K+K−, K 0K 0 annihilation channels play as additional con-
straints on the π+π− cross section and are treated on the
same footing than the π+π− annihilation data themselves.
On the other hand, the constraints carried by the dipion τ

decay spectrum data [49–51] influence the fit and allow one
to reduce the BHLS parameter uncertainties in a consistent
way.9 This explains why the global fit method is expected
to improve each aμ(Hi ) contribution compared to more tra-
ditional methods—those from [26,58,59] for instance—as
these ignore the inter-channel correlations revealed by the
BHLS effective Lagrangian and validated by satisfactory
global fits. Of course, inter-channel correlations are a gen-
eral feature of effective Lagrangians, and not particular for
the BHLS implementation.

As any method, the BHLS-based global fit method carries
specific systematics which have been examined in great detail
in [35]. It is worth remarking, to avoid ambiguities, that the
isospin breaking effects specific of the τ dipion spectra are
introduced in the dipion spectrum [35] as commonly done in
the literature [62–69] (see also [26]); they are totally indepen-
dent of the isospin breaking schemes involved in the BHLS
Lagrangian and, actually, come supplementing these [35].

4 Can one trust global fit results?

The global fit method previously used in [34,35] defines a so-
called VMD strategy which can be phrased in the following
way:

7 Final state radiation (FSR) effects also contribute and are estimated
as in [31].
8 An experimental data sample is defined as the measured spectrum m
and all the uncertainties which affect it.
9 So also do the decay partial widths of the form P → γ γ andV → Pγ

(or η′ → ωγ ) extracted from the Review of Particle Properties (RPP)
[61] and implemented within BHLS.
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• 1/ If the physics correlations predicted by a given effec-
tive Lagrangian model are supported by the experimental
data they encompass, they can be considered as exact at
the accuracy level reported for the data.

• 2/ Whenever the description—global fit—provided by
a given effective Lagrangian is satisfactory, the model
cross sections, the fit parameter values and the parame-
ter error covariance matrix exhaust reliably the physics
information contained in the fitted data samples.

In the present case where the BHLS model is concerned,
and focusing on the muon LO-HVP, Statement # 2means that
the improvements for the six accessiblesaμ(Hi )derived from
Eq. (1) by integrating from sHi to 1.05 GeV/c are legitimately
valid and conceptually supported.

On the other hand, Statement # 1 does not mean that the
importance of the word “effective” is forgotten, as is clear
from the italic sentence it carries: Its validity might have to be
revised if the experimental context evolves toward a degraded
account of the data.10

Obviously, a VMD strategy heavily relies on the statis-
tical methods used to analyze and fit the data; thus, one
should ascertain that all aspects of the data handling are taken
into account as they should. In particular, all features of the
experimental uncertainties should be implemented canoni-
cally within the minimized global χ2 and in the fitting proce-
dure. Indeed, as remarked in [45,70], incorrect fit results are
more frequently due to an incorrect dealing with the experi-
mental errors (and correlations) rather than to the minimiza-
tion procedure itself. Therefore, special care is requested in
dealing with experimental uncertainties and in choosing the
appropriate χ2 expression adapted to each data sample.

It is the purpose of this section to address this issue and
check whether the procedure defined in [34,35] fulfills this
statement; this will lead us to complement the fitting proce-
dure by an iterative method.

4.1 The basic χ2/least square method

Usually, performing a fit—global or not—requires one to
minimize a χ2 function11 relating the differences between
the measurements (m = {mi , i = 1, . . . , n}) and the
corresponding model (theoretical) expectations (M(�a) =
{Mi (�a), i = 1, . . . , n}) weighted by the error covariance

10 However, if an ensemble of data is internally conflicting within a
given effective Lagrangian framework, as the fit results can be affected
in an unpredictable way, some action has to be taken. The simplest
solution is certainly to discard the faulty data samples; however, as
suggested by [46], a down-weighting of the outlier contributions to
the minimized χ2 might also be considered. This could be a way to
reconcile the preservation of the fit information quality with the use of
all available samples.
11 This is a true χ2 if the errors are gaussian.

matrix V provided together with the data spectrum. Leav-
ing aside for now possible global (additive or multiplica-
tive) systematic uncertainties, the error matrix V provided
by experimental groups gathers the statistical and systematic
errors and, thus, is not necessarily diagonal. The vector �a
denoting the unknown internal model parameter list, mini-
mizing:

χ2 = [m − M(�a)]TV−1[m − M(�a)] (2)

with respect to �a allows one to derive its optimum value
�a0. When several independent data samples are to be treated
simultaneously, the minimized χ2 is a sum of terms like Eq.
(2), one for each data sample.

As recalled in [45], if the model M(�a) is linear in the
parameters12 and if the error covariance matrix is correct, the
estimated parameter vector �a0 has unbiased components and
this estimator �a0 has the smallest variance. As illustration,
in the case of a straight line fit (M = q + px), Blobel [45]
produced the residual plots for the model parameters using
several kinds of error distributions for the generated data
points (each with the same standard deviation) and showed
that these plots are always gaussian distributions, as expected
from the central limit theorem. Of course, the probability
distribution is flat only if the error distributions are gaussian,
i.e. if the effective χ2 function is actually a real χ2.

When analyzing (a collection of) actual spectra obtained
by various groups, nothing better can be done and the derived
fit solution faithfully reflects the whole data information on
which it relies: It corresponds, at worst, to the least square
solution and, at best, to the minimum χ2 solution, depend-
ing on the functional nature of the true experimental error
distributions.

4.2 Iterative treatment of global scale uncertainties

In the subsection just above we have briefly summarized the
traditional method which applies when the handled spectra
are not significantly affected by (correlated) global uncertain-
ties. These can be of either kinds: additive (offset error) or
multiplicative (scale/normalization error). As no offset error
issue is reported for the spectra we analyze within BHLS
[34,35], we skip this case and let the interested readers refer
to suitable references [42,45,46]. In contrast, multiplicative
(global scale) uncertainties are reported for most experimen-
tal spectra; when they are non-negligible compared with the
other (more standard) kinds of errors, they should be specif-
ically accounted for within the global fit procedure. This is
of special concern for the important e+e− → π+π− data
samples collected in scan mode [52–54], and even more for

12 Actually, fitting is generally performed in the neighborhood of some
given solution; this makes the linearity condition less constraining in
practice.
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those collected using the Initial State Radiation (ISR) mode
by KLOE [36–38], BaBar [39,40] or BESSIII [41]; further-
more, the normalization uncertainties reported for each of the
ISR data samples have all a peculiar structure which deserves
each a specific treatment—this is the subject of the next sub-
section.

A constant global scale uncertainty, as those affecting the
data samples from CMD2, SND or BESSIII, can be writ-
ten β = 1 + λ, where λ is a random variable with range
] − 1,+∞[. As E(λ) = 0 and E(λ2) = σ 2 with σ � 1, the
gaussian approximation for λ is safe [45,46]. A data sample
subject to such a global scale uncertainty provides an indi-
vidual contribution to an effective global χ2

glob. which should
a priori be written:

χ2 = [m − M(�a) − λA]TV−1[m − M(�a) − λA] + λ2

σ 2

(3)

where m, M , V , and �a have the same definitions as in
Sect. 4.1, while λ and σ have just been defined. As for A, even
if intuitively one may prefer A = m, the choice A = M(�a)

has been shown to drop out any biasing issue13 [42,45,70].
Assuming that the unknown scale factor λ is solely of

experimental origin—and, then, independent of the model
parameters �a—the solution to ∂χ2/∂λ = 0 provides its most
probable value λ0 [34]. After substitution, Eq. (3) becomes

χ2 = [m − M(�a)]TW−1[m − M(�a)]
with W = V + σ 2AAT, (4)

which exhibits a modified error covariance matrix W and
only depends on the (physics) model parameters. More pre-
cisely, the single recollection of the scale uncertainty λ is
the occurrence of its variance σ 2 in the modified covariance
matrix W .

However, Eq. (4) clearly points toward a difficulty if the
model is not numerically known beforehand as the modified
covariance matrix becomes �a-dependent when setting the
unbiasing choice A = M . In this case, the parameter error
covariance matrix provided by the χ2 minimization might
not be easy to interpret.

The way out is to define iterative procedures; this is allu-
sively stated in [42], but explicitly considered in [44] as solu-
tion to the so-called “Peelle’s Pertinent Puzzle”14 [43], pro-
vided a good starting approximate solution is known before-
hand; however, defining such a tool might be a delicate task if
the underlying model is non-linear, as quite usual in particle

13 This does not mean that the choice A = m necessarily leads to a
significantly biased solution as shown below.
14 Peelle’s reference is no longer of common access, but its main
content—which closely resembles the D’Agostini issue raised in [42]—
is reproduced in [44].

physics. Such a procedure has already been followed and suc-
cessfully worked out in [47] in order to derive through a mini-
mization procedure the parton density functions from several
measured spectra. When dealing with samples of form factor
and/or cross section data, other appropriate iterative methods
should be defined.

The starting step of the iteration implies choosing some
initial value for A, say A = A0. Without further information,
the best approximation one can choose is obviously A0 ≡
m, the experimental spectrum itself. Quite interestingly, this
turns out to start iterating with λ = 0 (σ = 0 in Eq. (4)), i.e.
β = 1, a unit scale factor; this makes the connection with the
iterative method followed in [47].

Then the minimization of the χ2 in Eq. (4) with A = A0 ≡
m is performed using theminuit procedure [71] which yields
the (step # 0) solution15 M0 via the fitted parameter vector
value �a0. The next step (# 1) consists in minimizing Eq. (4)
using A = M0 ≡ M(�a0), which is easily implemented in the
procedure and, at convergence, minuit provides the step # 1
solution M(�a1). This stepwise procedure.16 is followed until
some convergence criterion is met. As in each minimization
procedure the covariance matrix is constant, the interpreta-
tion of the parameter error covariance matrix is canonical.

The convergence speed of the iterative procedure cannot
be guessed ab initio but may be expected fast, referring to the
fit of the parton density functions where the convergence is
essentially reached at the first iteration [47]. This is confirmed
by the Monte Carlo studies reported in Appendix A.

Nevertheless, one may infer that the number of iteration
steps is smaller for a starting guess for A close to the actual
model than for an arbitrary choice; clearly, as the choice
A = m (the experimental spectrum) should be the closest to
the actual model, one may think that it should minimize the
number of iterations needed to reach convergence. Addition-
ally, this choice does not imply any a priori assumption on
the parameter vector to be fitted.

Among the data samples one deals within the BHLS-based
global fit method, most have been collected in scan mode,
essentially at Novosibirsk, and carry a constant scale uncer-
tainty merging several effects. This is especially the case for
the e+e− → π+π− data samples collected by the CMD2
[52,53] and SND [54] detectors; this also covers the case of
the BESSIII data sample [41].

In order to simplify and unify the notations in the follow-
ing discussion, it is suitable to perform the change of random
variable λ = σμ. Then the statistical properties for λ prop-
agate to E(μ) = 0 and E(μ2) = 1 and, defining in addition
B = σ A, Eq. (3) above becomes

15 The analysis method in [34,35] actually stops there; the present anal-
ysis aims at going beyond.
16 Each such step is defined as a full (minuit) minimization procedure
where the covariance matrix is unchanged until convergence is reached.
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χ2 = [m − M(�a) − μB]TV−1[m − M(�a) − μB] + μ2.

(5)

The condition ∂χ2/∂μ = 0 provides the most probable value
for μ:

μ = BTV−1[m − M(�a)]
BTV−1B + 1

(6)

and, substituting this into Eq. (5), one gets

χ2 = [m−M(�a)]TW−1[m−M(�a)] with W = V+BBT

(7)

Stated otherwise, from the point of view of the physics model,
the minimization procedure keeps track of the scale depen-
dence by a modified covariance matrix which, in turn, influ-
ences the fit. A faithful graphical comparison of data and
model—like the usual fit residual plots—should take into
account the fitted scale, as illustrated in [35] for instance.

