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Abstract The first part of our analysis uses the wavelet
method to compare the quantum chromodynamic (QCD) pre-
diction for the ratio of hadronic to muon cross sections in
electron-positron collisions, R, with experimental data for R
over a center of mass energy range up to about 7 GeV. A
direct comparison of the raw experimental data and the QCD
prediction is difficult because the data have a wide range of
structures and large statistical errors and the QCD descrip-
tion contains sharp quark-antiquark thresholds. However, a
meaningful comparison can be made if a type of “smearing”
procedure is used to smooth out rapid variations in both the
theoretical and experimental values of R. A wavelet analysis
(WA) can be used to achieve this smearing effect. The second
part of the analysis concentrates on the 3.0–6.0 GeV energy
region which includes the relatively wide charmonium res-
onances ψ(1−). We use the wavelet methodology to distin-
guish these resonances from experimental noise, background
and from each other, allowing a reliable determination of the
parameters of these states. Both analyses are examples of
the usefulness of WA in extracting information in a model
independent way from high energy physics data.

1 Wavelet transformations

Let us start with a brief description of the continuous wavelet
transformation (WT). The WT of function f (t) is defined by

w(a, t) = 1
√
aCϕ

+∞∫

−∞
ϕ∗

(
t ′ − t

a

)
f (t ′)dt ′, (1)
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where Cϕ is a normalization constant subject to the choice
of wavelet. The decomposition described by Eq. (1) is per-
formed by convolution of the function f (t) with a bi-
parametric family of self-similar functions generated by
dilatation and translation of the analyzing function ϕ(t)
called a wavelet,

ϕa,b(t) = ϕ

(
t − b

a

)
, (2)

where the scale parameter a characterizes the dilatation, and
b characterizes the translation. It is a kind of “window func-
tion” with a non-constant window width. High frequency
wavelets are narrow due to the factor 1/a, while low fre-
quency wavelets are much broader. The function ϕ(t) should
be well localized in both time and Fourier space and must
obey the admissibility condition,

∫ +∞
−∞ ϕ(t)dt . This condi-

tion requires ϕ(t) must be an oscillatory function and, if the
integral (1) converges, the completeness of the wavelet func-
tions provides the existence of inverse transformation,

f (t) = 1
√
Cϕ

+∞∫

−∞

+∞∫

0

ϕ

(
t − t ′

a

)
w(a, t ′)dt

′da
a5/2

dt. (3)

In contrast to Fourier analysis, the WT depends both on
t and the frequency providing an optimal compromise with
the uncertainty principal. One of the advantages of wavelet
analysis is a fairly low sensitivity of the restored signal to
any physically reasonable continuation of the function f (t)
outside the interval (tmin, tmax ) where the data are known.
To fill in gaps between the experimental points we use a
linear interpolation (different interpolations lead to minimal
difference in the restored signal). Note that since the average
value of any wavelet is zero, the mean value of the WT is
zero, so that 〈 f 〉 must be added to the reconstructed signal
to restore the mean value of the original signal.
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Fig. 1 Wavelet “Mexican Hat” ϕ(t) = (
1 − t2

)
e−t2/2. Solid line −

ϕ(t), dashed line − ϕ(t/2), dotted line − ϕ(t/0.5)

Wavelets with good localization and a small number of
oscillations are commonly used to recognize the local fea-
tures of data, and to find the parameters of dominating struc-
tures (location and scale/width). In this work, we use one of
the most popular wavelets of this type, the so-called “Mexi-
can Hat”,

ϕ(t) =
(

1 − t2
)
e−t2/2. (4)

This wavelet is plotted in Fig. 1 for three values of the scale
parameter, a = 1, 2 and 0.5.

