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Abstract We address the longitudinal proton structure
function, FL(x, Q2), from the kt -factorization formalism by
using the unintegrated parton distribution functions (UPDF)
which are generated through the KMR and MRW procedures.
The LO UPDF of the KMR prescription is extracted, by tak-
ing into account the PDF of Martin et al, i.e., MSTW2008-
LO and MRST99-NLO, and next the NLO UPDF of the
MRW scheme is generated through the set of MSTW2008-
NLO PDF as the input. The different aspects of FL(x, Q2)

in the two approaches, as well as its perturbative and non-
perturbative parts, are calculated. Then the comparison of
FL(x, Q2) is made with the data given by the ZEUS and
H1 collaborations. It is demonstrated that the extracted
FL(x, Q2), based on the UPDF of two schemes, are consis-
tent with the experimental data, and to a good approximation
they are independent of the input PDF. But the one devel-
oped from the KMR prescription has better agreement with
the data with respect to that of MRW. As has been suggested,
by lowering the factorization scale or the Bjorken variable
in the related experiments it may be possible to analyze the
present theoretical approaches more accurately.

1 Introduction

In recent years, the extraction of unintegrated parton distribu-
tion functions (UPDFs) have become very important, since
there exist plenty of experimental data on the various events,
such as the exclusive and semi-inclusive processes in the
high energy collisions in LHC, which indicate the necessity
for a computation of these kt -dependent parton distribution
functions.

The UPDF, fa(x, k2
t , μ

2), are the two-scale dependent
functions, i.e., k2

t and μ2, which satisfy the Ciafaloni–
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Catani–Fiorani–Marchesini (CCFM) equations [1–5], where
x , kt , and μ are the longitudinal momentum fraction (the
Bjorken variable), the transverse momentum, and the fac-
torization scale, respectively. They are unintegrated over kt
with respect to the conventional parton distribution func-
tions (PDFs), which satisfy the Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) evolution equations [6–9].

But the generation of UPDF from the CCFM equations is a
complicated task. So, in general, the Monte Carlo event gen-
erators [10–17] are the main users of these equations. Since
there is not a complete quark version of the CCFM formal-
ism, the alternative prescriptions are used for producing the
quark and the gluon UPDFs. Therefore, to obtain the UPDF,
Kimber, Martin and Ryskin (KMR) [18,19] proposed a dif-
ferent procedure based on the standard DGLAP equations in
the leading order (LO) approximation, along with a modifi-
cation due to the angular ordering condition, which is the key
dynamical property of the CCFM formalism. Later on, Mar-
tin, Ryskin and Watt (MRW) extended the KMR approach
for the next-to-leading order (NLO) approximation [20–22],
with the aim to improve the exclusive calculations. These two
procedures are modifications to the standard DGLAP evolu-
tion equations and can produce the UPDF by using the PDF
as the input.

The general behavior and stability of the KMR and MRW
prescriptions were investigated in Refs. [24–28]. Further-
more, to check the reliability of the generated UPDF, their
relative behaviors were compared and used to calculate the
observable, deep inelastic scattering proton structure func-
tion F2(x, Q2). Then the predictions of these two methods
for the structure functions, F2(x, Q2), were also compared
to the electron–proton deep inelastic measurements of NMC
[29], ZEUS [30], and H1+ZEUS [31] experimental data.
The results were promising [32]. It is also concluded that
[32], while the MRW formalism is more in compliance with
the DGLAP evolution equations requisites, it seems that in
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the KMR case the angular ordering constraint spreads the
UPDF to the whole transverse momentum region and makes
the results sum up the leading DGLAP and Balitski–Fadin–
Kuraev–Lipatov (BFKL) logarithms [34–38].

