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Abstract Motivated by the energy representation of Rie-
mannian metric, in this paper we study different approaches
toward the geometrical concept of black hole thermodynam-
ics. We investigate thermodynamical Ricci scalar of Wein-
hold, Ruppeiner and Quevedo metrics and show that their
number and location of divergences do not coincide with
phase transition points arisen from heat capacity. Next, we
introduce a new metric to solve these problems. We show
that the denominator of the Ricci scalar of the new metric
contains terms which coincide with different types of phase
transitions. We elaborate the effectiveness of the new metric
and shortcomings of the previous metrics with some exam-
ples. Furthermore, we find a characteristic behavior of the
new thermodynamical Ricci scalar which enables one to dis-
tinguish two types of phase transitions. In addition, we gener-
alize the new metric for the cases of more than two extensive
parameters and show that in these cases the divergencies of
thermodynamical Ricci scalar coincide with phase transition
points of the heat capacity.

1 Introduction

One of the succinct semi-classical approaches for investigat-
ing the quantum nature of gravity is via black hole thermo-
dynamics in AdS spacetime which is dual to that of a field
theory in one dimension fewer [1–3]. Besides, an interesting
development in the black holes studies comes from the fact
that black holes are akin to thermodynamical system which
can be essentially described by the laws of thermodynamics
re-expressed in terms of properties of black holes [4–10].
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Scientific researches in the black hole physics have pre-
sented a very deep and fundamental relationship between
quantum gravity, holography and thermodynamics. Among
these researches, the special interest is attracted by AdS
black holes because some of them lead to the very inter-
esting phenomenon called Hawking–Page phase transition
[11–14]. Phase transition plays an important role in order to
explore thermodynamical properties of a system near the crit-
ical point. Usually, phase transitions are denoted by a discon-
tinuity of a state space variable, specially heat capacity [15].

Motivated by large applications of the geometrical con-
cept of thermodynamics in the black hole phase transition,
in this paper, we investigate strengths and shortcomings of
different approaches toward the matter. First attempt was
done by Weinhold [16,17] which introduced a metric on
the space of equilibrium states where its components are
given as the Hessian of the internal energy. Then, Ruppeiner
introduced a metric which is defined as the negative Hes-
sian of entropy with respect to the internal energy and other
extensive quantities of a thermodynamical system [18,19].
It was shown that these two metrics are conformally equiv-
alent to each other where the temperature is the conformal
factor [20]. Recently, Quevedo [21,22] proposed a Legen-
dre invariant metric, in which solved some of problems in
Weinhold/Ruppeiner methods.

The basic motivation for considering the geometrothermo-
dynamics comes from the fact that this formalism describes
in an invariant way the thermodynamic properties of a given
thermodynamical system in terms of geometric structures.
Although extracting phase transition in terms of curvature
singularity is the main reason to consider the geometrical
approach in thermodynamics, there are several examples in
which the curvature singularities of the known metrics (Wein-
hold and Ruppeiner metrics and their Legendre transforma-
tions) are not located at the phase transition points and they
have number of singularities in which are before/after the
phase transition points [23–26].
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In this paper, in order to solve the mentioned prob-
lems, we introduce a metric where its curvature singulari-
ties are, exactly, located at the phase transition points. As
we see later, this effective metric has different structure
from the other known metrics. For this claim, we con-
sider the black hole solutions with Born–Infeld (BI) and
Maxwell sources in three and four dimensions and investi-
gate phase transitions in various geometrothermodynamical
methods.