2 Wavelets and the R ratio

Our first goal is to use wavelet methodology to compare the
QCD prediction of R to experimental data in the center of
mass energy range up to about 7 GeV. In zeroth order in the
strong coupling constant αs , the ratio R is given by

R(Q) = σ
(
e+e− → hadrons

)

σ
(
e+e− → μ+μ−) ≈ 3

∑

q

e2
q ≡ R(0)(Q),

(5)

where the summation extends over the quark flavors q =
u, d, s, c available up to the center of mass energy Q. The
QCD αs corrections to R(0)(Q) can be presented in different
forms. To be specific we adopt the form of reference [1],

R(Q) = 3
∑

q

e2
qT

(
vq

) [
1 + g

(
vq

)
R

]
, (6)

where

R = αs

π

[
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π
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(αs

π

)2 + C3
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)3 + · · ·
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,
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q/Q
2
]1/2

, T (v) = v
(
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/2,

g(v) = 4π

3

[
π

2v
− 3 + v

4

(
π

2
− 3

4π

)]

and the summation in (6) is over all quark flavors whose
masses mq are less than Q/2. For this analysis we use the

quark masses, the form of the coefficients C2 and C3 calcu-
lated in [3,4] and the energy dependence of αs

(
Q2

)
from

[2].
It is very hard to determine the role of these QCD cor-

rections by comparison with experimental data for R(Q)

due to the large statistical errors and plethora of overlap-
ping and interfering resonances in this region. An additional
complicating factor is that the QCD perturbative approach
exhibits sharp quark-antiquark thresholds. However, a mean-
ingful comparison can be made by applying some type of
“smearing” procedure, which has the effect of smoothing
out rapid variations in both the theoretical and experimental
values of R.

Before describing our wavelet analysis of this data it is
worth considering the methodology developed in references
[1,2] to compare experimental data and QCD predictions.
The smearing procedure used in these analyses calculates a
smeared ratio R as follows,

R(s,�) = �

π

smax∫

0

R(s′)
(s′ − s)2 + �2

ds′, (7)

where
√
s = Q is the square of the center of mass energy

and � is the “smearing” parameter. In references [1,2] to
evaluate the integral (7), it was necessary to exclude sharp
resonances, such as the ψ(3.100) and the much wider ρ peak.
In addition, a term is added to account for the contribution
from smax to ∞, assuming that R remains constant above
smax ≈ 60 GeV2. Originally, the smearing procedure in
reference [1] supposes a global constant value � = 3 GeV2

in (7). However it was found in reference [2] that for different
energy regions it would be better to use different values of �.
Note that the use of an energy dependent � in (7) reflects the
necessity for different treatment of different energy scales.

The WT methodology provides an alternative, model inde-
pendent, smearing method, which does not require different
treatment in differing energy scales. Under WT to separate
the signal from the background noise, wavelet reconstruction
is performed for scales greater than a certain scale anoise—
the boundary, or cut-off, scale [5]. In deciding on the appro-
priate boundary scale that will separate the noise-like high
frequency components of the data we take a pragmatic line
of reasoning. That is, the best choice for anoise is the smallest
value which will smooth out any rapid variations in the data
enabling us to reproduce stable results for low frequencies
(resonance area). A similar pragmatic strategy was applied
in the analyses of [1,2] in choosing the parameter � of equa-
tion (7). The best value of � is large enough to compare the
smeared R with QCD models, but not so large that all the
fine detail of the data is smoothed away.

Figure 2 displays wavelet reconstructed (smeared) exper-
imental data with cut-off values anoise = 0.6 (bold dashed
curve) and anoise = 1.2 (bold solid curve). The data is a com-
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Fig. 2 Wavelet reconstruction of Re+e− . Dashed and solid bold curves
correspond to wavelet reconstruction of the experimental data with
anoise = 0.6 and anoise = 1.2, respectively. Dashed and solid thin
curves correspond to wavelet reconstruction of QCD calculations (6)
with the same anoise values

pilation of measurements from many different experiments
obtained from the Particle Data Group (PDG) [6]. In contrast
to the analyses of [1,2], under the WT approach there is no
need to remove sharp resonances (ψ(3.100) etc.) by hand,
they effectively become part of the high frequency noise and
the wavelet analysis smears them out. The thin dashed line
and thin solid line are wavelet reconstructed QCD curves
with anoise = 0.6 and anoise = 1.2, respectively. As can be
seen, the two curves with anoise = 1.2, representing experi-
ment and theory, are in good agreement. It should be noted
that the contribution to all of the restored data curves in Fig.
2 from the data region above 6.5 GeV is negligible.