Another important observable quantity in this connec-
tion is the longitudinal structure function, i.e., FL(x, μ2),
which is proportional to the cross section of the longitu-
dinal polarized virtual photon with proton. Particularly at
small x, it is directly sensitive to the gluon distributions i.e.
g → qq̄ process. Moreover, its calculations in this region
need the kt factorization formalism [39–43], which is beyond
the standard collinear factorization procedure [44]. Recently,
Golec-Biernat and Staśto [45,46] (GS) have used the kt
and collinear factorizations [39–43] as well as the dipole
approach to generate the longitudinal structure function, but
by using the DGLAP/BFKL re-summation method, devel-
oped by Kwiecinski, Martin and Stasto (KMS) [47], for a
calculation of the unintegrated gluon density at small x . They
have parameterized the input non-perturbative gluon distri-
bution so that they could get the best fit to the experimental
proton structure function data [47].

On the experimental side, the longitudinal structure func-
tion has been measured by both the H1 [48,49] and the ZEUS
[50,51] collaborations at the DESY electron–proton collider
HERA. The Q2 ranges have been varied between 12–90 and
24–110 GeV2 in each experiment, respectively.

As was pointed out above, similar to our recent publication
on F2(x, Q2) [32], in the present paper, we intend to calcu-
late FL(x, Q2) by working in the kt -factorization scheme.
But rather than the KMS re-summation method pointed out
above, the KMR and MRW [18–22] formalisms are used
to predict the UPDF with the input PDF of the MRST99-
NLO [52], MSTW2008-LO [53] and MSTW2008-NLO [53],
which covers a wide range of the (x, Q2) plane. Then our
results can be compared both with the experimental data as
well as the theoretical KMS-GS presentation of FL(x, Q2).
So the paper is organized as follows: in Sect. 2 we give a brief
review of the KMR and the MRW formalisms [18–22] for the
extraction of the UPDF form as regards the phenomenologi-
cal PDF [52,53]. The formulation of FL(x, Q2) based on the
kt -factorization scheme is given in Sect. 3. Finally, Sect. 4 is
devoted to results, discussions, and conclusions.

2 A brief review of the KMR and the MRW formalisms

The KMR and MRW [18–23] ideas for generating the UPDF
work as follows: Using the given integrated PDF as the
inputs, the KMR and MRW procedures produce the UPDF
as their outputs. They are based on the DGLAP equations
along with some modifications due to the separation of virtual
and real parts of the evolutions, and the choice of the split-
ting functions at leading order (LO) and the next-to-leading

order (NLO) levels, respectively: (i) In the KMR formalism
[18,19], the UPDFs, fa(x, k2

t , μ
2) (a = q and g), are defined

in terms of the quarks and the gluons PDF, i.e.,

fq(x, k
2
t , μ

2)

= Tq(kt , μ)
αs(kt 2)

2π

∫ 1−�
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dz

[
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x
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respectively, where Paa′(x) are the LO splitting functions,
and the survival probability factors, Ta(kt , μ), are evaluated
from

Ta(kt , μ)

= exp

[
−

∫ μ2

k2
t

αs(k′
t
2
)

2π

dk′
t
2

k′
t
2

∑
a′

∫ 1−�

0
dz′Pa′a(z

′)
]

. (3)

The angular ordering condition (AOC) [54,55], which is a
consequence of coherent emission of gluons, on the last step
of the evolution process [23] is imposed. The AOC deter-
mined the cut off, � = 1−zmax = kt

μ+kt
, to prevent z = 1 sin-

gularities in the splitting functions, which arises from the soft
gluon emission. As has been pointed out in Refs. [18,19], the
KMR approach has several main characteristics. The impor-
tant one is the existence of the cut off at the upper limit of the
integrals, which makes the distributions spread smoothly to
the region in which kt > μ, i.e., the characteristic of small x
physics, which is principally governed by the BFKL evolu-
tion [34–38]. This feature of the KMR leads to the UPDF with
the behavior very similar to the unified BFKL+DGLAP for-
malism [18,19]. The UPDFs based on the KMR formalism
have been widely used in the phenomenological calculations
which depend on the transverse momentum [17,56–66].