4.3 Global scale uncertainties effects in ISR experiments

With the advent of the � factory in Frascati, of the J/ψ fac-
tory in Beijing and of the B factories at SLAC and KEK, the
possibility opened to get large data samples for the various
e+e− annihilation channels in the region of interest of the
BHLS model, namely, from the thresholds to the φ meson
mass energy region (

√
s ≤ 1.05 GeV). The production mech-

anism involved is the emission of a hard photon in the ini-
tial state [72], the so-called the Initial State Radiation (ISR)
phenomenon. This ISR production mode has been used to
collect high statistics data samples for the e+e− → π+π−
channel covering the low energies by the KLOE [36–38],
BaBar [39,40], and BESSIII [41] Collaborations.

However, it is a common feature of the KLOE and BaBar
(ISR) data samples to carry non-trivial error structures.
Beside a non-diagonal statistical error covariance matrix (V ),
they exhibit a large number of (statistically independent) bin-
to-bin correlated uncertainties, most of these being addition-
ally s-dependent. As far as we know, this seems to be a pre-
mière in particle physics and how this is dealt with inside
minimization procedures deserves to be clarified and explic-
itly stated (see also [35]).

Let us consider a given experimental data sample E , a
spectrum m function of s, for which the (given) statisti-
cal error covariance matrix is V ; the information provided
for the bin-to-bin correlated uncertainties defines several
independent scale uncertainties λα (α = 1, . . . , nscale) and
should be understood as follows: each of the scale uncer-
tainty λα is a random variable of zero mean and carrying a
s-dependent standard deviation σα(s) as tabulated by each
experiment. It is clearer to make the change of (random)
variables λα = σα(s)μα (α = 1, . . . , nscale) and assume

that all the random variables μα fulfill E(μα) = 0 and
E(μαμβ) = δαβ .

Then the other notations being identical to those previ-
ously defined, the χ2 in Eq. (5) generalizes to

χ2 = [m − M(�a) − μαBα]TV−1[m − M(�a) − μβBβ ]
+μαμβδαβ (8)

where implicit sum over repeated Greek indices is under-
stood. One has defined Bα(s) = σα(s)A(s), A being the
s-dependent vector already defined. A is iteratively rede-
fined as emphasized in the previous subsection. Using the
minimum χ2 conditions ∂χ2/∂μα = 0 and the indepen-
dence conditions of the various sources of scale uncertainty
∂μα/∂μβ = δαβ , the most probable values for the μα’s can
be derived [35]. A recursion can be defined and allows one
to derive17 from Eq. (8):

⎧⎪⎨
⎪⎩

χ2 = [m − M(�a)]TW−1[m − M(�a)],
Wi j = Vi j + Bi B j

= Vi j + [∑nscale
α=1 σα(si )σα(s j )

]
Ai A j (∀[i, j]),

(9)

in close correspondence with Eq. (7).
A specific feature of Eq. (9) deserves to be noted. As

each experimental group reports separately on each iden-
tified independent source of (scale) uncertainty, these should
indeed be fitted separately as stated just above to go from
Eqs. (8) to (9). More precisely, for the experiment E , we
are not using the quadratic sum (σE (s))2 = ∑

α[σα(s)]2 for
its partial χ2, which would have given σE (si )σE (s j )Ai A j

inside the full error covariance matrix instead of what is
shown in Eq. (9). Stated otherwise, the various sources of
normalization uncertainties are not summed in quadrature
but really treated as statistically independent.

4.4 Numerical tests of the global fit iterative method

As stated in the header of the present section, if the physics
correlations predicted by the effective Lagrangian (here
BHLS) are fulfilled by the data, the estimate of the model
parameters and the parameter error covariance matrix are
legitimate tools serving the evaluation of related physical
quantities.

As in the previous studies relying on the HLS model, at
the early stages [32,33] or more recently [34,35,56,57], the
method is to minimize a global χ2 expression taking into
account the largest possible number of data samples and
using appropriately all information provided by the experi-
mentalists concerning all kinds of uncertainties which affect
their data samples. The aim of Sects. 4.1–4.3 was to detail

17 For clarity, defining Z = A or B, Zk denotes the quantity Z(sk) for
short.
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how the χ2 piece associated with each data sample should
be constructed, depending on its reported error structure.

In contrast with previous references (including ours), the
fit procedure will be adapted in the present study in order
to examine and cure possible biases produced by having
stopped the fit procedure at the A = m step instead of iter-
ating further on as suggested in [42], explicitly proposed in
[44] and performed in [47].

In order to check whether estimates based on global fit
results can be trusted as, for instance, the muon HVP central
value and its uncertainty derived from the fit information
returned by minuit, some additional checks on the fitting
method and its iterative aspect deserve to be performed, at
least to control that, indeed:

• The fit parameter residuals �i = afit
i −atrue

i are unbiased
gaussians.

• The parameter pulls are centered gaussians of unit stan-
dard deviations.

One should also check that the fit probabilities distributions
are uniformly distributed on [0, 1] when the measurements
are indeed true unbiased gaussian distributions.

This condition list can be supplemented with some exam-
ination of the effects due to non-linear dependences upon the
parameters to be fitted.

However, checking this list of properties obviously implies
that the true parameter values are known, that the measure-
ments are indeed sampled on truly centered gaussian dis-
tributions, and that their errors are indeed the true stan-
dard deviations of the measured spectrum. Stated otherwise,
this exercise goes beyond using actual measured experimen-
tal data samples as, then, truth is unknown: The global fit
method—as any other method—should be evaluated using
data samples generated by Monte Carlo techniques; in this
case, the true parameter values and their uncertainties are
known at the sample generation level and can reliably be
compared to the fit results. The detailed study is transferred
to Appendix A; the most involved results are summarized
here:

• The effects of non-linear parameter dependence within
models used to fit data spectra (see Sect. A.2.1) are likely
to be marginal for the kind of experimental distributions
we are dealing with. This should be related with the local
minimum finding structure of the algorithms gathered
within the minuit package.

• When scale uncertainties dominate the sets of spectra
globally submitted to fit, using18 A = mE gives a solu-
tion which can exhibit strong biases, but this solution is

18 mE being the experimental spectrum in the expression for the χ2

(see Eqs. (3) or (4)).

the start of an iterative procedure which leads rapidly to
the unbiased solution to the minimization problem. The
biases occurring at start of the procedure can be very
large, but they are observed to practically vanish already
at the first iteration step (the solution previously called
M1).

• When performing a global fit of some data samples
dominated by global scale uncertainties together with
others where the statistical errors (e.g. affecting ran-
domly each bin) dominate, the iterative method obvi-
ously works as well as just stated. In this case, how-
ever, the presence of some samples free from scale errors
exhibits an unexpected pattern: Even if the data samples
free from scale uncertainties are affected by enlarged
statistical errors, they strongly reduce the biases gen-
erated by the A = mE choice. Stated otherwise, the
effects of data samples where the normalization errors are
dominated by the (random) statistical errors is to favor
the smearing out of the biases in the parameter value
estimations.

The properties just listed concerning the unbiasing of the
fit parameters extend to the estimates of physics quantities
derived from using the fit result information (parameter val-
ues and error covariance matrix). Additionally, as the param-
eter pulls are observed as centered gaussians of unit stan-
dard deviation, the calculated uncertainties relying on Monte
Carlo sampling of the fit parameter distributions should also
be reliable. This is of special relevance for the evaluation of
the various contributions to the muon LO-HVP discussed in
Sect. 3.

The last item in the list just above has important con-
sequences while working with real (and so, not really per-
fect) experimental data. However, even if the fraction of data
samples free from—or marginally affected by—scale uncer-
tainties may look large enough, it is nevertheless cautious
to ascertain that the fit solution is indeed unbiased by per-
forming one or two additional iterations. Indeed, the studies
reported in Appendix A tell that, anyway, the iterated fit solu-
tions are always unbiased.

Therefore, one may conclude from this section and from
the simulation studies reported in Appendix A that global
fit methods can indeed be trusted. The single proviso is that
iterating the fit procedure as explained above is mandatory
or, at least, cautious.

The issue is now to examine how the results given in [34,
35] are modified when iterating beyond the approximation
AE = mE for all data samples significantly affected by scale
uncertainties, constant (as, mostly, the spectra reported in
[52–54]) or s-dependent (as all the ISR spectra reported in
[36–39]). Observing the stabilizing effect of the data samples
dominated by statistical errors (like the γπ0 and γ η final
states) is also methodologically relevant.
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5 BHLS global fit method: present status and
corrigendum

As stated several times above, the effective Lagrangian model
we use is the broken HLS (BHLS) model developed in [34].
In this Reference, the BHLS model is also applied to all
data samples collected in scan mode, by the various Collab-
orations which have run on the successive Novosibirsk e+e−
colliders. These e+e− annihilation samples cover the π+π−,
π0γ ,ηγ ,π+π−π0, K+K−, K 0K 0 final states and have been
discussed in detail in several previous studies [32–34]; for
the sake of conciseness, we will not repeat this exercise here.
As the BHLS model also covers the τ decays from the early
stages of its formulation [27], the previous studies include the
dipion spectra collected in the τ± → π±π0ντ decay mode
by ALEPH [49,73], Belle [51] and CLEO [50]. Also included
within the BHLS fit procedure are some light meson decay
partial widths not connected with the annihilation channels
already listed, like K ∗0 → K 0γ , K ∗± → K±γ , η′ → ωγ

or φ → η′γ .
A second step has been to extend the study in [34] to treat

the high statistics ISR data samples for e+e− → π+π−; this
has been the purpose of the study in [35] where the KLOE08
[36] and KLOE10 [37] data samples collected by the KLOE
Collaboration and the data sample produced by BaBar [39]
have been examined. Since then, two new samples have been
produced by the KLOE (KLOE12 [38]) and BESSIII [41]
Collaborations19 Except otherwise stated, all the fit results
presented in this paper have been obtained using the Config-
uration B [34] (i.e. dropping out from the fit procedure the
three pion data samples collected in the φ mass region).

The studies covered by [34,35,56,57] rely on minimizing
a global χ2 function summing up partial χ2’s, each associ-
ated with a given data sample. For each of the �40 ÷ 50
data samples, the partial χ2 was (canonically) constructed
following the rules detailed in Sect. 4. However, as the fit
was not iterated in the studies [34,35], it is worth checking
to which extent the value of the muon HVP derived from this
is changed by the iteration procedure.

For the present study, a few coding bug fixes have been
performed and a piece missing in the expression for the
e+e− → π0γ and e+e− → ηγ cross sections has been
included. So, when different, the results in the present paper
supersede those in [34,35].

As for the missing piece just mentioned: In the amplitudes
γ ∗ → γ P0 (Eq. (65) in [34]) and the cross section formulas
e+e− → γ P0 (Eq. (68) in [34]), the non-resonant piece
should be modified as follows:

19 The KLOE12 and KLOE08 data samples are tightly correlated; actu-
ally, they mostly differ by their respective normalization procedures.
Comparing their respective behaviors within our global treatment is,
therefore, interesting.

(1 − c4)LP0 ⇒
(

1 − [c3 + c4]
2

)
LP0 . (10)

This implies that the single process which depends sep-
arately on the FKTUY [15] parameters c3 and c4 is the
e+e− → π+π−π0 annihilation. In this case both c3 + c4

and c3 − c4 combinations enter, while all others quantities
only involve the c3 +c4 combination.20 We apologize for the
inconvenience.

6 BHLS global fit method: iterating with NSK data only

In this section, we report on global fits using the data recalled
in the preceding section and discussed in [34]; as for the pion
form factor data, we focus for the present exercise on using
only the most recent scan data collected by CMD2 and SND
[52–54,74], excluding the older data samples from OLYA
and CMD [75].

The CMD2 data samples are reported to carry constant
bin-to-bin correlated uncertainties of 0.6 % [74], 0.8 % [52]
and 0.7 % [53], while SND reports a 1.3 % constant scale
uncertainty [54]—except for their first two data points where
it is 3.2 %. For these data samples, the partial χ2’s are essen-
tially given by expressions like Eq. (4). For the other data
samples, we performed as in [34].