2 Heat capacity

In order to investigate the local stability of a black hole, one
can use various methods related to different ensembles. In
principle thermal stability can be carried out in the grand
canonical ensemble by finding the determinant of the Hes-
sian matrix of M(Xi ) with respect to its extensive variables
Xi [27,28]. For static charged black holes, we usually regard
the mass M as a function of the entropy S and the charge
Q. The number of thermodynamic variables depends on
the ensemble that is used. The most well known approach
for studying phase transition is in the context of canonical
ensemble, hence the heat capacity of systems. Depending on
the number of extensive parameters, the behavior of Hes-
sian matrix is highly sensitive [29–32] and therefore most
of physicists prefer to work in canonical ensemble. In this
ensemble, the positivity of the heat capacity is sufficient to
ensure thermal stability. In addition the system is considered
to be in fixed charged and the heat capacity has the following
form

CQ = MS

MSS
, (1)

where MS = (
∂M
∂S

)
Q and MSS =

(
∂2M
∂S2

)

Q
are regular func-

tions. Now we regard two different types of phase transitions.
In type one, the changes in signature of the heat capacity is
representing a phase transition. In other words, the roots of
the heat capacity in this case are representing phase transi-
tion points which means one should solve MS = 0. Phase
transition concerning to the divergency of the heat capacity
is denoted by type two. It means the singular points of the
heat capacity are representing the phase transitions. Thus, we
should consider MSS = 0 to obtain the phase transition of
type two.

In order to have a fitting geometrical approach for studying
phase transitions, the thermodynamical Ricci scalar (TRS)
must diverge in the mentioned both types of phase tran-
sitions. In what follows, we present a brief review study
of several geometrical approaches with their shortcomings,
and then, we propose a new effective metric concerning this
issue.

3 Weinhold metric

In Weinhold method, one is considering appropriate exten-
sive parameters such as entropy, electric charge and angu-
lar momentum, and their related intensive quantities such as
temperature, electric potential and angular velocity with the
mass of the black holes as a potential. The Weinhold metric
is given by [16,17]

ds2
W = MgWabdXadXb, (2)

where gWab=∂2M (Xc) /∂Xa∂Xb and also Xa ≡ Xa(S, Ni ),
where Ni denotes other extensive variables of the system.
Considering a static charged black hole, one can find the
following expression for the denominator of Weinhold Ricci
scalar

denom(RW ) =
(
MSSMQQ − M2

SQ

)2
M2 (S, Q) , (3)

where MQQ =
(

∂2M
∂Q2

)

S
and MSQ = ∂2M

∂S∂Q and for consis-

tency (with respect to the heat capacity results), the roots
of the Eq. (3) should coincide with two types of the men-
tioned phase transitions in the heat capacity. It is easy to
find that due to the structure of the Eq. (3), only in special
case MSQ = 0 and nonzero MQQ , the divergence points of
the heat capacity coincide with divergencies of the Wein-
hold Ricci scalar. In order to obtain consistent results for the
type one phase transition, the following fine tuning must be
hold

MSSMQQ − M2
SQ = MS . (4)

Regarding various case studies and calculating M and its
derivatives, we should note that Eq. (4) is not always satisfied.

In addition, it is evident that for the case of MSS = M2
SQ

MQQ
,

there will be extra divergencies for RW which are not related
to any phase transition of the heat capacity. Therefore, the
structure of this part of denominator is in a way that may
present extra divergencies that do not coincide with any type
of phase transition points of the heat capacity.

4 Ruppeiner metric

The Ruppeiner metric is defined as [18,19]

ds2
R = gR

abdYadYb, (5)

where gR
ab = −∂2S(Y c)/∂Ya∂Yb and Ya ≡ Ya(M, Ni ). It

was proved that Weinhold and Ruppeiner metrics are related
to each other by a Legendre transformation [21,22]

ds2
R = −MT−1gWabdXadXb. (6)
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Applying this transformation, one can find the following
relation for the denominator of the Ricci scalar for this case

denom(RR) =
(
MSSMQQ − M2

SQ

)2
T (S, Q)M2(S, Q).

(7)

This equation shows that the phase transitions of the heat
capacity coincide with the singularities of Ruppeiner Ricci
scalar only when M2

SQ = 0 and nonzero MQQ . In addi-
tion, regarding type one phase transitions, one finds due to
existence of the T (S, Q) and the fact that T (S, Q) = MS ,
the roots of the heat capacity and some of the divergence
points of Ruppeiner Ricci scalar coincide. On the other hand,
there may be some divergence points of RR that do not coin-
cide with phase transition points. These extra phase transition
points are originated from the zeroes of (MSSMQQ −M2

SQ).