(ii) In the MRW formalism [20–22], a similar separation
of real and virtual contributions to the DGLAP evolution is
done, but the procedure is performed at the NLO level, i.e.,

f NLO
a (x, k2

t , μ
2)

=
∫ 1

x
dzTa(k

2, μ2)
αs(k2)

2π

∑
b=q,g

P(0+1)
ab (z) bNLO

×
(
x

z
, k2

)
�(μ2 − k2), (4)
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where

P(0+1)
ab (z)

= P(0)
ab (z) + αs

2π
P(1)
ab (z), k2 = k2

t

1 − z
. (5)

In Eqs. (4) and (5) the P(0)
ab and the P(1)

ab denote the LO and
the NLO contributions of the splitting functions, respectively.
It is obvious from Eq. (4) that, in the MRW formalism, the
UPDFs are defined so as to ensure k2 < μ2. Also, the survival
probability factors, Ta(k2, μ2), are obtained as follows:

Ta(k
2, μ2) = exp

(
−

∫ μ2

k2

αs(κ
2)

2π

dκ2

κ2

×
∑
b=q,g

∫ 1

0
dζ ζ P(0+1)

ba (ζ )

)
, (6)

where P(i)
ab (which is singular for z → 1) is given in Ref.

[67]. MRW have demonstrated that the sufficient accuracy
can be obtained by keeping only the LO splitting functions
together with the NLO integrated parton densities. So, by
considering the angular ordering, we can use P(0) instead
of P(0+1). As mentioned above, unlike the KMR formalism,
where the angular ordering is imposed to all terms of Eqs.
(1) and (2), in the MRW formalism, the angular ordering
is imposed to the terms in which the splitting functions are
singular, i.e. the terms that include Pqq and Pgg .

3 The formulation of FL(x, Q2) in the kt -factorization
approach

The kt -factorization approach has been discussed in several
works, i.e., Refs. [3,39,42,68,69]. In the following equation
[45,70–72], the different terms, i.e., the perturbative and the
non-perturbative contributions to the FL(x, Q2) have been
broken into the sum of gluons from the quark box (the first
term, i.e., the kt -factorization part), see Fig. 1 [22]), quarks
(the second term), and the non-perturbative gluon (the third
term) parts:

Fig. 1 The quark boxes and exchanged diagrams in the photon–gluon
fusion process discussed in the kt -factorization formula in the text
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where the second term is (see [73,74])

∑
q

e2
i
αs(Q2)

π

4

3

∫ 1

x

dy

y

(
x

y

)2

[qi (y, Q2) + qi (y, Q
2)].

In the above equation, in which the graphical representations
of kt and κt have been introduced in Fig. 1, the variable β is
defined as the light-cone fraction of the photon momentum
carried by the internal quark [69]. Also, the denominator
factors are

D1 = κ2
t + β(1 − β)Q2 + m2

q ,

D2 = (κt − kt)2 + β(1 − β)Q2 + m2
q . (8)

Then by defining κ ′
t = κt − (1 − β)kt , the variable y takes

the following form:

y = x(1 + κ ′2 + m2
q

β(1 − β)Q2 ),

and we have

1

z
= 1 + κ2

t + m2
q

(1 − β)Q2 + k2
t + κ2

t − 2κt.kt + m2
q

βQ2 . (9)

As in Ref. [47], the scale μ, which controls the unintegrated
gluon and the QCD coupling constant αs , is chosen as fol-
lows:

μ2 = k2
t + κ2

t + m2
q . (10)

One should note that the coefficients used for quark and non-
perturbative gluon contributions depend on the transverse
momentum. As has been briefly explained before, the main
prescription for FL consists of three terms; the first term is
the kt -factorization which explains the contribution of the
UPDF into the FL . This term is derived with the use of a
pure gluon contribution. However, it only counts the gluon
contributions coming from the perturbative region, i.e., for
kt > 1 GeV, and does not have anything to do with the non-

123



556 Page 4 of 13 Eur. Phys. J. C (2015) 75 :556

perturbative contributions. In Ref. [73], it has been shown
that a proper non-perturbative term can be derived from the
kt factorization term, making compact the kt dependence and
the integration with the use of a variable-change, i.e., y, that
carries the kt dependence. Nevertheless, there is a calculable
quark contribution in the longitudinal structure function of
the proton, which comes from the collinear factorization, i.e.
the second term of Eq. (7).