3 ψ states above the DD̄ threshold and the wavelet
procedure

Detailed information on the charmonium resonances ψ(1−)

above the DD̄ threshold at 3.73 GeV comes primarily from
the measurement of Re+e− . This data, provided by the Particle
Physics Data Group (PDG) [6], comes from the work of many
experimental collaborations over a period of more than 30
years. Several broad vector resonances are observed with
varying degrees of clarity. The current best estimate of the
masses and widths from the PDG are presented in Table 1.

The main difficulty encountered by each of the colla-
borations in making these measurements is large statistical
errors and hence the difficulty of separating resonance “sig-

nal” from noise. There is significant disagreement between
the collaborations on many of the resonance parameters.
Therefore, due to the possibility of systematic errors we do
not combine measurements from different experiments, but
choose to base this initial analysis on data from the BES
collaboration which exhibits clear evidence of four broad
resonances above the DD̄ threshold. In addition to the PDG
values, Table 1 shows the masses and widths of these reso-
nances from the most recent BES analysis [7].

Before analyzing the charmonium resonances parameters,
we first determine the non-resonant background contribu-
tion using a WT followed by wavelet reconstruction. This
methodology, with its excellent scaling property, allowing the
analysis of data with varying resolution, is ideally suited to
separate resonances from noise, background and each other.
A very helpful representation of the WT revealing all the
features of the complete spectrum of the signal is the “time-
frequency” plane (Fig. 3a). This is a multi-resolution spec-
trogram, which shows the frequency (scale) contents of the
signal as a function of energy. Each pixel on the spectrogram
represents w(a, t) for a particular a (scale) and t (in our case
t is energy, E ≡ Q). The location of spots on the vertical
axis (scale axis, a) corresponds to the width of the maximum.
The intensity of dark spots shows the amplitudes of maxima.
The WT image (wavelet plane) of the BES charmonium data
obtained with the “Mexican Hat” wavelet is shown in panel
(a) of Fig. 3. The WT localizes the structures in a fashion
that allows us to estimate the masses of the resonances and
their widths—all four ψ resonances are clearly seen on the
wavelet plane. The straight horizontal line corresponds to the
boundary scale anoise, which can be chosen to cut off small
scale structures, which in this case corresponds to experimen-
tal noise. By choosing a larger value of anoise it is possible to
also cut out the resonances, leaving only the background. The
background curves for three substantially different choices
of anoise (0.15, 0.25 and 0.35) are displayed in Fig. 3b). In the
following analysis we show that the charmonium resonance
parameters are not sensitive to the choice of anoise.

For each value of anoise we subtract this “wavelet back-
ground” from the raw experimental data leaving only the con-
tribution from the broad charmonium resonances. We then
perform a least squares fit of the “signal” in this energy range
to the sum of four Breit-Wigner resonances of the form,

Table 1 Properties of vector
(charmonium) resonances above
the charm threshold from the
PDG and the BES [7]
collaboration

Resonance Mass (GeV) Full Width (GeV)

PDG [6] BES [7] PDG [6] BES [7]

ψ(3.770) 3.773 ± 0.0003 3.772 ± 0.002 0.027 ± 0.001 0.030 ± 0.009

ψ(4.040) 4.039 ± 0.001 4.040 ± 0.004 0.080 ± 0.010 0.085 ± 0.012

ψ(4.160) 4.191 ± 0.005 4.192 ± 0.007 0.103 ± 0.008 0.072 ± 0.012

ψ(4.415) 4.421 ± 0.004 4.415 ± 0.008 0.062 ± 0.020 0.072 ± 0.019
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Fig. 3 a Wavelet plane for a ∈ [0.01, 1]; b background for anoise =
0.15 (solid line), anoise = 0.25 (dashed line), anoise = 0.35 (dotted
line)