As we mentioned before, in the case of M2
SQ = 0, type two

phase transitions of the heat capacity (MSS = 0) are covered
by divergencies of the Ricci scalar of the Ruppeiner met-
ric. But in this case, we encounter with extra divergencies
related to the roots of MQQ = 0 which are not related to any
phase transition of the heat capacity. In addition, in the case

of nonzero M2
SQ , the possible real roots of MQQ = M2

SQ
MSS

lead to the same extra divergencies, which were observed in
Weinhold metric.

5 Quevedo metrics

In order to remove the failures of the Weinhold and Ruppeiner
metrics, Quevedo proposed a new thermodynamical metric.
The Quevedo metric can be written as [21,22]

ds2
Q = �

(
−MSSdS2 + MQQdQ2

)
, (8)

where the (conformal) function � has one of the following
forms

� =
{
SMS + QMQ, case I

SMS, case II
. (9)

In order to obtain the curvature singularity of the Quevedo
metric, we calculate the Ricci scalar. Although calculation
of the Ricci scalar is straightforward, analytically calculated
results are too large. So, for the sake of brevity we do not
write the long equations of the Ricci scalar; instead, we
can use numerical analysis and some plots to investigate the
Ricci scalar’s behavior. In addition, since we are looking for
the divergence points of the Ricci scalars, we can study the
denominator of the Ricci scalars with the following explicit
forms

denom(RQ1) = (SMS + QMQ)3M2
SSM

2
QQ, (10)

denom(RQ2) = S3M3
SM

2
SSM

2
QQ . (11)

Due to MSS being in the denominator of both Quevedo
Ricci scalars, the divergencies of the heat capacity and
Quevedo Ricci scalars coincide. Regarding type one phase
transition, although the roots of the heat capacity and diver-
gencies of the Quevedo Ricci scalar of case II coincide, for
case I this coincidence takes place only for vanishing MQ

(which is in general a nonzero function). It is worthwhile
to mention the fact that there exists an additional function
M2

QQ , and its roots provides extra singular points for both
cases of Quevedo Ricci scalars. Although MQ and MS are
independent from each other, generally, for a nonzero MQ in
the case I, it may be possible to set MS = − Q

S MQ for spe-
cial choices of free parameters. In this situation, one finds
another divergence point which may not coincide with any
phase transition points of the heat capacity.

6 New metric

In order to avoid extra singular points in TRS which do not
coincide with phase transitions of any type, and also to ensure
all divergencies of the TRS coincide with phase transition
points of the both types, we introduce the following new
thermodynamical metric

ds2
new = S

MS

M3
QQ

(−MSSdS2 + MQQdQ2). (12)

It is worthwhile to mention that the new thermodynamical
metric is defined the same as the Quevedo metric with differ-
ent conformal function. In new metric, we have considered
the total mass as thermodynamical potential with entropy and
electric charge as extensive parameters. In order to find the
geometrical behavior of new thermodynamical metric, we
calculate the Ricci scalar. It is a straightforward calculation
to show that the numerator and the denominator of TRS for
this new metric is, respectively,

num(R) = 6S2M2
SMQQM

2
SSMQQQQ

− 6SM2
SM

2
QQMSSMSSQQ + 2SM2

SQQM
2
SMQQMSS

+ 2

[
SMSMSSS− 1

2
MSS (SMSS−MS)

]
SM2

QQMSMSQQ

− 9S2M2
QQQM

2
SM

2
SS + 4

[
1

4
MSQMSS + MSMSSQ

]

× S2MQQMSMQQQ+[
S2M2

SMSSQ − S2MSQMSSMSMSSQ

× SMQQMS (SMSS − MS) MSS − 2
(
S2M3

SS + M2
SMSS

)

× MQQ + 2S2M2
SQM

2
SS

]
M2

QQ, (13)
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and

denom(R) = S3M3
SM

2
SS . (14)

Regarding a typical black hole with nonzero horizon
radius, r+ (and also nonzero entropy), one can find that, in
general, the finite mass is an analytic smooth function of its
variables. Smooth function is often used technically to mean
a function that has derivatives of all orders everywhere in its
domain. Therefore, one may take into account that M has
regular derivatives of all orders with respect to the exten-
sive parameters (To our knowledge various black holes in
gravitational theories have smooth functions of finite mass.
Nevertheless, we exclude the possible black holes with non-
smooth finite mass and its derivatives).