For the charm quark, m is taken to be mc = 1.4 GeV,
and u, d, and s quark masses are neglected. We also use the
same approximation to save the computation time [19], the
one we did for the calculation of F2(x, Q2) [32], i.e., the
representative “average” value for φ, 〈φ〉 = π

4 for the per-
turbative gluon contribution. This approximation has been
checked in Ref. [19] (p. 83). The rest of the φ angular inte-
gration can be performed analytically by using a series of
integral identities given in Ref. [75]. We will also verify this
approximation in the next section. The unintegrated gluon
distributions are not defined for kt and κt < k0, i.e. the non-
perturbative region. So, according to Ref. [70], k0 is chosen to
be about 1 GeV, which is around the charm mass in the present
calculation, as it should. On the other hand, one expects
that the discrepancy between the kt -factorization calculation
and the experimental data can be eliminated by using the
PDFs, which have been fitted to the same data for F2(x, Q2)

[76] with respect to the re-summation method of KMS
[47].

4 Results, discussions, and conclusions

In Fig. 2, the longitudinal proton structure functions in the
frameworks of KMR (left panels) and MRW (right panels)
formalisms, by using the MRST99 [52] and the MSTW2008-
NLO [53] PDF inputs, versus x, for Q2 = 2, 4, 6, 12, and
15 GeV2 are plotted, respectively. Their total FL(x, Q2)

and the contributions from the kt -factorization scheme, the
quark, and the non-perturbative parts (see Eq. (7) are pre-
sented with different curve styles. The behavior of FL (x, Q2)

mostly comes from the kt -factorization contribution, espe-
cially as Q2 is increased, and it is more sizable in the
case of the MRW approach. By increasing the Q2 values
the contribution of the kt -factorization becomes dominant.
Another point is the decrease of the non-perturbative parts
at small x , in the case of the MRW scheme. As we dis-
cussed in our previous works, this is expected. The KMR
constraint spreads the UPDF to the whole transverse momen-
tum region [32] and it sums up the both leading DGLAP
and BFKL logarithms contributions. The general behavior of
two schemes in Fig. 2 shows some differences also at lower
Q2 scales, while the values and behaviors of quarks and kt -
factorization portions in both formalisms are almost simi-
lar; the non-perturbative contributions have more different

values and behavior for x � 0.01. The latter point plays
a main role in the discrepancies of the total FL(x, Q2) at
lower Q2. On the other hand the non-perturbative contri-
bution in each case remains almost fixed through the vari-
ation of Q2. These effects have their roots in the parent
PDF sets at non-perturbative boundary which is very sen-
sitive to the discipline and procedure of the PDF generating
group. This figure can also be compared with Fig. 2 of GS
[45] at Q2 = 2, 4, and 6 GeV2. There is general agree-
ment between our approaches and those of GS, which have
used the DGLAP/BFKL re-summation method, developed
by Kwiecinski, Martin and Stasto (KMS) [47], for a calcula-
tion of the unintegrated gluon density at small x . This agree-
ment is more visible at larger Q2 and in the KMR approach,
which is expected. However, our longitudinal proton struc-
ture function results go smoothly to zero with respect to those
of GS as x becomes larger. The reason is both our input
PDF, which is valid for the whole (x, Q2) plane, and the
calculation of the UPDFs which are calculated by using the
KMR and MRW approaches, which are to fulfill the DGLAP
requirements.

Our longitudinal proton structure function results for
larger values of Q2, with the different input PDFs, i.e.,
MERST99 [52], MSTW2008-LO (using KMR formalism)
and MSTW2008-NLO [53] (using MRW formalism) are
given in Figs. 3, 4, and 5, respectively. Again the total
FL(x, Q2) and the contributions from the kt -factorization
scheme, the quarks, and the non-perturbative parts are
presented with different curve styles. The results are a
mostly decreasing function x, for the various values of Q2.
There are sizable differences between the MERST99 and
MSTW2008-LO. On the other hand, as one should expect,
for a large value of Q2 the results of KMR and MRW
behave more similarly. As we pointed out before, again the
kt -factorization contributions are dominant. The increase in
the values of FL(x, Q2) in Fig. 4 is due to the increase of
the input PDF at LO approximation. The reason is that the
results of FL(x, Q2) approach the same values as x and
Q2 increases, which is a heritage of the parent DGLAP
evolution.