The first data column in Table 1 displays the results of the
fit performed by setting A = m in the χ2 associated with
each experimental data spectrum generically named m. The
form factor returned by this (A = m) global fit is named M0

and is used to perform the first iterated (A = M0) global fit;
the results of this fit are shown in the data column #2; this
iteration #1 global fit returns the solution named M1. The
iterated #2 fit is then performed by setting A = M1 in the
χ2 expressions of the pion form factor data samples, leading
to another (M2) solution; the fit results are displayed in the
third data column in Table 1.

One clearly observes a quite tiny change in the first itera-
tion: 0.2 unit in the χ2 value of the π+π− data samples; also
the global χ2 changes by only 0.7 unit. When going from the
first to the second iteration, the changes are almost invisible.
This corresponds for experimental data to the effect reported
in Sect. A.2.3 for our Monte Carlo data. As derived quantity,
let us report on the leading order (LO) contribution aμ(ππ)

derived by integrating Eq. (1) between 0.63 GeV/c and 0.958
GeV/c; using obvious notations, the previously reported fits
yield⎧⎪⎨
⎪⎩

A = m : aμ(ππ, [0.63, 0.958]) = 358.95 ± 1.63,

A = M0 : aμ(ππ, [0.63, 0.958]) = 360.00 ± 1.78,

A = M1 : aμ(ππ, [0.63, 0.958]) = 359.99 ± 1.79,

(11)

20 The studies [34,35] have been performed fixing c3 = c4. The BHLS
fit recovers a good fit quality by modifying the value for c1 − c2 as will
be seen below.
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Table 1 Global fit χ2 results derived by using only the data from [52–54] for the e+e− → π+π− annihilation. See the discussion and comments
in Sect. 6

χ2/N A = m Iteration method A = M varying

[34] A = M0 A = M1 Astart = M1 Astart = Mx

Decays 8.16/10 8.01/10 8.03/10 8.01/10 8.02/10

New timelike π+π− 121.54/127 121.75/127 121.75/127 121.74/127 121.75/127

π0γ 63.84/86 63.98/86 63.96/86 63.98/86 63.96/86

ηγ 120.87/182 120.84/182 120.84/182 120.84/182 120.83/182

π+π−π0 101.82/99 102.49/99 102.43/99 102.49/99 102.43/99

K+K− 29.87/36 29.77/36 29.78/36 29.78/36 29.78/36

K 0K
0

119.21/119 119.21/119 119.18/119 119.20/119 119.19/119

ALEPH 19.67/37 19.73/37 19.71/37 19.72/37 19.70/37

Belle 28.24/19 28.27/19 28.29/19 28.27/19 28.29/19

CLEO 34.96/26 34.82/29 34.82/29 34.84/29 34.84/29

χ2/dof 648.16/719 648.85/719 648.78/719 648.85/719 648.78/719

Global fit probability (%) 97.2 97.1 97.1 97.1 97.1

in units of 10−10. So, one observes a tiny effect while iter-
ating once (0.3 % for the central value) and no effect when
iterating twice. In the present case, where the former data
from [75] have been dropped out from the fit, the “experi-
mental” estimate is aμ(ππ, [0.63, 0.958]) = 361.26 ± 2.66
(see Table 7 in [34]).

Another way to account for the scale uncertainty is
to set A = M(�a) (which depends on the parameters
under fit) and perform the fit. A starting value for A must
be chosen (denoted Astart) but its value changes at each
step of the minimization procedure. In this case, the fit
convergence time is much larger than previously but the
results are almost identical to those already obtained by
iterating. The last two columns in Table 1 display the fit
results starting with Astart = M1 and also those starting
from the fit solution derived from this (denoted Mx ). As
for aμ(ππ, [0.63, 0.958]), the values derived in these last
fits numerically coincide with the iterated cases displayed
above.

Therefore, one may indeed conclude, as can be inferred
from the Monte Carlo studies reported in Appendix A, that
the HVP value reached without iterating is very close to
the HVP derived from the once iterated solution. One also
observes, as expected, that iterating only once already leads
to the final result; indeed, from iteration #1 to iteration #2,
the changes for aμ(ππ) are at the level of a few 10−12.

As for the fit quality reflected by the χ2 values at minimum
and the corresponding fit probabilities, the last line in Table 1
indicates that, whatever way one treats the vector A, they
are all alike. This, once more, corresponds to expectations,
as can be checked with the discussion in Sect. A.2.3 and
especially the properties of Fig. 8. Nevertheless, it is useful
to check that the twice iterated solution does not modify the

result derived from the once iterated solution in a significant
way.

7 BHLS global fit method: iterating scan and ISR data

It remains to introduce the other π+π− data samples col-
lected at e+e− colliders using the ISR mechanism. Refer-
ence [35] has already done this work with the data sam-
ples then available using the method described in Sect. 4.3
without, however, iterating the procedure. The conclusion
reached was that the KLOE08 [36] and BaBar [39] data
samples have difficulties to accommodate—within the BHLS
framework—the whole set of data samples covering the chan-
nels already recalled in Sect. 5. In contrast, the KLOE10 [37]
data sample was found to fit well the BHLS expectations.
Complementing preliminary works [56,57], we revisit here
the issue with the two new data samples provided by KLOE
(KLOE12) and BESSIII.

7.1 The τ+PDG analysis

In Ref. [35], it has been shown that the BHLS fitter can be
run without explicitly using definite e+e− → π+π− data
samples besides the non-π+π− channels. Indeed, on general
grounds, one expects that some limited isospin breaking (IB)
information specific of this annihilation channel can make the
job together with the τ dipion spectra. It has been shown that
the partial widths �(ω/φ → π+π−) and �(ρ0 → e+e−),
together with the products (V = ω, φ) �(V → π+π−) ×
�(V → e+e−) represent an amount of information sufficient
to reconstruct—within BHLS—the pion form factor in the
e+e− channel.
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Fig. 1 The τ+PDG prediction (red curve) of the pion form factor in
e+e− annihilations in the ρ −ω interference region. The various super-
imposed data samples are not fitted; also displayed are the average χ2

distances of each of the e+e− → π+π− data samples to the common
τ+PDG prediction

Before going on, it deserves noting that the decay infor-
mation used to run the τ+PDG method has been extracted
from the Review of Particle Properties (RPP) [61] and that the
above mentioned pieces of information are in no way influ-
enced by the data collected by KLOE, BaBar or BESSIII;
actually, they are almost 100 % determined by the data sam-
ples from the CMD-2 and SND experiments. On the other
hand, the τ+PDG analysis is not influenced by the global
scale issue which mostly motivates the present work.

We have performed the τ+PDG run using all annihilation
data mentioned in the above sections (configuration A [34]).
The fit returns χ2

τ /Nτ = 82.1/85 = 0.97. The best fit solu-
tion allows one to reconstruct the predicted invariant mass
distribution of the pion form factor in the e+e− → π+π−
annihilation; this prediction is expected valid over the whole
BHLS range as shown by Figure 2 in [35]. It is worth showing
here the mass range from 0.70 to 0.85 GeV; Fig. 1 displays the
τ+PDG prediction on this range together with the available
π+π− data superimposed (andnot fitted); we have calculated
the χ2 distance of each sample over its full range.21 The aver-
age χ2 per data point is indicated inside the corresponding
pannel.

Figure 1 indicates that the average χ2 distances for the
NSK (CMD-2 and SND), KLOE10, KLOE12 and BESSIII
samples are small enough to claim a success of the τ+PDG
method. One can conclude that they fulfill the consistency

21 For BaBar, the computed χ2 referred to here is computed on
its spectrum up to 1 GeV, but truncated from the drop-off region
(0.76 ÷ 0.80 GeV).

issue discussed in Sect. 2 with the full set of data and chan-
nels covered by BHLS. One should note that the description
of the BESSIII sample (which is not a fit) is as good as the fit
published by the BESSIII Collaboration [41]. For KLOE08
and BaBar, we reach the same conclusion as in [35]; nev-
ertheless, one can now compare the behavior of the twin22

samples KLOE08 and KLOE12: We have χ2
K LOE08 = 4.8

while χ2
K LOE12 = 1.2 clearly reflecting a better under-

standing of the error covariance matrix, while the central
values are almost unchanged, as clear from Fig. 1.

Stated otherwise, the issue met with as regards KLOE08
and BaBar is confirmed but the two new data samples pub-
lished since [35] are both found to be in good correspondence
with expectations.

7.2 The iterative method: global fit properties

The issue is now to report on the behavior of the global
fits performed using the iterated method when the π+π−
ISR and scan data are considered simultaneously; this com-
plements the work already presented in Sect. 6 when using
the scan data only. Except otherwise stated, the τ data sam-
ples are always included into the fit procedure. On the other
hand, as the behavior of the global fit for data/channels other
than π+π− does not differ sensitively from the information
already displayed in Table 1, this will not be repeated.

22 They mostly differ by the normalization method used to reconstruct
the spectrum from the same collected data.
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Table 2 Global fit results as a function of the e+e− → π+π− data
sample content. Each entry displays the [χ2

π+π−/Nπ+π−] value returned
by the global fit. The data samples involved can be tracked from the
column titles, the following line giving the corresponding data point

numbers [Nπ+π−] in the range up to 1 GeV. The value flagged by * has
been obtained using a BaBar sample truncated from the energy region
[0.76, 0.80] GeV (250 data points)

Fit configuration Iteration method
[χ2

π+π−/Nπ+π−] KLOE08 KLOE10 KLOE12 NSK BESSIII-III BaBar

Nπ+π− (60) (75) (60) (127/[209]) (60) (270)

Fits in isolation 1.64 0.96 1.02 0.96[0.83] 0.56 1.25

Global fit prob. (%) 59 97 97 97[99 %] 99 40

Fit combination 1 1.02 1.48 1.18[0.96] 0.56 1.36(*)

χ2
π+π−/Nπ+π− and Gl. fit prob: 1.21 and 22 %

Fit combination 2 1.00 1.05 1.11[0.89] 0.61

χ2
π+π−/Nπ+π− and Gl. fit prob: 0.98 and 99 %

Fit combination 3 1.02 1.05 1.10[0.89]

χ2
π+π−/Nπ+π− and Gl. fit prob: 1.06 and 97 %

Table 2 displays our main results using the scan and ISR
e+e− → π+π− annihilation data. They correspond to the
iteration # 1 fit (denoted above A = M0), however, the pre-
viously called A = m or A = M1 solutions gives almost
identical fit quality results.23

The first data line displays the global fit properties with the
indicated e+e− → π+π− data samples used each in isola-
tion within the global BHLS context, together with all other
data samples covering the rest of the encompassed physics
(see Sect. 5).

One observes that the average (partial) χ2 per data
point χ2

π+π−/Nπ+π− is of the order 1 or (much) better
and the probability high when running with any of the
KLOE10, KLOE12, NSK24 and BESSIII data samples;
as in [35] the picture is not as good for KLOE08 and
BaBar.

Performing a global BHLS fit using the data samples from
KLOE10, KLOE12, BESSIII, NSK and BaBar (amputated25

from the energy region [0.76, 0.80] GeV) leads to results
given at the entry lines flagged by “Fit Combination 1”;
as the correlations between the KLOE08 and KLOE12 data
samples are strong and their content not explicitly stated,26

23 As regard to the fit parameter values and uncertainties: The A = M0
and A = M1 solutions differ insignificantly; the A = m exhibits some
small departure commented on below.
24 NSK here denotes the collection of data samples from CMD2 [52,
53,74], SND [54] (127 data points in total) as well as the former (82
data points) samples collected by OLYA and CMD [75]. The numbers
in Table 2 given within square brackets include the contributions from
these former samples.
25 We recall that this removal is motivated by a possible mismatch in the
energy calibration in the ρ0 −ω interference region between BaBar and
the other π+π− data samples submitted to the same global framework.
In contrast, when running with the π+π− BaBar sample in isolation,
its full spectrum is considered.
26 Some work in this field seems ongoing [76].

it is more cautious to avoid dealing with the KLOE08 and
KLOE12 samples simultaneously. Despite the removal of the
drop-off region in the BaBar π+π− spectrum, the global fit
quality looks poorer.