Taking into account the regular numerator of TRS in Eq.
(13) with the denominator of TRS, Eq. (14), we ensure that all
the phase transition points of the type one and two coincide
with divergencies of the mentioned TRS and there is no extra
term that may provide extra divergencies.

We should note that, in general, the derivatives of all orders
of M (such as MQQ , MSS , MSQ , MSSQ and so on) are inde-
pendent from each other. In addition, we should mention that
for the case of vanishing MS or MSS , the numerator of TRS
has nonzero value, but denominator of TRS vanishes. In the

case of MS = MSS = 0, although it is clear that both numer-
ator and denominator vanish, the denominator approaches
zero faster than the numerator. Therefore, one concludes that
when MS and/or MSS go to zero, TRS diverges.

In order to elaborate the efficiency of the newly proposed
metric and shortcomings of the previously proposed metrics,
we study two cases of the BI black holes in three and four
dimensions. We also discuss linear electrodynamics cases
and give a comment for neutral solutions.

7 Black hole solutions of Einstein gravity with a BI
source

The d-dimensional action of Einstein–BI gravity in the pres-
ence of cosmological constant is given by [33]

I = − 1

16π

∫
dd x

√−g [R − 2� + L(F)] , (15)

where R is the Ricci scalar and � refers to the (negative)
cosmological constant. Also, L(F) is the Lagrangian of BI
field as follows [34]

L(F) = 4β2

(

1 −
√

1 + F

2β2

)

, (16)

where β is called the nonlinearity parameter, the Maxwell
invariant F = FμνFμν in which Fμν = ∂μAν − ∂ν Aμ is the
electromagnetic field tensor and Aμ is the gauge potential.
The static BI black hole solutions can be obtained with the
following d-dimensional metric [33,35–39]

ds2 = − f (r)dt2 + dr2

f (r)
+ r2d�2, (17)

where d�2 represents the line element of r = constant and
t = constant hypersurfaces with volume Vd−2. For three
and four dimensional (3D and 4D) spacetimes, Vd−2 is equal
to 2π and 4π , respectively, and d�2 can be written with the
following explicit forms

d�2 =
{

dθ2, 3D
dθ2 + sin2 θdϕ2, 4D

. (18)

The consistent metric functions f (r) for two cases of three
and four dimensional black holes are given by [33,35–39]

f (r) =

⎧
⎪⎨

⎪⎩

−m − �r2 + 2r2β2 (1 − 
) + q2
[
1 − 2 ln

(
r(1+
)

2l

)]
3D

1 − m
r − �r2

3 + 2β2

3 r2(1 − 
) + 4q2

3r2 2F1

([ 1
2 , 1

4

]
,
[

5
4

]
, 1 − 
2

)
4D

, (19)

where 
 =
√

1 + q2

r2(d−2)β2 , 2F1 is hypergeometric function,

m and q are integration constants which are related to mass
parameter and the electric charge of the black holes, respec-
tively. The entropy and the electric charge of the mentioned
BI black hole solutions were obtained before [33,35–39]

S = Vd−2 rd−2+
4

, (20)

Q = Vd−2 q

4π
, (21)

where r+ denotes the outer (event) horizon of black holes
which is the largest real positive root of metric function,
f (r)|r=r+ = 0.

Now, we write the quasi-local mass (per unit volumeVd−2)
as a function of extensive parameters (S and Q) to discuss
phase transition. One finds [33,35–39]
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M = (d − 2)

16π

×

⎧
⎪⎨

⎪⎩

4
(
π2Q2−�S2

)+8S2β2(1−H)−8π2Q2 ln
(

S
πl (1+H)

)

π2 3D
3S(π−�S)+2S2β2(1−H)+4π2Q2F

3π2
√

S
π

4D
,

(22)

where F = F
([ 1

2 , 1
4

]
,
[

5
4

]
,−π2Q2

S2β2

)
andH =

√
1 + π2Q2

S2β2 .