In order to analyze the above Q2 dependent more clearly,
in Fig. 6, the longitudinal proton structure functions are plot-
ted against Q2 for the two different values of x = 0.001
and 0.0001. Note that for large Q2, especially the MRW
approach needs a large computation time. So we have stopped
at Q2 = 100 GeV2 for this procedure. There are sizable
differences between the two approaches and results com-
ing from the two different input PDFs. But this should
not be very important regarding the experimental data that
we will discuss later on. In Fig. 7, a comparison is made
between the three different FL(x, Q2) results, namely the
KMR procedure with MERST99 and MSTW2008-LO inputs
and MRW scheme with MSTW2008-NLO inputs. Especially
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Fig. 2 The longitudinal proton
structure functions in the
frameworks of KMR (left
panels, using the MRST99 PDF
data as inputs) and MRW (right
panels, using the
MSTW2008-NLO data as
inputs) UPDF, versus x, for
Q2 = 2, 4, 6, 12, and 15 GeV2.
Their total value and the
contributions of the kt
factorization scheme, the quark,
and the non-perturbative parts
are presented with different
curve styles

Q2 = 2 GeV2

X
0.0001 0.001 0.01 0.1

F L
, M

R
W

, M
ST

W
20

08
-N

LO

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 = 2 GeV2

X
0.0001 0.001 0.01 0.1

F L
, K

M
R

, M
R

S
T9

9

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

total
KT
quarks
nonperturb.

Q2 = 4 GeV2

X
0.0001 0.001 0.01 0.1

F L
, M

R
W

, M
ST

W
20

08
-N

LO
F L

, M
R

W
, M

ST
W

20
08

-N
LO

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 = 4 GeV2

X
0.0001 0.001 0.01 0.1

F L
, K

M
R

, M
R

S
T9

9

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 = 6 GeV2 Q2 = 6 GeV2

X
0.0001 0.001 0.01 0.1

X
0.0001 0.001 0.01 0.1

F L
, K

M
R

, M
R

S
T9

9

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 = 12 GeV2

X
0.0001 0.001 0.01 0.1

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2=12 GeV2

X
0.0001 0.001 0.01 0.1

F L
, K

M
R

, M
R

ST
99

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 =15 GeV2

X
0.0001 0.001 0.01 0.1

F L
, M

R
W

, M
S

TW
20

08
-N

LO

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

Q2 = 15 GeV2

X
0.0001 0.001 0.01 0.1

F L
, K

M
R

, M
R

ST
99

-0.05
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

F L
, M

R
W

,M
S

TW
20

08
-N

LO

123



556 Page 6 of 13 Eur. Phys. J. C (2015) 75 :556

Fig. 3 The longitudinal proton
structure functions in the
frameworks of KMR by using
the MRST99 PDF data versus x,
for Q2 = 12, 15, 20, 25,

35, 45, 60, 80, 90, and 110
GeV2. Their total value and the
contributions of the
kt -factorization scheme, the
quark, and the non-perturbative
parts are presented with
different curve styles
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Fig. 4 The longitudinal proton
structure functions in the
frameworks of KMR by using
the MSTW2008-LO PDF data
versus x, for Q2 =
12, 15, 20, 25, 35, 45, 60, 80, 90,
and 110 GeV2. Their total value
and the contributions of the
kt -factorization scheme, the
quark, and the non-perturbative
parts are presented with
different curve styles
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Fig. 5 The longitudinal proton structure functions in the frameworks
of MRW and by using the MSTW2008-NLO PDF data versus x for
Q2 = 12, 15, 20, 25, 35, and 45 GeV2. Their total value and the

contributions of the kt -factorization scheme, the quark, and the non-
perturbative parts are presented with different curve styles

there are large differences between the KMR and MRW
approaches at large Q2. The above results can be directly
compared to that of GS [45] (see their Fig. 3). A very similar
behavior is observed especially between the kt -factorization
approaches.