The results obtained when using the KLOE10, KLOE12,
NSK samples within the fit procedure are displayed at the
Entry “Fit Combination 2” when BESSIII data are also
included and “Fit Combination 3” when they are not; the data
and fit corresponding to the “Fit Combination 2” are shown
in Fig. 2. Both Fit Combination 2 and Fit Combination 3 are
clearly satisfactory.

Therefore, this proves that the scan data from CMD2
and SND are consistent with the KLOE10, KLOE12 and
BESSIII data samples and that all these are fully consis-
tent with the other data spectra introduced in the global fit
procedure as indicated by the global fit probability. One
should also remark that the systematic uncertainties pro-
vided for KLOE12 lead to a satisfactory global fit, in con-
trast with KLOE08, as already noted in the previous subsec-
tion.

Except otherwise stated, the fit parameter values presented
from now on are derived using the e+e− → π+π− data sam-
ples corresponding to the “Fit Combination 2” (see Table 2);
the fit results are those derived after the first iteration and they
do not differ significantly from the corresponding results at
iteration # 2. The fit quality for the non-π+π− data samples
are almost indistinguishable from the numbers already given
in the second data column from Table 1; they are not repeated
for the sake of brevity.

7.3 The iterative method: updating the model parameter
values

Beside improving the fits by mean of the iterative method,
the present work accounts for an error and a couple of bugs
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Fig. 2 The pion form factor
data and fit corresponding to the
iteration # 1 BHLS global fit.
The e+e− → π+π− data
samples are those shown in the
entry “Fit Combination 2” in
Table 2. The inset in the top
panel magnifies the ρ0 − ω peak
region. The lower-most panels
magnify the behavior in both
distribution wings. See Sect. 7.2
for further comments

affecting our [34,35]. Moreover, the present work includes
the new KLOE12 data sample within the fit procedure; this is
not harmless as KLOE12 constrains the fit conditions more
severely than the KLOE10 sample. Therefore, the present
results update and supersede the corresponding ones previ-
ously given in [34,35].

7.3.1 The HLS-FKTUY parameters

The non-anomalous HLS Lagrangian (broken or not) can be
written:

LHLS = LA + aHLSLV (12)

The unbroken expression for LHLS can be found in [13] and
its broken expression (BHLS) is given in [34]. The covariant
derivative which allows one to construct both pieces of LHLS

introduces the fundamental parameter g, known as universal
vector coupling. The coefficient aHLS is a specific feature
of the HLS model, expected close to 2 in standard VMD
approaches; however, phenomenology rather favors aHLS �
2.5, since the early applications of the HLS model to pion
form factor studies [23,77,78].
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On the other hand, the anomalous (FKTUY) sector [15]
of the HLS model [13] consists of five pieces (see also
Appendix D in [34]), each weighted by a specific numerical
parameter not fixed by the theory. Using common notations
[13,34] and factoring out, for convenience, the weighting
factors, the FKTUY Lagrangian collecting all the anomalous
couplings can be written27

LFKTUY = c3LVVP + (c4 − c3)LAVP + (1 − c4)LAAP

+ (c1−c2−c3)LVPPP+(c1−c2+c4)LAPPP

(13)

where P and V indicate the basic pseudoscalar and vec-
tor meson nonets and A the electromagnetic field. As LHLS,
LFKTUY depends on the universal vector coupling g.

At iteration # 1, the global BHLS fit returns
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

c+ ≡ (c4+c3)
2 = 0.956 ± 0.004,

c− ≡ (c4−c3)
2 = −0.166 ± 0.021,

c1 − c2 = 0.915 ± 0.052,

g = 5.507 ± 0.001,

aHLS = 2.479 ± 0.001,

(14)

with correlation coefficients never larger than the percent
level, except for 〈δg δaHLS〉 = −0.30 and 〈δ[c1 −c2] δ[(c4 −
c3)/2]〉 = +0.86. The sign of the (g, aHLS) correlation term
is easy to understand as the vector meson coupling to a pion
or kaon pair rather depends on the product g′ = aHLSg. The
large value of the ([c1 − c2], [c4 − c3]) correlation is also
not surprising (see footnote 27). The numerical values for g
and aHLS are in the usual ball park and do not call for more
comments than in [34,35].

Our value for c+ agrees with the estimates derived in [13]
from the π0γ γ ∗) form factor (c+ = 1.06 ± 0.13) and from
the ω → π0γ partial width (c+ = 0.99 ± 0.16) with a much
smaller uncertainty due to the large amount of data influenc-
ing the (global) fit. After the bug fixing, c− is found small
but non-zero with a large significance and (c1 −c2) becomes
closer to 1. Using the full 25 × 25 parameter error covari-
ance matrix returned by the global fit, we have computed
separately c4 and c3 by a Monte-Carlo sampling. This gives
c3 = 1.124 ± 0.022 and c4 = 0.789 ± 0.021.

Among the numbers displayed in Eq. (14), some are
appealing: The nearness to 1 of the fitted c1 − c2 and c+

27 Actually, the erratum involved in Eq. (10) comes from having missed
the contribution of the (c4−c3) term displayed in Eq. (13) which actually
turned out to impose c4 = c3. As already stated, after correction, all the
anomalous decay couplings and the amplitudes for e+e− → (π0/η)γ

annihilations only depend on the combination (c4 +c3)/2 and the single
place where the difference (c4 − c3) occurs is the e+e− → π0π+π−
annihilation amplitude. In [34,35] where (c4 −c3) was absent, its phys-
ical effect was absorbed by (c1 − c2) to recover good fit qualities; so
(c4 − c3) and (c1 − c2) should carry an important correlation.

parameters, their customary guessed value [13], should be
noted and deserves confirmation with more precise data on
the anomalous annihilations and light meson radiative decays
than those presently available.

7.3.2 The iterative method: pseudoscalar meson mixing
and decay parameters

The BHLS symmetry breaking of the Lagrangian piece LA

leads to pseudoscalar physical fields constructed as linear
combinations of their bare partners. The mechanism involved
is the BKY mechanism extended so as to account for both
isospin and SU(3) symmetry breaking [34]; it can be com-
plemented by the pseudoscalar nonet symmetry breaking
scheme generated by the ‘t Hooft determinant terms [79].
The main effect of these determinant terms is to provide the
bare Lagrangian with a correction to the PS singlet kinetic
energy term governed by a parameter λ expected small (see
Eq. (7) in [34]).

The BHLS model connects to (extended) ChPT [24,25],
especially its two angle θ0 and θ8 mixing scheme; in partic-
ular, it relates these angles to the singlet–octet mixing angle
traditionally denoted θP , together with the BKY breaking
parameters zA, �A and to λ [34].

The upper part of Table 3 displays in its first data column
our fit results in the general case. The fit value for θ8 is in
good agreement with other expectations [24] as well as that
for θ0. The smallness of this has led us to impose θ0 = 0
within fits which leads to the results shown in the second
data column. The value for λ undergoes a severe correction
compared with [34,35] and, presently, because of its large
uncertainty, could be neglected without any real degradation
in fit qualities.

BHLS also allows for some additional contribution to the
π0–η–η′ mixing based on some possible aspects of isospin
breaking not already accounted for by the extended BKY

Table 3 Some parameter values derived when leaving free θP and λ

(first data column) or when relating them by imposing θ0 = 0 to the fit
(second data column)

General fit Constrained fit

θ0 2.77◦ ± 0.41◦ 0

θ8 −25.95◦ ± 0.35◦ −25.52◦ ± 0.20◦

θP −15.29◦ ± 0.32◦ −13.96◦ ± 0.16◦

λ (2.91 ± 3.35) 10−2 (1.86 ± 1.17) 10−2

ε0 (4.12 ± 0.33) 10−2 (4.00 ± 0.33) 10−2

ε(η) (5.85 ± 0.48) 10−2 (5.57 ± 0.47) 10−2

ε′(η′) (1.46 ± 0.13) 10−2 (1.36 ± 0.12) 10−2

χ2/Ndof 887.5/994 892.5/995

Probability (%) 99.3 99.1

Number written in boldface is not allowed to vary
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scheme developed in [34]. This turns out to redefine the
physical (observable) fields (right-hand side) in terms of the
(BHLS) renormalized (left-hand side) fields by [80]

⎧⎪⎨
⎪⎩

π3
R = π0 − ε η − ε′ η′,

η8
R = cos θP (η + ε π0) + sin θP (η′ + ε′ π0),

η0
R = − sin θP (η + ε π0) + cos θP (η′ + ε′ π0).

(15)

Inspired by [80], one can lessen the number of free parame-
ters by stating:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ε = ε0 cos θP

√
2 cos θP − sin θP√
2 cos θP + sin θP

,

ε′ = −2ε0 sin θP

√
2 cos θP + sin θP√
2 cos θP − sin θP

,

(16)

and fit ε0. Then, using the fit results (parameter central values
and error covariance matrix), one can reconstruct the value
for ε and ε′. The updated values are given in Table 3 still
indicate a π0–η mixing much larger than the π0–η′ mixing
(a factor of 4).

Before closing this subsection, we mention that the Monte
Carlo sampling method allows one to reconstruct the decay
constant ratio fK / fπ = 1.265 ± 0.009 which becomes
fK / fπ = 1.295 ± 0.002 when constraining the fit with
θ0 = 0.

8 The muon LO-HVP: evaluations from iterated fits

The main aim of the present study is to produce improved
estimates of the muon LO-HVP [34,35] by means of the
i terated global fit method expected to cancel out possible
biasing effects which could affect the A = m (i.e. non-
iterated) solution. The validity of the iterated method is sup-
ported by the Monte Carlo study outlined in Appendix A,
which clearly indicates that the iterated method cancels out
possible biases and returns, correctly estimated, the fit param-
eter uncertainties. Therefore, building on the conclusions
collected in Sect. 4.4 one can produce bias free evaluations
of the muon LO-HVP. The effects of iterating28 from M0

to M1—the solution derived using A = M0 within the fit
procedure—will be especially emphasized. To be complete,
this update also takes into account the new KLOE12 [38] and
BESSIII [41] π+π− data samples—which happen to be very
constraining—and also corrects for some bugs. Therefore the
present numerical results supersede the corresponding ones
in [34,35].

28 M0 is the solution to the fit performed under the approximation
already named in short A = m (i.e. each of the various π+π− experi-
mental spectra is used for its individual contribution to the global χ2).

Fig. 3 Values for aμ(ππ, [0.63, 0.958]) in units of 10−10 derived from
global fits using the indicated e+e− → π+π− data samples or com-
binations; the τ dipion spectra are always used. The full green circles
are the results obtained from the A = m fit (no iteration) and the black
empty squares are the results obtained from the A = M0 fit (first iter-
ation). The values derived by integrating the experimental spectra are
indicated by red stars. See Sect. 8.1 for comments

8.1 Various evaluations of aμ(ππ, [0.63, 0.958] GeV)

The point at top of Fig. 3 is the so-called τ+PDG [35] value
for aμ(ππ, [0.63, 0.958] GeV) derived by switching off the
contributions of the various e+e− → π+π− data samples
from the minimized χ2, replacing them by decay information
extracted from the Review of Particle Properties (RPP) [61]
as emphasized in Sect. 7.1.

In order to get the other points displayed in Fig. 3, one
always uses all the channels covered by BHLS, including
the τ spectra from ALEPH, CLEO and Belle. As for the
e+e− → π+π− data samples, one uses each of the BaBar,
KLOE08, KLOE10 and KLOE12 samples in isolation as
indicated within the figure (see also Table 2 and Sect. 7.2).
The point flagged by CMD2+SND is obtained from a fit to the
so-called [34] new timelike data from CMD2 and SND [52–
54,74], leaving aside the older data from OLYA and CMD
collected in [75] (see Table 2 and Sect. 6 above). As for the
BaBar spectrum, for reasons already stated, the fit is per-
formed on the spectrum amputated from the drop-off region
(
√
s ∈ [0.76, 0.80] GeV). Finally, as the published BESSIII

spectrum ends up at 0.9 GeV, one cannot produce an experi-
mental value on the interval [0.63, 0.958] GeV.