Regarding Eq. (1), one finds that the heat capacity for three
and four dimensional BI black holes can be written as

CQ =

⎧
⎪⎨

⎪⎩

S2(1+H)
[
�β2S2(1+H)+π2Q2

(
�+2β2H)]

2β2S(�S2−π2Q2)(1+H)+π2Q2�(2+H)
3D

− 2β2H2S3
{[

�++4Q2π2(F+4Q2F′)
]H+2Q2π2+6β2S2

}

β2H3S2[�−+4Q2π2(3F+32Q2F′+16Q4F′′)]H+2Q4π4−6β2S2(β2S2+2Q2π2)
4D

, (23)

where �± = −3Sπ± 3S2(� − 2β2). It is notable that the
prime and double prime are the first and second derivatives
with respect to Q2, respectively.

Here, we regard Eq. (23) and also all obtained TRS in
various mentioned methods (Eqs. (2), (5), (8), (12)) to inves-
tigate their coincidences. To do so, we plot some figures for
three and four dimensional BI black hole solutions (see Figs.
1, 2, 3). We find that for 4-dimensional BI solutions the Rup-
peiner, the Weinhold, both methods of the Quevedo and also
our new introduced metric have divergencies where the heat
capacity diverges (see Fig. 1 and left panel of Fig. 3 for more
details). In other words, applying the mentioned methods for
these solutions leads to coincidence between divergencies of
TRS and phase transitions of the type two, and therefore,
we conclude that for these solutions (4-dimensional BI black
holes) extra terms in Quevedo metrics, have no contribution
to the divergencies of TRS.

Next, we take into account three dimensional solutions.
We find that for all methods of the Weinhold, the Ruppeiner
and both cases of the Quevedo metrics (Eqs. (2), (5), (8)),
there are extra divergencies in plotted figures of TRS which
come from the contributions of extra term (see Fig. 2). While
for the TRS of our new metric (Eq. (12)) all divergencies
coincide with the phase transitions of heat capacity (see Fig.
3 (right panel) for more details).

Another important property of new metric is the behavior
of TRS very close to the phase transition points. As Fig. 3
confirms, the sign of the TRS before and after the divergence
point for these two types of the phase transitions is differ-
ent. If the phase transition is related to the vanishing heat
capacity (type one), we see a change of sign for TRS before
and after of the corresponding singular point. While for the
divergence point of the heat capacity (type two), TRS has the
same sign for the left and right sides of this point. Therefore,
this characteristic behavior enables one to distinguish these
two types of phase transitions from each other.

7.1 Linear case: Maxwell solutions

In order to study the effect of electric charge and remove
the influence of nonlinearity parameter, we investigate the
Maxwell solutions. We show that these linear solutions elab-
orate the efficiency of our new metric. In order to obtain
Maxwell solutions, one can use series expansion of BI solu-
tions for large values of nonlinearity parameter β. Regarding
the mentioned results of BI solutions with straightforward
series expansion, one can obtain [40–44]

f (r) =
{−m − �r2 − 2q2 ln

( r
l

)
3D

1 − m
r − �r2

3 + q2

r2 4D
. (24)

Since the entropy and electric charge of these black holes
do not depend on the nonlinearity parameter, one can obtain
the same results. Therefore, the finite mass (per unit volume
Vd−2) of the Einstein–Maxwell solutions can be written as a
function of S and Q with the following explicit form

M = (d − 2)

16π
×

⎧
⎪⎪⎨

⎪⎪⎩

2π2Q2 ln
(

πl
2S

)
−4�S2

π2 3D

3π S+3π2Q2−�S2

3π2
√

S
π

4D
. (25)

Using Eqs. (1) and (25), one can find the heat capacity
may be calculated as

CQ=

⎧
⎪⎨

⎪⎩

−
(
π2Q2+�S2

)
S

π2Q2−�S2 3D

− 2S
(
π S−�S2−π2Q2

)

�S2+π S−3π2Q2 4D
. (26)

Using Eq. (25), we are in a position to study the behavior
of TRS for different methods that were mentioned in this
paper. We can use Eqs. (2), (5), (8) and (12) with the heat
capacity relations of Einstein–Maxwell solutions, Eq. (26),
to plot various figures for studying the geometrical behavior
of different thermodynamical spacetime (see Figs. 4, 5, 6, 7).