In Figs. 8, 9, and 10, we present our results in the range of
energy available in the H1 and ZEUS data [31], respectively.
Note that for Q2 ≥ 80 GeV2, because of the large computa-
tion time, we have only given four points (filled squares) for
the MRW case. Very good agreement is observed between our
result and those of the experimental data at different Q2 and
x values. It seems that with present existing data as regards
the UPDFs of gluons generated with different input PDF
and constraint procedures, one can reasonably explain the
H1 and the ZEUS experimental data. It seems that even at

low energies and small x values (see Fig. 8), we find good
agreement between our calculation and the available data.
However, as we mentioned before and has been stated by
several authors, the FL is mainly driven through the gluons
distributions, especially at low values of x . The fact that F2

is not accurately fit to the data (see our previous work [32]),
though we get good agreement between the FL calculations
and H1 and ZEUS data, could be caused of the quark–quark
contributions, leading to a higher contribution to F2. Since
FL is more sensitive to the gluons’ UPDFs with respect to
F2, one can conclude that the present calculation might con-
firm that the KMR and MRW procedures (for generating the
gluon UPDFs) and the kt -factorization scheme can repro-
duce a reasonable F2 (considering our previous work [32])
and present FL . On the other hand, as we stated previously:
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Fig. 6 The longitudinal proton structure functions in the frameworks
of KMR and MRW by using the MRST99, MSTW2008-LO and
MSTW2008-NLO PDF data versus Q2 (GeV2), for fix x =0.001 and

0.0001. Their total values and the contributions of the kt -factorization
scheme, the quark, and the non-perturbative parts are presented with
different curve styles

X= 0.0001

Q2(GeV2)

1 10 100 1000

F L

-0.5

0.0

0.5

1.0

1.5

2.0
x=0.001

Q2(GeV2)

1 10 100 1000

F L

-0.5

0.0

0.5

1.0

1.5

2.0
FL, KMR, MRST99
FL, KMR, MSTW2008-LO
FL, MRW, MSTW2008-NLO

Fig. 7 The comparison of the total longitudinal proton structure functions in the frameworks of KMR and MRW by using the MRST99, MSTW2008-
LO and MSTW2008-NLO PDF data versus Q2 (GeV2), for the fixed values x = 0.001 and 0.0001

123



556 Page 10 of 13 Eur. Phys. J. C (2015) 75 :556

Q2 = 3.5 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5
Q2 = 2.5 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5
Q2 = 2 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5

FL, KMR, MRST99
FL, KMR, MSTW2008-LO
FL, MRW, MSTW2008-NLO
H1

Q2 = 8.5 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5
Q2 = 6.5 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5
Q2 = 5 GeV2

X

F L

-0.5

0.0

0.5

1.0

1.5

Q2 = 9 GeV2

X

1e-5 1e-4 1e-3 1e-2 1e-11e-5 1e-4 1e-3 1e-2 1e-11e-5 1e-4 1e-3 1e-2 1e-1

1e-5 1e-4 1e-3 1e-2 1e-11e-5 1e-4 1e-3 1e-2 1e-11e-5 1e-4 1e-3 1e-2 1e-1

1e-5 1e-4 1e-3 1e-2 1e-1

F L

-0.5

0.0

0.5

1.0

1.5

ZEUS

Fig. 8 The comparison of the total longitudinal proton structure func-
tions, in the frameworks of KMR and MRW by using the MRST99,
MSTW2008-LO, and MSTW2008-NLO PDF data versus x at Q2 =

2, 2.5, 3.5, 5, 6.5, 8.5 and 9 GeV2, with the corresponding ZEUS and
H1 data (filled triangles and bold points), respectively

(1) present results also show good agreement with the the-
oretical calculations of GS, which have used a more com-
plicated approach such as KMS; (2) it is interesting that the
KMR and MRW UPDF can generate reasonable FL without
using any free parameter in the (x, Q2) plane even at low
Q2 (regarding Fig. 8), especially the UPDF generated for the
gluons.