As a general statement, Fig. 3 clearly illustrates that the
iterated (M1) and the non-iterated (M0) solutions provide
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quite similar fit estimates for aμ(ππ, [0.63, 0.958] GeV).
One should nevertheless remark that the agreement between
both fit solutions and the numerical integral of the experimen-
tal data is less satisfactory for the data samples which exhibit
poor fit qualities within the global framework (KLOE08 and
BaBar) than for the others (KLOE10, KLOE12,
CMD2+SND) as can be inferred from the “fit in isolation”
properties displayed in Table 2. Finally, the weighted aver-
ages of the experimental results for KLOE10 and KLOE12
alone or together with all NSK data (the so-called new time-
like data and the former samples [75]) are always well repro-
duced by the global fit and are supported by quite good prob-
abilities (see Table 2).

Using the NSK+KLOE(10/12) sample configuration, the
iterated BHLS global fit gives a slightly smaller central value
(by �1.5 10−10) while the uncertainty is improved by a
factor �2. It is also worth pointing out the role of the τ

spectra within the BHLS global fit framework. The follow-
ing numbers illustrate how the constraints involved by the
τ spectra allow BHLS to yield a more precise fit estimate
for aμ(ππ, [0.63, 0.958] GeV). Comparing the direct inte-
gration result to the values derived from fits, one indeed gets
at iteration # 1

⎧⎪⎨
⎪⎩

Direct Integration : aμ(ππ, [0.63, 0.958]) = 356.67 ± 1.69

A = M0(fit excl. τ ) : aμ(ππ, [0.63, 0.958]) = 355.07 ± 0.96

A = M0(fit incl. τ ) : aμ(ππ, [0.63, 0.958]) = 355.17 ± 0.75

(17)

in units of 10−10.
Finally, the lower-most point in Fig. 3 displays the

result derived using all data samples (except for KLOE08
as there is not enough published information to account
for its strong correlation with KLOE12); this estimate for
aμ(ππ, [0.63, 0.958]) which benefits from a very small
uncertainty has, however, a poor fit probability as clear from
Table 2.

8.2 Contributions to the muon LO-HVP up to 1.05 GeV

The LO-HVP’s integrated from their respective thresholds
up to 1.05 GeV are displayed in Table 4; the central value
for aμ(ππ) includes final state radiation (FSR) effects. The
first data column shows the results from the fit solution M0

derived from fitting with A = m; the second data column
displays the results corresponding to the solution M1 derived
by fitting with A = M0. These two data columns report on the
fits performed using all annihilation channels encompassed
by BHLS and the τ dipion spectra. Finally, the right-most
data column provides the direct numerical integration of the
experimental spectra—actually only those feeding the BHLS
fit procedure, including the KLOE10, KLOE12 and BESSIII
data samples besides the scan data.

Table 4 The contributions to the muon LO-HVP from the various chan-
nels covered by BHLS from their respective thresholds to 1.05 GeV in
units of 10−10 at start and after iteration. The last column displays the
direct numerical integration of the various spectra used within BHLS.
The π+π− data samples considered are those flagged by “Combination
2” in Table 2

Channel A = m A = M0 Exp. value

π+π− 495.06 ± 1.43 494.59 ± 0.89 492.98 ± 3.38

π0γ 4.53 ± 0.04 4.54 ± 0.04 3.67 ± 0.11

ηγ 0.64 ± 0.01 0.64 ± 0.01 0.56 ± 0.02

π+π−π0 40.83 ± 0.57 40.84 ± 0.57 43.54 ± 1.29

KLKS 11.56 ± 0.08 11.53 ± 0.08 12.21 ± 0.33

K+K− 16.79 ± 0.20 16.90 ± 0.20 17.72 ± 0.52

Total 569.41 ± 1.55 569.04 ± 1.08 570.68 ± 3.67

As for the π+π− channel, both fits—which include the
τ spectra—provide central values in agreement with each
other and with the direct estimate within the quoted error.29

If the A = m solution were (inherently) exhibiting a bias,
comparing the first two numbers in the first line of Table 4
indicates that this does not exceed �0.5 × 10−10—e.g. half
a standard deviation. Therefore, real experimental data sam-
ples confirm the gain provided by a global fit procedure when
samples with normalization errors small compared to their
statistical accuracies are included; exploring this effect is the
purpose of Sect. A.2.3 in Appendix A.

One should also remark that the unbiasing iterative pro-
cedure lessens significantly the uncertainty on aμ(π+π−)

compared with the A = m solution and, over the whole
range of validity of BHLS (up to 1.05 GeV), one ends up
with a factor of � 3 reduction of the uncertainty compared to
the direct numerical integration. The same kind of effect is
reported in [47] concerning the spread of the parton density
functions.30

Therefore, relying on the iterative procedure, one observes
that the global fit does not produce significant shifts of the
central values of the HVP contributions which could be
attributed to the normalization (scale) uncertainties strongly
affecting some data samples. Relying on the Monte Carlo
studies outlined in Appendix A, this can be attributed to the
large number of data samples where the statistical uncertain-

29 As for the central value of the experimental estimate which is the
present concern, one can legitimately expect that it should be affected
by some bias (a priori, of unknown magnitude) of the same nature than
the A = m result. Indeed, roughly speaking, the experimental cross
section σexp(s) is related with the underlying theoretical cross section
σth(s) by a relation of the form σexp(s) = σth(s) + δσ (s) and the
δσ (s) correction depends on the normalization uncertainties which just
motivate the iterative method! Actually, this δσ (s) is exactly the scale-
dependent term in Eqs. (5) and (8). Obviously it cannot be estimated
without some fitting procedure.
30 In particular, Figure 5 in this reference, is quite informative about
the variety of correction kinds revealed by unbiasing procedures.
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ties dominate over the normalization uncertainty. Moreover,
the uncertainty on the part of the LO-HVP derived from the
BHLS fit (more than 80 % of the total LO-HVP) is very small
and even marginal.

8.3 The muon g − 2 from BHLS global fit procedure

In order to evaluate the muon LO-HVP from the fit results
derived by means of the BHLS global fit procedure, the
numbers given in Table 4 should be supplied with sev-
eral additional contributions which cannot be derived from
within the BHLS framework but should be estimated by other
means. This covers the channels opened below 1.05 GeV
but remaining outside the present BHLS scope31 and, more
importantly, all hadronic contributions covering the non-
perturbative QCD region above 1.05 GeV should be esti-
mated via the direct integration method.

Table 5 summarizes these additional contributions to be
combined with the BHLS results to derive the muon LO-
HVP; in this Table, one recalls the information available
by end of 2011 and used in our previous [34,35]. The data
column flagged by “LO-HVP (2014)” is the update derived
by taking into account the data samples more recently col-
lected (and published up to the end of 2014); these are the
e+e− → 3(π+π−) data from CMD-3 [81], the e+e− →
ωπ0 → π0π0γ from SND [82] and several data samples
collected by BaBar in the ISR mode32 [83–86]. These data
samples highly increase the available statistics for the anni-
hilation channels opened above 1.05 GeV and lead to sig-
nificant improvements. One thus should note the important
improvement these provide for the LO-HVP contribution
from the [1.05, 2.0] GeV region: its uncertainty is reduced by
25 %, while its central value is almost unchanged. Despite
this improvement, the energy region [1.05, 2.0] GeV still
remains the dominant uncertainty on the muon LO-HVP and
this strongly limits the effect of gaining further in precision
on the part of the LO-HVP covered by BHLS.

Deriving the full HVP value also requires one to account
for the higher order effects. This includes the next-to-leading
order contribution (NLO) taken from [26] ([−9.97±0.09]×
10−10) and the recently estimated next-to-next-to-leading
order (NNLO) effects which happen to be non-negligible
([1.24 ± 0.01] × 10−10) [87].

To compute the muon g − 2, one should also include the
light-by-light (LBL) contribution (here taken from [88]), the
QED contribution [89,90] and the electroweak contribution
(EW) [31]. The next-to-leading order contribution to the LBL
amplitude (NLO-LBL) has also been computed recently [91]

31 For instance the four, five or six pion annihilation channels, or the
ωπ0 final state.
32 These cover the p p̄, K+K−, KLKS, KLKSπ

+π−,
KSKSπ

+π−, KSKSK+K− annihilation final states.

but is clearly negligible ([0.3±0.2]×10−10). Altogether, the
numerical values we use (see Table 6) are rather consensual
[92].

The first data column in Table 6 reproduces (after our
methodological update) the muon anomalous moment esti-
mate coming from the corresponding BHLS global fit where
only the scan data for the π+π− channel are considered while
all ISR data are excluded. This supersedes the corresponding
information in [34]. The sample combination preferred by
the BHLS global fit gives the results displayed in the second
data column; it exhibits a 4.9σ significance for a non-zero
�aμ = aexp

μ − ath
μ . The evaluation derived by direct integra-

tion of the spectra used within the global fits are given in the
third data column. The new data, as a whole, increase the dis-
crepancy for �aμ which is always found above the 4σ level;
effects of additional and not still accounted for systematics
will be examined in the next subsection.

Figure 4 displays the results for �aμ derived using or not
the τ data and various combinations of the available π+π−
data samples introduced within the BHLS global fit proce-
dure at first iteration. For comparison, one also displays in this
figure the evaluations produced by other authors and flagged
by Dhea09 [29], DHMZ10 [58], JS11 [26] and HLMNT11
[60]—corrected, however, for the recently calculated NNLO-
HVP and NLO-LBL—contributions as included in Table 6. A
priori, the Dhea09 estimate compares exactly to our evalua-
tions using scan data only; the other results are derived using,
beside the NSK samples, the BaBar, KLOE08 and KLOE10
samples. These may be compared to the last couple of lines in
Fig. 4 where the scan data are supplemented with the BaBar
(not truncated), KLOE (10/12) and BESSIII samples.

The following comments are in order here:

• 1/ The difference between our estimates and those of
other authors mainly concerns the estimated central value
for �aμ. Also, our uncertainties are now reduced because
of the global fit method, but also because of using much
more data samples than other authors; this is clear by
comparing the errors shown in Fig. 4 with those given in
[35].
When using only the scan data, the shift one observes
should reflect the biasing effect certainly present in the
experimental data (see footnote # 29) and corrected in
our approach by the iterated fit method. When the ISR
π+π− samples are also involved, the issue just recalled
is amplified because the weight of samples with large
overall scale uncertainties is much increased.33 The effect
of the BaBar data sample is no longer enough to balance
the effect of the new data samples as becomes clear by
comparing the lines for “NSK+KLOE+BESSIII” with

33 All ISR data samples are strongly dominated by overall scale uncer-
tainties, additionally s-dependent.
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Table 5 LO-HVP contributions
to 1010aμ with FSR corrections
included. The statistical and
systematic errors are given
within brackets; the total
uncertainty is given within
square brackets. The column
“LO-HVP (2011)” displays the
contributions estimated using
only the data samples available
in 2011; the column “LO-HVP
(2014)” displays the
corresponding values updated
with the data samples published
up to the end of 2014

Contribution from Energy range LO-HVP (2014) LO-HVP (2011)

Missing channels Threshold → 1.05 1.34(0.03)(0.11)[0.11] 1.44(0.40)(0.40)[0.57]
J/ψ 8.94(0.42)(0.41)[0.59] 8.51(0.40)(0.38)[0.55]
ϒ 0.11(0.00)(0.01)[0.01] 0.10(0.00)(0.01)[0.01]
Hadronic (1.05, 2.00) 60.45(0.21)(2.80)[2.80] 60.76(0.22)(3.93)[3.94]
Hadronic (2.00, 3.10) 21.63(0.12)(0.92)[0.93] 21.63(0.12)(0.92)[0.93]
Hadronic (3.10, 3.60) 3.77(0.03)(0.10)[0.10] 3.77(0.03)(0.10)[0.10]
Hadronic (3.60, 5.20) 7.50(0.04)(0.05)[0.06] 7.64(0.04)(0.05)[0.06]
pQCD (5.20, 9.46) 6.27(0.00)(0.01)[0.01] 6.19(0.00)(0.00)[0.00]
Hadronic (9.46, 13.00) 1.28(0.01)(0.07)[0.07] 1.28(0.01)(0.07)[0.07]
pQCD (13.00, ∞) 1.53(0.00)(0.00)[0.00] 1.53(0.00)(0.00)[0.00]
Total 1.05 → ∞ + missing channels 112.82 ± 3.01tot 112.96 ± 4.13tot