Regarding Figs. 4, 5, 6 and 7, we find that for 3-
dimensional Einstein–Maxwell solutions (with considered
values for different parameters), there is only one root for the
heat capacity. In other words, in this case, we see one phase
transition of type one and there is no divergency for the heat
capacity. Whereas in 4-dimensional solutions, there are one
phase transition of type one and two phase transitions of type
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Fig. 1 BI case: R andCQ versus r+ for l = 1 , � = −1, β = 1, d = 4
and q = 0.1. TRS (continuous line) and heat capacity (bold line) for the
Weinhold metric (left-up panel), the Ruppeiner metric (right-up panel),

the Quevedo metric for case I (left-down panel) and the Quevedo metric
for case II (right-down panel)

two. It means that there are three phase transition points in
four dimensional Einstein–Maxwell black hole solutions.

Regarding Weinhold approach, one finds both mismatch-
ing and extra divergencies in three and four dimensions (see
Figs. 4, 6). In other words, in 4-dimensional black holes (Fig.
4), the root and one of the divergencies of the heat capacity
are not compatible with any divergency of the Weinhold’s
TRS. On the other hand, in 3-dimensional solutions (Fig.
6), this approach completely fails to provide an effective
machinery for studying the phase transitions. One divergency
is observed which does not coincide with any phase transi-
tion point and for the root of heat capacity TRS is a smooth
function.

As for the Ruppeiner metric, in 4-dimensional Einstein–
Maxwell solutions (Fig. 4), one of the divergencies of the
heat capacity is not matched with any divergency of the Rup-
peiner’s TRS. For 3-dimensional case, there are two diver-
gencies for TRS (Fig. 6). One of them coincides with the root

of heat capacity whereas the other one is not related to any
phase transition point.

Now we investigate both types of Quevedo metrics and
their behaviors. Regarding case I in 4-dimensional solutions
(Fig. 5 up panels), there is no divergency for TRS in the
place of heat capacity vanishing point, whereas divergencies
of the heat capacity are matched with divergencies of TRS.
For case II (Fig. 5 down panels), we obtain effective results.
In other words, all divergence points and vanishing point
of the heat capacity are matched with divergencies of the
Quevedo’s TRS of case II. But for charged BTZ black holes,
regardless of case I or II, an extra divergency is seen which is
not related to any phase transition point of the heat capacity
(Fig. 6 down panels).

Finally, for both 3 and 4 dimensional Einstein–Maxwell
black holes (see Fig. 7), new metric is completely success-
ful for describing phase transition points of the heat capac-
ity in context of geometrothermodynamics. In other words,
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Fig. 2 BI case: R andCQ versus r+ for l = 1 , � = −1, β = 1, d = 3
and q = 0.1. TRS (continuous line) and heat capacity (bold line) for the
Weinhold metric (left-up panel), the Ruppeiner metric (right-up panel),

the Quevedo metric for case I (left-down panel) and the Quevedo metric
for case II (right-down panel)

Fig. 3 BI case: R and CQ versus r+ for l = 1 , � = −1, β = 1, q = 0.1. TRS (continuous line) and heat capacity (bold line) for the new metric
with d = 4 (left panel) and d = 3 (right panel)
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Fig. 4 Maxwell case: R and CQ versus r+ for l = 1, � = −1, d = 4 and q = 0.1. TRS (continuous line) and heat capacity (bold line) for the
Weinhold metric (up panels) and the Ruppeiner metric (down panels)

regardless of the dimensions, the phase transition points of
the heat capacity and divergencies of the Ricci scalar of the
constructed spacetime, coincide and this approach is free of
extra divergencies for its TRS.