Finally, the verification of the fact that the φ integra-
tion of the perturbative gluon contribution can be averaged
by setting 〈φ〉 = π/4, which was discussed in the end of
previous section, is presented in Fig. 11, for four values of
Q2 = 3.5, 12, 60, and 110 Gev2 by using the KMR formal-
ism and the MRST99. It is clearly seen that the above approx-
imation does work properly and one can save much compu-
tation time. It should be pointed out that only the upper cut
and the factorization scale will be affected by the φ approx-
imation.

In conclusion, the longitudinal proton structure functions,
FL(x, Q2), were calculated based on the kt -factorization for-
malism, by using the UPDF which are generated through the
KMR and MRW procedures. The LO UPDF of the KMR
prescription is extracted, by taking into account the PDFs
of MSTW2008-LO and MRST99-NLO, and also the NLO
UPDF of the MRW scheme is generated through the set of
MSTW2008-NLO PDFs as the inputs. The different aspects
of the FL(x, Q2) in the two approaches, as well as its pertur-
bative and non-perturbative parts, were calculated and dis-
cussed. It was shown that our approaches are in agreement
with those given by GS. Then the comparison of FL(x, Q2)

was made with the data given by the ZEUS and H1 collab-
orations at HERA. It was demonstrated that the extracted
longitudinal proton structure functions based on the UPDFs
of the above two schemes were consistent with the exper-
imental data, and by a good approximation, they are inde-
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Fig. 9 The comparison of total longitudinal proton structure functions, in the frameworks of KMR and MRW by using the MRST99, MSTW2008-
LO, and MSTW2008-NLO PDF data versus x at Q2 = 12, 15, 20, 25, 35, 45, 60, and 90 GeV2, with the corresponding H1 data (bold points)

pendent to the input PDF. But as was pointed out in our
previous work [32], the one developed from the KMR pre-
scription has better agreement with the data with respect
to that of MRW. Although the MRW formalism is more in
compliance with the DGLAP evolution equations requisites,
it seems, in the KMR case, that the angular ordering con-
straint spreads the UPDF to whole transverse momentum
region, and it makes the results sum up the leading DGLAP
and BFKL logarithms. At first, it seems that there should be
theoretical support for applying the angular ordering condi-
tion only to the diagonal splitting functions, in accordance
with Ref. [22]. But as has been mentioned in Refs. [32,33],
these phenomenological modifications of the KMR approach
(including the application of the AOC to all splitting func-
tions) work as an “effective model” that spreads the UPDFs
to the region kt > μ (a characteristic of low x physics), repre-
senting a good level of agreement with the data. Beside this,
in our new work [33], in which we have calculated the FL in

the dipole approximation according to the LO prescription
of Ref. [22], it is shown that there is not much difference
if one applies the AOC to all the splitting functions, i.e.,
one uses the KMR UPDF instead of using the LO prescrip-
tion of Ref. [22]. On the other hand, in this paper we have
focused ona comparison of the LO and the NLO calculation
of FL , and since the calculations are very time consuming,
we restricted the results to the LO-KMR and NLO-MRW.
We should also point out here that there exists a formalism
called the “reggeized quark” formalism [77–79], in which
the KT dependence of PDFs are treated on the same foot-
ing as the one we did for the gluons. However, at small x
region the gluon channel is dominant and our approximation
is acceptable.

As has been suggested in Ref. [45], by lowering the fac-
torization scale or the Bjorken variable in the experimental
measurements, it may be possible to analyze the present the-
oretical approaches more accurately.
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Fig. 10 The comparison of total longitudinal proton structure func-
tions, in the frameworks of KMR and MRW by using the MRST99,
MSTW2008-LO, and MSTW2008-NLO PDF data versus x at Q2 =

24, 32, 45, 80, and 110 GeV2, with the corresponding ZEUS and H1
data (filled triangle and bold points), respectively
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Fig. 11 The comparison of perturbative gluon contribution to FL by performing the φ integration (exact) and the approximated one with φ = π/4,
in the frameworks of KMR by using the MRST99 versus x at Q2 = 3.5, 12, 60, and 110 GeV2
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