Table 6 The various contributions to 1010aμ. �aμ = aexp
μ −ath

μ is given

in units of 10−10. For the measured value aexp
μ , we have adopted the

value reported in the RPP which uses the updated value for λ = μμ/μp

recommended by the CODATA group [93]. By KLOE, one means that
the KLOE10 and KLOE12 π+π− data samples are introduced in the
BHLS fit procedure and in the directly integrated spectra

1010 × aμ Values (incl. τ ) Direct integration

Scan only Scan ⊕ KLOE ⊕ BESSIII Scan ⊕ KLOE ⊕ BESSIII

LO-HVP 683.26 ± 3.78 681.86 ± 3.20 683.50 ± 4.75

HO (NLO) HVP −9.97 ± 0.09 [26]

NNLO HVP 1.24 ± 0.01 [87]

LBL 10.5 ± 2.6 [88]

NLO-LBL 0.3 ± 0.2 [91]

QED 11 658 471.8851 ± 0.0036 [89,90]

EW 15.40 ± 0.10had ± 0.03Higgs,top,3-loop [31]

Total theor. 11 659 172.62 ± 4.60 11 659 171.22 ± 4.13 11 659 172.86 ± 5.42

Exper. aver. 11 659 208.9 ± 6.3

�aμ 36.28 ± 7.80 37.68 ± 7.53 36.04 ± 8.31

Significance (nσ ) 4.65σ 5.00σ 4.38σ

the lines for “Global (ISR+scan)”, which also include
the (full) BaBar sample. Nevertheless, one should note
the large difference of the corresponding probabilities.

• 2/ When a comparison between a �aμ estimate derived
using the τ data and the corresponding one excluding
these is possible, ours exhibits the smallest difference
(1.12 × 10−10 for NSK+KLOE+BESSIII, −0.7 × 10−10

for the Global fit including all the π+π− data samples).
This is certainly due to the vector meson mixing which
defines the BHLS model. It is interesting to note that the
JS11 [26] value, which is based on the γ –ρ0 mixing by
loop transitions,34 is the closest to ours.

• 3/ Relying on the global fit properties, the BHLS model
favors the “NSK + KLOE10 + KLOE12 +BESSIII + τ”
as the largest consistent set of data samples. This leads

34 Within the BHLS model too, the γ –ρ0 mixing is mediated by loop
effects.

to �aμ = (37.55 ± 4.12) × 10−10 which exhibits a 5σ

significance.35 Our estimate is expected to be free from
biases generated by the overall scale uncertainties which
dominate the ISR π+π− data samples.

8.4 Additional systematics on the BHLS estimate
for the muon g − 2

A detailed study of additional systematics possibly affecting
the BHLS evaluation of �aμ has been already performed in
[35]. It concluded to an uncertainty of the LO-HVP central
value for �aμ = aexp

μ −ath
μ in the range [−1.3÷0.60]×10−10

35 If using the data from 2011 in Table 5, as in our previous studies, this
significance is “only” 4.8σ . This compares more directly to the results
from other authors displayed in Fig. 4. The increased significance is a
pure consequence of the recent improvements of the hadronic contri-
bution from the [1.05, 2.0] GeV region.
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−10 40 90 140

τ [GDP+)C+B+A( 35.30± 4.58] [4.5 σ]
Individual ππ Data Sets + τ

NSK (CMD2+SND) [35.97± 4.63] [4.6 σ] [χ2/Nππ 0.96] [99.5%]
KLOE 08 [38.78± 5.16] [4.8 σ] [χ2/Nππ 1.64] [58.9%]
KLOE 10 [39.21± 5.15] [4.8 σ] [χ2/Nππ 0.96] [96.6%]
KLOE 12 [38.33± 4.33] [5.0 σ] [χ2/Nππ 1.02] [96.9%]
BESS III [33.02± 4.69] [4.2 σ] [χ2/Nππ 0.58] [99.9%]
BaBar (Trunc.) [29.15± 4.07] [3.9 σ] [χ2/Nππ 1.15] [73.8%]
BaBar (Full) [27.40± 4.03] [3.7 σ] [χ2/Nππ 1.25] [40.1%]

scan ππ Data
NSK (CMD2+SND)+τ [35.97± 4.63] [4.6 σ] [χ2/Nππ 0.96] [99.5%]
NSK [37.94± 4.95] [4.7 σ] [χ2/Nππ 0.97] [99.8%]
DHea09 (e+e− [) 28.56± 5.8] [3.4 σ]

scan +ISR ππ Data
NSK+KLOE+BESS&τ [37.68± 4.12] [5.0 σ] [χ2/Nππ 0.90] [99.1%]
NSK+KLOE+BESS [38.67± 4.17] [5.1 σ] [χ2/Nππ 0.88] [99.7%]
DHMZ10 (e+e− + τ) [17.96± 5.4] [2.2 σ]
DHMZ10 (e+e−) [27.16± 4.9] [3.3 σ]
HLMNT11(e+e−) [24.56± 4.9] [3.1 σ]
JS11(e+e− + τ [) 27.66± 6.0] [3.2 σ]
Global (ISR & scan&τ) [37.02± 4.03] [5.0 σ] [χ2/Nππ 1.15] [18.5%]
Global (ISR & scan) [36.33± 4.03] [4.9 σ] [χ2/Nππ 1.14] [24.3%]

experiment
BNL-E821(avrg) [0± 6.3]

(aexp
μ − ath

μ )×1010

Fig. 4 The deviation �aμ = aexp
μ − ath

μ in units of 10−10. The various

ath
μ have been derived from the global fit using the indicated e+e− →

π+π− data samples and including/excluding the τ dipion spectra as
indicated. In red we display �aμ corresponding to the iterated solution
and in green those corresponding to the A = m (non-iterated) solution.
In blue results from other studies are given corrected by the recently
evaluated next-to-next-to-leading order contribution [87]. See Sect. 8.3
for comments

coming from π+π− contribution in the φ mass region, where
BHLS is weakly constrained. An uncertainty coming from
using the τ spectra has also been considered; it was argued
that the best motivated evaluation of this is the difference
between fitting with the τ spectra and without them in the
most constrained configuration. Presently, this means that
the BHLS preferred value (�aμ = (38.58 ± 5.04) × 10−10)
could be underestimated by �0.9 × 10−10.

Another mean to detect systematics is to compare with
the accurate ChPT predictions on the P-wave π+π− phase
shift [94] and also with the available experimental data from
the Cern–Munich [95] and Fermilab [96] groups. These are
shown in Fig. 5. Included also are the predictions derived
from the Roy equations [97] and from the phase of the pion
form factor fit performed in [26] (JS11).

As for the BHLS predictions corresponding to using
NSK+KLOE(10/12), we display in this figure the phase of
the full amplitude and those corresponding to dropping out
the isospin breaking (IB) effects due to the vector meson mix-
ing.36 The τ spectra are included within the fit procedure.

The standard BHLS phase-shift predictions are displayed
in the left-hand side panel of Fig. 5. One clearly observes a
very good prediction of the phase shift up to about 1.2 GeV,
i.e. much beyond our fitting range (from threshold to 1.0 GeV
for the ππ data). Indeed the Cern–Munich data are very well

36 This is obtained by canceling out the “angles” α(s), β(s) and γ (s)
from the full amplitude expression.

accounted for and the BHLS predictions are in accord with
the other predictions. The inset, however, exhibits a (minor)
issue for the full amplitude phase, a small bump of about 1◦
close to threshold, absent from the IB amputated amplitude.
This can be tracked back to a peculiarity of the broken HLS
model which does not split up the HK (Lagrangian) masses
for the ω and ρ0 mesons and, consequently, the mixing angle
α(s) does not exactly vanish at s = 0 (see Figure 6 in [32]);
in contrast the other angles fulfill β(0) = γ (0) = 0. Indeed,
one has

α(s) = ε1(s)

[mHK
ρ ]2 − [mHK

ω ]2 + �ππ(s)
(18)

where [34] ε1(s) is the difference of the charged and neutral
kaon loops and �ππ(s) is the pion loop which both vanish
at s = 0. This assumption has been checked with fits by
imposing [mHK

ω ]2 = (1 + η)[mHK
ρ ]2 and choosing various

fixed values for η; the right-hand side panel in Fig. 5 displays
the phase shift for η = 5 % and, quite satisfactorily, its inset
does not reveal a bump any longer. A non-zero (HK) mass
difference η [mHK

ρ ]2 cannot be generated by the breaking
mechanisms already implemented within BHLS. However,
a breaking of the nonet symmetry in the vector meson sector
(VNSB) enables such an effect; this turns out to modify the
customary vector field matrix—actually U(3) symmetric—
within the covariant derivatives of the HLS model [13] by
a perturbation term proportional to the singlet vector field
combination. The effect of VNSB has been derived from
specific fit studies and indicates that �aμ might have to be
lessened by about 1.4 × 10−10.

Therefore, in total, the BHLS favored result can be
expressed, in units of 10−10 as

�aμ = 37.68 + [+0.6
−1.3]φ + [+0.9

−0.0]τ
+[+0.0

−1.4]VNSB ± 4.12th ± 6.3exp (19)

where the three additional contributions play as shifts on the
central value. Adding them up linearly, the maximum shift
(−2.7×10−10) may reduce the central value to 34.85×10−10

which has still a 4.6σ significance. The effect of these addi-
tional systematics is to reduce potentially by �0.3σ all the
significances displayed in Fig. 4. These are not due to over-
all scale uncertainties already accounted for by the iterative
method; they might be reduced by new annihilation data sam-
ples covering the region up to 1.05 GeV in all the physics
channels in the realm of BHLS.

8.5 The HVP slope at origin in BHLS fits

In the lattice QCD approach of calculating ahad
μ , extrapo-

lation methods have been developed (see e.g. contributions
to [98]) to overcome difficulties to reach the physical point
in the space of extrapolations. The low Q2 behavior of the
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Fig. 5 P-wave π+π− phase-shift data and predictions from [94] (CGL) and [26] (JS11) together with the BHLS phase shift. The insets magnify
the various behaviors close to threshold. See Sect. 8.4 for further explanations

Table 7 The slope of the
photon HVP at s = 0 Moment Data direct HLS channels data HLS model HLS + non-HLS

P1 (GeV−2) 11.83 ± 0.08 10.07 ± 0.05 9.970 ± 0.016 11.73 ± 0.06

102 d�αhad
ds (0) −0.92 ± 0.01 −0.78 ± 0.01 −0.772 ± 0.001 −0.907± 0.01

Euclidean electromagnetic current correlators on a lattice,
which exhibits a discrete momentum spectrum, poses a par-
ticular challenge (see e.g. [99,100] and the references just
below). The analysis of moments of the subtracted photon
vacuum polarization function �(Q2) was particularly advo-
cated in variants in Refs. [101] and [102]. Recent lattice cal-
culations [103–106] utilized moment analysis techniques for
a more precise evaluation of ahad

μ . The leading moment is
given by the slope of the Adler function [107,108], the latter
being given by

D(Q2) = Q2
[∫ ∞

smin

R(s)

(s + Q2)2 ds

]

= 3π

α
Q2 d

dQ2 �αhad(−Q2) (20)

where R(s) is the hadronic spectral function37 and smin

the smallest threshold energy squared (smin = m2
π0 within

BHLS). Then defining

P1 =
∫ ∞

smin

R(s)

s2 ds, (21)

37 R(s) = σ(e+e− → hadr.)/σ (e+e− → μ+μ−) with σ(e+e− →
μ+μ−) = 4πα2/3s by neglecting the electron mass.

the HVP slope at the origin is given by

d

ds
�αhad(s)

∣∣∣∣−s→+0

= − α

3π

∫ ∞

smin

R(s)

s2 ds = − α

3π
P1. (22)

The constant P1 can be directly estimated from data and
partly from the BHLS fits. Therefore, one can proceed as
done above with our evaluations of ahad

μ and derive the results
gathered38 in Table 7. Here, one observes that the difference
between the experimental and the HLS values for the HVP
slope are at the percent level (a 2 σexp effect) and the uncer-
tainty is scaled down by a factor of 10. However, to really
feel the HLS improvement on the slope, one needs once more
an improved hadronic spectral function at high energies.