We should note that this new metric enjoys the character-
istic behavior which was mentioned in Einstein-BI solutions
and one can distinguish two types of phase transitions from
each other.

7.2 Neutral (uncharged) solutions

In this section, we study the behavior of the system in case
of uncharged solutions (q = 0). Considering the uncharged
solutions with an extensive parameter (entropy), one can find
that the TRS of mentioned methods of geometrothermody-
namics vanishes. Therefore, it seems that it is not possible to
use these methods for studying the behavior of phase tran-
sitions. In other words, the geometrothermodynamics meth-
ods are valid for systems containing two or more extensive
parameters.

8 Generalization

Now, we are in a position to generalize the new defined
metric to the case of more than two extensive parameters.
Regarding Weinhold, Ruppeiner and Quevedo approaches,
one finds that supplementing additional extensive parame-
ters increases the complexity of the thermodynamical Ricci
scalars and also their denominators. The supplemental exten-
sive parameters lead to extra terms which may contribute to
the additional number of divergencies of the system under
study. Considering the total mass of the system as a function
of arbitrary number of extensive parameters χi ’s, one finds
that the denominator of TRS for Weinhold, Ruppeiner and
Quevedo approaches will be more complicated. Numerical
calculations show that denominator of TRS for the mentioned
geometrical approaches contain extra terms which may con-
tribute to number of the TRS divergencies. For more clarifi-
cations, in addition to S and Q, we consider angular momen-
tum, J , as extensive parameter. Regarding the total mass of
the black holes as a function of S, Q and J , we calculate the
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Fig. 5 Maxwell case: R and CQ versus r+ for l = 1, � = −1, d = 4 and q = 0.1. TRS (continuous line) and heat capacity (bold line) for the
Quevedo metric for case I (up panels) and the Quevedo metric for case II (down panels)

denominator of TRS for the Weinhold, the Ruppeiner and the
Quevedo metrics

denom(R)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

M3ξ Weinhold

M3T 3ξ Ruppeiner

M2
SSM

2
QQM

2
J J (SMS + QMQ + JMJ )

3 Quevedo Case I

S3M2
SSM

2
QQM

2
J J M

3
S Quevedo Case I I

,

(27)

where

ξ =
[
MSS

(
M2

QJ − MQQMJ J

)
+ M2

SQMJ J + M2
SJ MQQ

−2MSQMSJ MQJ

]2

.

Considering Eq. (27), one finds that although vanish-
ing points of heat capacity coincide with related divergence

points of TRS in the Ruppeiner case (due to the existence
of T ), for the Weinhold one the coincidences are not gener-
ally observed. Regarding the divergence points of the heat
capacity, which are related to vanishing MSS , and in order to
match both divergence points of heat capacity and those of the
Weinhold and the Ruppeiner cases, one should set last three
terms to zero and the coefficient of MSS should be a nonzero
finite expression (M2

QJ − MQQMJ J �= 0). Since these fine
tuning conditions are not hold in general, we encounter mis-
match between divergence points and/or extra divergencies
in TRS.

As for Quevedo metrics, due to existence of M2
SS , diver-

gencies of both heat capacity and Ricci scalar match with
each other. As for the phase transition type one and in order
to have coincidence between roots of the heat capacity and
divergence points of the TRS, for the case I I Quevedo met-
ric, existence of M3

S is sufficient to ensure the mentioned
matching whereas we have the following restriction for the
case I
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Fig. 6 Maxwell case: R and CQ versus r+ for l = 1, � = −1, d = 3
and q = 0.1. TRS (continuous line) and heat capacity (bold line) for the
Weinhold metric (left-up panel), the Ruppeiner metric (right-up panel),

the Quevedo metric for case I (left-down panel) and the Quevedo metric
for case II (right-down panel)

Fig. 7 Maxwell case: R and CQ versus r+ for l = 1, � = −1, q = 0.1. TRS (continuous line) and heat capacity (bold line) for the new metric
with d = 4 (left and middle panels for different scales) and d = 3 (right panel)
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SMS + QM + JMJ = MS . (28)

In general Eq. (28) is not hold for arbitrary metric func-
tion parameters and therefore, there will be extra divergencies
for the Ricci scalar which are not matched with any phase
transition point. Regarding both of Quevedo metrics, M2

QQ

and M2
J J , may contribute to additional divergencies of the

Ricci scalar which was seen in case of 3 -dimensional solu-
tions.