Rres = 9

α2
em

4∑

r=1

Blr Bhr
M2

r 	2
r(

s − M2
r

)2 + M2
r 	2

r

, (8)

where Mr , 	r , Blr and Bhr are, respectively, the mass, total
width, leptonic branching fraction and hadronic branching
fraction of the resonance. Each Breit-Wigner has three fitted
parameters, M , 	 and the product of Blr and Bhr . It is worth
noting that since these resonances partially overlap, if their

Table 2 Breit-Wigner fitted parameters for anoise = 0.15

Resonance Mass (GeV) Width (GeV) Bl Bh · 105

ψ(3.770) 3.772 ± 0.0002 0.032 ± 0.005 0.983 ± 0.076

ψ(4.040) 4.042 ± 0.001 0.088 ± 0.013 0.921 ± 0.067

ψ(4.160) 4.161 ± 0.006 0.100 ± 0.019 0.664 ± 0.069

ψ(4.415) 4.430 ± 0.007 0.098 ± 0.014 0.936 ± 0.071

Table 3 Breit-Wigner fitted parameters for anoise = 0.25

Resonance Mass (GeV) Width (GeV) Bl Bh · 105

ψ(3.770) 3.772 ± 0.0001 0.022 ± 0.004 0.888 ± 0.094

ψ(4.040) 4.043 ± 0.003 0.097 ± 0.011 1.110 ± 0.064

ψ(4.160) 4.185 ± 0.005 0.083 ± 0.016 0.715 ± 0.077

ψ(4.415) 4.423 ± 0.004 0.090 ± 0.016 0.819 ± 0.076

Table 4 Breit-Wigner fitted parameters for anoise = 0.35

Resonance Mass (GeV) Width (GeV) Bl Bh · 105

ψ(3.770) 3.773 ± 0.0001 0.022 ± 0.004 0.888 ± 0.090

ψ(4.040) 4.043 ± 0.003 0.097 ± 0.011 1.155 ± 0.061

ψ(4.160) 4.165 ± 0.004 0.083 ± 0.013 0.907 ± 0.073

ψ(4.415) 4.423 ± 0.004 0.090 ± 0.014 0.889 ± 0.071

Fig. 4 Breit-Wigner fit of BES data with “wavelet background” sub-
tracted, anoise = 0.35

decay channels are specified, we can improve their resolu-
tion by using the multi-channel unitary scheme described in
reference [8]. We defer this investigation to a future analysis.

The values of the fitted parameters for each of the four
Breit-Wigner resonances for backgrounds obtained with
three different values of anoise are presented in Tables 2,
3 and 4. The chi squared per degree of freedom for the three
fits are 1.11, 1.22 and 0.99 for the anoise values of 0.15, 0.25
and 0.35, respectively.

As can be seen in Tables 2, 3, and 4, the fitted parameters
of the four charmonium resonances are not significantly dif-
ferent for the three values of anoise. Therefore, in Fig. 4 we
present only the fitted curve (8) for anoise = 0.35.

It should be noted that in this analysis, after subtracting
the wavelet background, we exclude the four highest energy
data points from the fitting procedure. Without these points
the ψ(4.415) resonance is “well-shaped”; if these four points
are included the resonance is no longer “well-shaped” and its
width is about twice that of the values presented in Table 1.