A lattice estimate of the Adler function slope D′(0) has
been presented in [109]. The result is P1 = 5.8(5) GeV−2,
and has been compared with P1 = 9.81(30) GeV−2, a result
estimated using a phenomenological toy-model represen-
tation [110] of the isovector spectral function. The lattice
results too include the isovector part only and are missing
higher energy contributions above 1 GeV.

38 The non-HLS part of P1 amounts to 1.76 ± 0.06 GeV−2.
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In the study [102], the authors provide numerical values
from fits to lattice data based on Padé approximants (PA).
For this purpose, they parametrize the HVP as

�(Q2) = �(0) − Q2

[
a0 +

N∑
n=1

an
bn + Q2

]
, (23)

which thus leads to

d�αhad

dQ2 (0)

= 4πα
d�

dQ2 (0) = −4πα

[
a0 +

N∑
n=1

an
bn

]
. (24)

The parameters corresponding to the results they consider
as optimal are given in their Table 3. Using their notations,
their fitted parameter values lead,39 for instance, to −(0.71±
0.15)×10−2 (PA solution [0,1]) or−(0.75±0.30)×10−2 (PA
solution [1,1]). These compare reasonably well to the slope
results reported in Table 7 just above, taking into account the
proviso expressed above about lattice data.

9 Concluding remarks

The present study was motivated by the question which gives
its title to this paper. More precisely, the issue is whether the
D’Agostini bias [42,46] prevents to derive unbiased physical
results from global fits to experimental spectra affected by
dominant overall scale uncertainties.40

Actually, several issues are merged together. First, the
effective global χ2 functions to be used in the minimiza-
tion procedure should be appropriately defined. For the data
samples where the statistical errors dominate the overall scale
uncertainties, the construction of the associated partial χ2’s
is quite standard. The real issue starts when the data sam-
ples are dominated by overall scale uncertainties. For each of
them, substantially, the canonical partial χ2 has been recalled
in Sect. 2 and writes [42,45,46]:

χ2 = [m − M(�a) − λA]TV−1[m − M(�a) − λA],
leaving aside the so-called “penalty term” [46] proportional
to λ2. The (partial) χ2 being appropriately defined, another
issue is the choice of the vector A.

In our former studies [34,35], beside the � 40 data sam-
ples dominated by statistical errors which follow the tra-
ditional treatment, the data samples covering the e+e− →
π+π− annihilation channel are all, sometime very strongly,

39 Assuming also the errors on the a’s and b’s parameters are not cor-
related.
40 We gratefully acknowledge G. Colangelo who has pointed out the
issue of estimating the muon HVP using global fit methods. However,
the bias issue is more general as will be argued shortly.

dominated by overall scale uncertainties; this especially
refers to the samples collected by the KLOE and BaBar Col-
laborations using the ISR production mode. Here, for each
sample, we chose for A the experimental spectrum itself;
this choice is referred to as A = m all along the paper. The
guess behind this was that all scale uncertainties affecting the
different experimental spectra independently of each other
should smear out possible biases in the central values of the
(common) theoretical form factor function parameters [35].

It happens that the results one can derive in this way from
the BHLS global fit undergo very small biases (compared
to the errors derived from the fit procedure); this is shown
in the present study.41 However, the guess just recalled was
incorrect and the actual reason which explains the almost
bias free results is following: As shown in the Monte Carlo
study presented in the appendix, there is no smearing out of
biases if all the spectra submitted to fit undergo comparable
strong scale uncertainties; however, this study also shows
that, if some of the fitted spectra are dominated by (random)
statistical errors rather than global scale uncertainties, the fit
results can be strongly unbiased.

Nevertheless, a high level of unbiasing cannot be taken
as granted as the real weight of the samples dominated by
statistical errors within the full global fit procedure cannot be
ascertained beforehand. Basically, the choice A = m poten-
tially leads to biases of unknown magnitude; this has been
shown by D’Agostini [42] with a simple example and more
generally argued by Blobel [46]. These authors also showed
that all biases vanish if, instead of A = m, one makes the
choice A = M , the “true” spectrum. But this is just not pos-
sible within contexts like ours, where fits are performed just
in order to derive the “true” spectrum from data. Fortunately,
iterative methods allow one to circumvent this difficulty by
taking the path opened in [47] in order to derive the par-
ton density function from data and correct for biases. The
iterative method we propose has been tested with the Monte
Carlo study reported in the appendix and shown to produce
unbiased results with a quite fast convergence speed; indeed,
only one iteration is sufficient.

So, our main conclusion is indeed that global fit methods
including a fast iterative procedure are expected to produce
reliable pieces of information as, methodologically, the cen-
tral values are unbiased and the estimate for the uncertainties
reliable; this especially applies to the part of the muon leading
order HVP derived from e+e− annihilation cross sections.

Having shown that appropriate global fit methods should
lead to results which can be trusted, a related remark is
worth being made. Iterative global fits allow one to supply
the BHLS effective Lagrangian cross sections with reliable
and unbiased numerical central values for the fit parameters

41 This study also corrects for some coding bugs affecting our previous
studies.
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and a good estimate of their error covariance matrix. Then,
using these cross sections and the fit information, Eq. (1) is
expected to provide an unbiased estimate for aμ(ππ) as the
ingredients are unbiased.

On the other hand, when computing aμ(ππ) by directly
integrating a dipion spectrum in order to derive its so-
called experimental value, one has to plug into Eq. (1) the
experimentally measured cross section σexp.(s). However, as
already noted in footnote # 29, or as can be inferred from the
canonical χ2 expression recalled just above, the experimen-
tal and model cross sections are related by

σexp.(s) = σtheor.(s) + δσ (s)

where the best estimate of the second term writes42 δσ (s) =
λσtheor.(s). As obvious from Eq. (6), the best estimate of the
scale factor λ equally depends on the measured spectrum
and on the “true” spectrum, which can be identified with
its (iterated) fit solution. So, using again self-explanatory
notations, Eq. (1) leads to

aμ(ππ, exp.) = aμ(ππ, theor.) + δaμ(ππ)

and thus aμ(ππ, exp.) looks intrinsically biased for any
sample subject to strong enough overall scale uncertainties.
This issue is also reflected by the residual plots which are
improved when plotting the corrected residuals [m − (1 +
λ)M(�a)] instead of the raw ones [m − M(�a)], as can be seen
in Figure 13 of [35]; this allows one to infer that δaμ(ππ)

is small but non-zero. It amounts to δaμ(ππ) � 2 × 10−10

in the case “NSK+KLOE10+KLOE12+BESSIII+τ” favored
by the BHLS model.

As for the physics conclusions, the present paper updates
and corrects the results derived by the global BHLS fit
method which, following the considerations just summa-
rized, has been completed with an iteration procedure in
order to cancel out possible biases. One thus confirms that
almost all of the existing data samples covering the annihi-
lation channels with the π0γ , ηγ , π+π−π0, K+K−, K 0K 0

final states and the dipion spectra in the τ± → π±π0ν decay
accommodate perfectly the BHLS framework. In the line of
our previous works, one also finds that among the data sam-
ples covering the e+e− → π+π− annihilation, the data sam-
ples provided by CMD2 and SND, the KLOE10 and now also
the KLOE12 and BESSIII samples behave consistently with
each other and with the other considered data covering the
various channels entering the BHLS scope.

The present update, which also includes the recently pub-
lished KLOE12 and BESSIII π+π− samples, supersedes
our previous results; these are mostly given in Table 3 and

42 In the case of a constant scale uncertainty, as for the CMD2, SND and
BESSIII data, there is only one scale factor λ. For most ISR data sam-
ples, the expression is slightly more complicated but easy to derive (see
also the appendix to [35]) and the conclusions are obviously likewise.

in Eq. (14). From a theoretical point of view, it is interest-
ing to note the corrected values for the ci ’s coefficients of
the anomalous (FKTUY) terms of the HLS model [13,15]:
The combinations c+ = (c4 + c3)/2 and c1 − c2 are found
very close to the usually assumed value, i.e. 1; in contrast,
c− = (c4 − c3)/2 = −0.166 ± 0.021 is non-zero with a 8σ

significance.
Figure 3 displays the values for aμ(ππ, [0.63,

0.958]) GeV derived from iterating the fits with the various
available data samples. One observes a strong reduction of
the uncertainty compared to the corresponding experimental
value (about a factor of 2.5) and there is a close agreement
between central values for all samples (or combinations of
samples) which yield a good fit probability. The difference
between the central values for the starting fit and the iterated
one tends to indicate that biases are limited; this should be
a consequence of also dealing with a large number of sam-
ples where the overall scale uncertainties are dominated by
random statistical errors, as argued in the appendix.

Figure 4 exhibits the values for the muon �aμ = aexp
μ −ath

μ

when various combinations of e+e− → π+π− and τ± →
π±π0ν samples are used in the iterated global fit proce-
dure. The present study confirms that, within BHLS and
because of its specific isospin breaking mechanisms, one
does not observe any serious mismatch between fits with
only e+e− annihilation data and fits where these are supple-
mented with the τ dipion spectra. The central values43 for
aμ(e+e−) and aμ(e+e− + τ) only differ by 2 units (NKS),
1 unit (NSK+KLOE+BESSIII+τ ) or 0.7 unit in the global
fit of all data samples (including BaBar), as can be seen in
Fig. 4.

Figure 4 displays the value for �aμ derived using all data
samples except for KLOE08, which can be written

�aμ = 37.02 + [+0.6
−1.3]φ + [+0.9

−0.0]τ
+[+0.0

−1.4]VNSB ± 4.03th ± 6.3exp,

where an estimate of the magnitude of possible uncertainties
coming from outside the BHLS framework is proposed. This
exhibits a 5σ significance (which may reduce to 4.6σ—in the
least favorable case—if the additional systematics are added
linearly and assumed to play as a shift). One should note,
however, that the fit probability is poor.

The most probable value for the muon �aμ is obtained
by using the CMD2, SND, KLOE10, KLOE12 and BESSIII
samples—and the τ spectra; this leads to

�aμ = 37.68 + [+0.6
−1.3]φ + [+0.9

−0.0]τ
+[+0.0

−1.4]VNSB ± 4.12th ± 6.3exp.

43 The values for aμ are given from now on in units of 10−10 for con-
venience.
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This BHLS preferred estimate exhibits a 5.σ significance for
a non-zero �aμ, which may reduce to 4.7σ if one takes into
account, as just above, the possible additional systematics.
This solution is associated with a 99 % fit probability.

As a summary, even complemented with an iterative pro-
cedure shown in the appendix to remove biases, the BHLS
approach favors a significance for �aμ above the � 4.5σ

level; this value is a lower bound obtained by including possi-
ble additional systematics added linearly. New data expected
soon may further clarify the picture. The uncertainties now
become sharply dominated by the region above 1.05 GeV,
i.e. outside the BHLS scope.
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A Appendix: Monte Carlo tests of the iterative
procedure

A.1 The test method

In order to test the iterative method, one has developed a
minimization code which deals with spectra generated from
a given underlying function Mtrue(s) where the parameters
{ai } (which, of course, are known at the generation level) are
fitted within the code. The “experimental” spectra feeding
this code are generated using the true distribution smeared
by introducing gaussian uncertainty distributions. Indeed,
for the purpose of testing our analysis method, it is certainly
the most appropriate to rely on “perfect” data samples, with
perfectly known properties.