In order to solve these problems we generalize the new
introduced thermodynamical metric to the case of n extensive
parameters (n ≥ 2) with following form

dsNew = SMS
(

�n
i=2

∂2M
∂χ2

i

)3

(

−MSSdS2 +
n∑

i=2

(
∂2M

∂χ2
i

)

dχ2
i

)

,

(29)

where χi �= S. In order to obtain the curvature singularity
of the new generalized metric, we should calculate the Ricci
scalar. Since analytical calculations are too large, for the sake
of brevity, we study the denominator of the Ricci scalar. Cal-
culations show that the too long expression of the numerator
of TRS (generalization of Eq. (13)) is divergence free (To our
knowledge various black holes in gravitational theories have
smooth functions of finite mass. Nevertheless, we exclude
the possible black holes with non-smooth finite mass and its
derivatives), while its denominator is

denom(R) = S3M3
SM

2
SS . (30)

Equation (30) confirms that all singular points of TRS coin-
cide with both types of heat capacity phase transition points
without any extra divergency.

9 Conclusions

Motivated by a surge of study of geometrical concept of black
hole thermodynamics, we introduced a new metric regarding
the matter. Considering the various approaches toward geo-
metrical study of black hole thermodynamics, we first dis-
cussed the shortcomings of the mentioned methods. It was
believed that the divergencies of TRS indicate the thermo-
dynamical phase transitions, and therefore we focused on
the roots of denominator of TRS (since we regarded smooth
function of mass and its derivatives, the numerator of TRS is a
regular function and therefore, divergencies of TRS is equiva-
lent to the roots of denominator of TRS). Taking into account
the Weinhold, Ruppeiner and different types of Quevedo
metrics, we showed that divergencies of TRS may not coin-
cide with roots and divergencies of the corresponding heat
capacity.

In order to avoid this problem, we introduced a new metric.
We showed that the denominator of its TRS contains terms
which are only the product of numerator and denominator of
the corresponding heat capacity. In other words, all divergen-
cies of TRS in this approach coincide with phase transition
points of the heat capacity. Moreover, for more clarifications,
we regarded two known examples to show the shortcomings
of the other previous metrics and the efficiency of the new
devised metric.

Next, we generalized these metrics to contain more than
two extensive parameters. As it was seen, in the cases of
Weinhold, Ruppeiner and different types of Quevedo met-
rics, (denominator of) TRS contained complicated expres-
sions and extra terms that may increase the number of TRS
divergencies and shift the place of these divergencies in a
way that they may not coincide with phase transition points
arisen from the heat capacity. We showed that the divergen-
cies of TRS related to the generalized new introduced metric
are compatible to the phase transition points of heat capacity.

Another important property of the new metric is the dif-
ferent behavior of TRS before and after its divergence points.
It was seen that the behavior of TRS for divergence points
related to two types of the phase transition is different. There-
fore, considering this approach also enable us to distinguish
these two types of phase transition from one another.

Recently, it was seen and proposed that different constants
(such as cosmological constant, BI nonlinearity parameter,
Gauss-Bonnet parameter, Newton constant and etc.) may
vary and have contribution to thermodynamical structure of
the system [45–54]. In other words, in case of black holes, the
total mass of the black hole is a function of these parameters
as extensive parameters. It will be interesting to reconsider
these constants as thermodynamical variables and modify
TRS of the mentioned geometrothermodynamical methods.
Although this modification changes TRS of various meth-
ods, it does not cause inconsistent results for new generalized
metric.

The approach that we introduced in this paper enable one
to map the divergence points of its TRS with phase transition
points without any concern regarding contribution of other
terms and extra divergence points. This method may also be
employed to study phase transition of other non gravitating
systems.
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