Justification for excluding the four highest energy points
can be made as follows. If instead of the wavelet fitted back-
ground we fit the data with four Breit-Wigners and a parabolic
(or linear) background, including the four highest energy data
points, we see that the fourth resonance is not “well-shaped”
and the last few data points appear to be associated with the
background rather than the 4th resonance, see Fig. 5. Fur-
thermore, the fitted width of this fourth resonance (Table 5)
is significantly larger than that of the second and third res-
onances and the published PDG value. In order to show the
association of the highest energy points with the parabolic
background we do not subtract the background in Fig. 5. It
should be emphasized that inclusion or exclusion of these
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Fig. 5 Breit-Wigner and parabolic background fit of BES data (con-
trary to Fig. 4 the background is not subtracted from the data)

Table 5 Breit-Wigner parameters for fit with parabolic background

Resonance Mass (GeV) Width (GeV) Bl Bh · 105

ψ(3.770) 3.770 ± 0.001 0.021 ± 0.004 1.202 ± 0.097

ψ(4.040) 4.048 ± 0.003 0.107 ± 0.010 1.946 ± 0.079

ψ(4.160) 4.166 ± 0.003 0.086 ± 0.013 1.335 ± 0.067

ψ(4.415) 4.426 ± 0.005 0.148 ± 0.022 1.001 ± 0.085

four data points does not significantly alter the background
curve obtained via the wavelet method and that the choice of
a polynomial background is arbitrary, whereas the wavelet
background is obtained from the data itself in a model inde-
pendent manner.

To demonstrate the reliability of our WT methodology in
extracting the parameters of these charmonium resonances
we performed a study using simulated data as follows. Start-
ing from the PDG values of masses and widths of the four
charmonium resonances given in Table 1 we generate a spec-
trum of four Breit-Wigners of the basic form of Eq. (8). To
simulate real experimental data we discretize the spectrum
from 2.0 to 5.5 GeV in 0.05 GeV intervals, then add a ran-
dom vertical shift from −0.2 to +0.2 and random error bars in
the range 0.15–0.4 to the data points. To complete the sim-
ulated data spectrum a representative background curve is
added to the data points. Finally we pass this simulated data
through the same WT analysis chain applied to the real data.
This gives us a wavelet background curve and the masses and
widths of the Breit-Wigner resonances after the wavelet back-
ground subtracted fit. In addition to applying our WT method-
ology to the simulated data we perform a Breit-Wigner and
parabolic background fit in exactly the same way as we did
for the real data.

This study was performed for several different initial back-
ground curves. In all such cases the WT methodology accu-
rately reproduced the input background shape. Fitting the
wavelet background subtracted simulated data, as described
above, also accurately reproduces the masses and widths
of the assigned Breit-Wigner resonances, independent of
the particular input background curve. The parabolic back-
ground least squares fit of the simulated data was also able to

reproduce the Breit-Wigner masses and widths, but in con-
trast led to fitted backgrounds very different from the input
background. We believe the fact that the masses and widths
were accurately reproduced, despite the fitted background
being very different from the input background, is largely due
to the clean nature of the simulated data. Real experimental
data is clearly more complex, in which case the inability of
the standard parabolic background least squares fit to extract
an accurate background could lead to less reliable resonance
parameters.

4 Conclusion

Experimental measurements of the ratio, R, comprise a wide
range of structures with large statistical errors, making direct
comparison with the predictions of QCD very difficult. How-
ever, a meaningful comparison can be made provided that
some kind of “smearing” procedure, similar to that described
in [1], is used to smooth out rapid variations in R. A wavelet
analysis can be used to achieve this smearing effect. We
compare the WT of the predictions of perturbative QCD
and experimental R data. The wavelet reconstruction of the
R experimental data preserves its main features, but with
damped statistical errors and threshold singularities. The WT
of QCD perturbation theory is in good general agreement
with the WT experimental data.

Using the wavelet methodology to obtain the background
in the charmonium energy range above the naked charm
threshold provides an important, model independent, alter-
native to other accepted methods. The masses and widths of
the four vector mesons above the charm threshold, ψ(3.700),
ψ(4.040), ψ(4.160) and ψ(4.415), obtained from fitting wa-
velet background subtracted data from the BES experiment,
are found to be largely insensitive to the specific choice of
the WT parameters and consistent with the BES and PDG
reported values.
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