For the sake of simplicity, at the generation level, any
“experimental” spectrum E is chosen to carry 100 “measure-
ments” mE

i , performed at 100 equally spaced energy squared
si points (si ∈ [0, 1] GeV2), the same sequence for all spec-
tra. The “measurements” are derived by smearing the theoret-
ical values Mtrue(si ) in the following way: For each spectrum
E , one assumes the “measurements” are sampled out from
gaussian distributions in the following way:

mE
i = Mtrue(si )[1 + σεEscale(0, 1) + ηε

i,E
stat(0, 1)],

i = 1, . . . , 100 (25)

where ε
i,E
stat(0, 1) indicates the i th sampling on a gaussian dis-

tribution of 0 mean and unit standard deviation generating the

statistical error; it varies independently from “measurement”
to “measurement” and from spectrum to spectrum.ηMtrue(si )
denotes the statistical error common to all mi , η being some
fixed fraction of the order of a few percents, chosen the same
for all the “measurements” in the spectrum E .

On the other hand, λE = σεEscale(0, 1) is the scale uncer-
tainty affecting specifically the spectrum E ; as indicated
by its definition, it is sampled out from a gaussian distri-
bution of zero mean and σ standard deviation. The overall
scale uncertainty affecting E is obtained via one sampling
of εEscale(0, 1) which, thus, carries the same value for all the
“measurements” mE

i in the spectrum E . Of course, when
going from a spectrum E to another E ′, another sampling
of εEscale(0, 1) should be performed. For specific tests, the
overall scale uncertainty can be switched off (σ = 0).

One defines Nrep replicas (generally 1000) of Nexp (gen-
erally 5) experimental spectra constructed as shown in Eq.
(25) and submitted to a global fit where the parameters
entering Mtrue(s) are just the parameters to be derived
from the fit. The “true” statistical error covariance matrix
Vi j = [ηMtrue(si )]2δi j is practically approximated by Vi j =
[ηmE

i ]2δi j ; we have avoided the unessential complication of
non-diagonal covariance matrix. The fit results derived for
each replica are stored and then used to construct the sta-
tistical plots—true residuals and pulls—with the help of the
known parameter “true” values.

Therefore, we are just under the conditions described in
Sect. 4.2. One should note that the minuit code we have
built performs the minimization of the Nexp samples and
runs sequentially to treat the Nrep replicas within the same
job.

So, for each replica, the globalχ2 minimized by our Monte
Carlo minuit procedure is simply a sum of Nexp terms like
Eq. (4):

χ2 =
E=Nexp∑
E=1

χ2
E . (26)

When initializing the iteration procedure, one uses AE =
mE , i.e. the spectrum E serves to construct its χ2

E ; so AE

differs from some other AE ′ by statistical fluctuations. When
iterating, at first or higher order, they become identical as
AE = AE ′ = Mfit � M(�afit).

Obviously, each such run provides simultaneously all the
information allowing to examine the statistical properties
of the iterative method corresponding to a given theoreti-
cal choice Mtrue(s). The computer code also allows an easy
change of the functional form of Mtrue(s) in order to exam-
ine the behavior of various kinds of non-linear parameter
dependences.

The behavior of the fit parameters compared to truth is, of
course, the subject of the analysis; however, those of “physics
quantities” derived from them are as important. For this pur-
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Fig. 6 Distributions of the
ratios I derived by varying the
function A in the χ2 expression
as indicated in each panel. The
choice A = mE (i.e. the
“measured” data sample)
exhibits a 20 % bias, while the
other choices are unbiased. For
more comments, see Sect. A.2.2

pose, we chose to examine the ratios44:

I =
∫ 1

0 Mfit(s) ds∫ 1
0 Mtrue(s) ds

(27)

which has properties similar to those of the aμ(Hi )’s, as the
weighting factor K (s) in Eq. (1) is an unessential complica-
tion while looking for possible methodological biases of the
iterative method.

A.2 The test results

The aim of the present appendix is to report on numeri-
cal analyses performed in various configurations in order
to examine how overall (global) normalization uncertain-
ties and biases are related and whether non-linearities in the
model parameters to be fitted lead to significant incorrect
estimates of errors. As Ref. [47], which is faced with the
same kinds of issues as the present work, we do not plan
to establish rigorously general theorems on these topics—
assuming the scope of the issues would permit it. Never-
theless, one can think that studying methods by relying on
Monte Carlo techniques is an acceptable way to check its

44 Recall that 0 and 1 GeV2 are the energy squared limits of the gener-
ated spectra.

(practical) validity under common conditions. After all, the
fact that Eq. (3) with A = M (the theoretical function) is con-
sidered free from biases is not weakened by the fact that the
general (formal) proof of this property—if established—is
not commonly referred to.

A.2.1 Analytical shape of the true distributions

In order to use confidently fit results derived using the iter-
ative method, one should examine the effects of non-linear
dependences upon the fit parameters within contexts similar
to our physics distributions. The line shape of the pion form
factor as a function of s on a given interval can be qualita-
tively reproduced using polynomials, ratios of polynomials,
exponential of polynomials, sums of a Breit–Wigner function
with polynomials etc. with appropriate numerical parameter
values.

We have applied the method outlined in Sect. A.1 to
perform fits relying on an intensive use of the tools pro-
vided by minuit taking various kinds of functions Mtrue(s),
resembling—sometimes weakly—the pion form factor. Run-
ning in sequence migrad/Hesse and minos, we did not
observe significant departures (beyond statistical fluctua-
tions) from equality between parabolic and minos errors;
as the issue was to examine effects of non-linear parameter
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Fig. 7 Effect of having 1 (top
panels) or 2 (lower-most panels)
unscaled data sample(s) among
the fitted Nexp = 5 samples
simultaneously fitted. Left plots
report on fitting with A = M
(the truth), right plots on fitting
with A = mE (the measured
spectra); in the former case no
bias is observed, in the latter
case, the bias happens to be
much limited. See text for more
details

dependences this exercise was performed assuming statisti-
cal uncertainties only. Therefore, this led us to conclude that,
for the kind of experimental distributions one deals with,
non-linear effects are not generally significant. For instance,
using

Mtrue(s) = g

(s − a)2 + b2 + c + d s + e s2, (28)

η = 3 %, and no scale uncertainty (to discard any need
for iterating), the probability distribution was observed to be
flat and the parameter pulls consistent with normal gaussians
G(m = 0, σ = 1); the distribution of the ratio I for the
1000 replicas was also found well centered at 1 (actually
its mean is 1.0001 and its standard deviation 1.62 × 10−3

from a gaussian fit with χ2/Npoints = 8.9/11). So, except
for pathological cases which may always occur, non-linear
dependences do not look practically like an issue.

From now on, we limit ourselves to reporting on using
Mtrue(s) as given by Eq. (28). Moreover, for the sake of suc-
cinctness, we may only mention the fit parameter residual
and pull distribution properties qualitatively and concentrate
on discussing the distribution of the ratios I which, in fine
carries—summarized—the relevant information. Each value
of I entering this distribution is computed from a minuit fit

of Nexp = 5 data samples and this is done for Nrep = 1000
replicas to construct numerically its distribution.

A.2.2 Normalization uncertainty and iterative method

We first examined the results derived by fit of spectra with
data points generated as in Eq. (25) with a statistical uncer-
tainty η = 3 % and generating the scale uncertainty λ with
σ = 5 %; so η is smaller than σ . In this case, the interesting
plots are gathered in Fig. 6.

As one knows Mtrue(s), one can construct the Nexp partial
χ2’s with A = Mtrue(s) (see Eq. (3)) and minimize their sum
usingminuit. In this case, no bias is expected [42,45,46] and
this is indeed confirmed by the top left panel in Fig. 6 where
the distribution of the Nrep values for I is displayed.

When, instead, one uses A = m (the data spectrum), the
results are shown in the top right panel of Fig. 6, where one
observes a shift of the central value by as large as 20 % !
Denoting the result of the corresponding fit by M0, one
restarts fitting the same data by setting A = M0, this—
first—iteration leads to the distribution shown in the bot-
tom left panel of Fig. 6 which looks identical to having used
A = Mtrue. Denoting the fit solution of this first iteration by
M1, one restarts fitting the same data by setting A = M1, and
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Fig. 8 Probability distributions
when fitting with A = Mtruth
(left panels) or A = mE (right
panels). The top panel plots
correspond to the case when
among the Nexp = 5 fitted
spectra, one is systematically
free from normalization
uncertainty; in the lower-most
panels two of the five fitted
spectra are free from
normalization uncertainty

get the step 2 solution M2 which corresponds to the bottom
right panel of Fig. 6, which clearly indicates no change for
the I distribution.

So, one may conclude that the iterative procedure has
already converged at the first iteration and so, we have
M1 = Mtrue. This fortunate high convergence speed has also
been observed by [47] and it is quite remarkable that this has
allowed one to recover from45 a 20 % bias!

Fit residuals are observed unbiased and pulls consistent
with normal centered gaussians for A = Mtrue, A = M0 and
A = M1. As for the χ2 probability distributions, for A = m,
it exhibits a huge spike at 1, while it is consistent with flatness
(mean � 0.5 and r.m.s. � 1/

√
12) for all the other cases.

This already indicates that starting with A = m (the mea-
sured data spectrum) and iterating only once allows one to
give up using the theoretical function M beforehand to drop
out biases in physics quantity estimates. Moreover, as the
parameter pulls are centered gaussians of unit standard devi-
ations, the uncertainties derived from the fit parameter error
covariance matrix are reliable.

45 The numerical importance of this bias is intimately related with the
ratio σ/η = 5/3; if instead one works with σ/η = 1, the bias coming
out from fitting with A = m would only be 4 %.

A.2.3 Effects of subsamples free from normalization
uncertainties

In the specific problem of globally fitting a large number of
experimental data samples, one is faced with as many as 40 to
50 spectra to be treated [34,35,56,57]. Within this ensemble
of data samples, one observes several configurations con-
cerning uncertainties: some samples have statistical errors
dominated by scale uncertainties (the ISR collected data
samples), while, in contrast, some others are reported with
scale uncertainties marginal compared to statistical errors
(the e+e− → γ P data, for instance); sometimes, no specific
information is reported concerning scale uncertainties, as for
the τ dipion spectra [49–51].

This makes interesting to examine configurations mixing
samples of both kinds. In this paragraph, one summarizes
the results obtained by running Nrep replicas of ensembles
of four data sets where, as before, the scale error is σ =
5 % and the statistical error η = 3 %, together with one
data set with σ = 0 % (no scale uncertainty) and η = 6 %
(twice worse statistical precision). This (4,1) combination
will be supplemented with a (3,2) combination with the same
characteristics. The main results are shown in Fig. 7. Here
we do not report on iterating the fit procedure, as obviously
the results will follow the pattern shown in Fig. 6.
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The top panels in Fig. 7 display distributions of the ratios
I in the (4,1) configuration. The left plot shows the case
when the Nrep replicas are fitted using A = Mtruth in the χ2

expressions. In this case, the absence of any bias is confirmed
by the gaussian fit result shown within this plot. While using
A = mE , the top right panel exhibits a 1.3 % bias. Therefore,
the effect of a single spectrum free from scale uncertainty out
of five is enough to lessen dramatically the observed bias: It
reduces from 20 to 1.3 %.

The lower-most panels in Fig. 7 display the corresponding
results when fitting Nrep replicas of (3,2) combinations. In
this case, using A = mE in the minimized χ2 expression,
leads to an even smaller bias (0.5 %).

So, even if they carry a poor statistical precision, having
some spectra free from a (significant) scale uncertainty is
quite helpful to strongly limit the real magnitude of a possi-
ble bias for a derived quantity. It is a quite interesting property
to observe that some spectra with degraded statistical qual-
ity supplementing other spectra dominated by scale uncer-
tainties might be enough to avoid the need of an iteration
procedure to unbias physical pieces of information.

As for the probability distributions, comparing of the cor-
responding left and right panels in Fig. 8 clearly shows
that the departures from uniformity (i.e. average = 0.5 and
r.m.s. = 0.289) due to using A = mE are quite limited.

Nevertheless, when dealing with true experimental data
(and thus unknown truth), one cannot take as granted that
the number of samples with negligible scale uncertainties
compared to statistical errors is sufficient to ascertain that
biases are negligible. Therefore, in the practical case of the
global fit of real experimental data performed within BHLS,
secure results can only be ascertained by iterating until the
change of aμ(Hi ) is small enough.
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