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Abstract Observations indicate that most of the univer-
sal matter is invisible and the gravitational constant G(t)
maybe depends on time. A theory of the variational G (VG)
is explored in this paper, naturally producing the useful
dark components in the universe. We utilize the following
observational data: lookback time data, model-independent
gamma ray bursts, growth function of matter linear per-
turbations, type Ia supernovae data with systematic errors,
CMB, and BAO, to restrict the unified model (UM) of
dark components in VG theory. Using the best-fit values
of the parameters with the covariance matrix, constraints

on the variation of G are
(

G
G0

)
z=3.5

� 1.0015+0.0071
−0.0075 and(

Ġ
G

)
today

� −0.7252+2.3645
−2.3645 × 10−13 year−1, with small

uncertainties around the constants. The limit on the equa-
tion of state of dark matter is w0dm = 0.0072+0.0170

−0.0170,
assuming w0de = −1 in the unified model, and the dark
energy is w0de = −0.9986+0.0011

−0.0011, assuming w0dm = 0
a priori. The restrictions on the UM parameters are Bs =
0.7442+0.0137+0.0262

−0.0132−0.0292 and α = 0.0002+0.0206+0.0441
−0.0209−0.0422 with

1σ and 2σ confidence level. In addition, the effects of
a cosmic string fluid on the unified model in VG theory
are investigated. In this case it is found that the �CDM
(�s = 0, β = 0, and α = 0) is included in this VG-
UM model at 1σ confidence level, and larger errors are
given: �s = −0.0106+0.0312+0.0582

−0.0305−0.0509 (dimensionless energy

density of cosmic string),
(

G
G0

)
z=3.5

� 1.0008+0.0620
−0.0584, and(

Ġ
G

)
today

� −0.3496+26.3135
−26.3135 × 10−13 year−1.

a e-mail: lvjianbo819@163.com

1 Introduction

Gravity theories are usually studied on the assumption that
the Newton gravity constant G is constant. But some obser-
vations hint that G maybe depends on time [1], such as obser-
vations from white dwarf stars [2,3], pulsars [4], supernovae
[5] and neutron stars [6]. In addition, cosmic observations
predict that about 95 % of the universal matter is invisible,
including dark matter (DM) and dark energy (DE). The uni-
fied models of two unknown dark sectors (DM and DE) have
been studied in several theories, e.g. in the standard cosmol-
ogy [7–9], in the Hořava–Lifshitz gravity [10], in the RS [11]
and the KK higher-dimension gravity [12]. In this paper, we
study the unified model of dark components in the theory of
a varying gravitational constant (VG). The attractive point
of this model is that the variation of G could result in the
invisible components in universe, by relating the Lagrangian
quantity of the generalized Born–Infeld theory to the VG
theory. One source of DM and DE is introduced. In addi-
tion, cosmic strings have been studied in some fields, such
as in emergent universe [13,14], in modified gravity [15], in
inflation theory [16], and so on [17–20]. Here we discuss the
effect of a cosmic string fluid on the cosmic parameters in
VG theory. Using the Markov Chain Monte Carlo (MCMC)
method [21], the cosmic constraints on a unified model of DM
and DE with (or without) a cosmic string fluid are performed
in the framework of a time-varying gravitational constant.
The used cosmic data include the lookback time (LT) data
[22,23], the model-independent gamma ray bursts (GRBs)
data [24], the growth function (GF) of matter linear pertur-
bations [25–32], the type Ia supernovae (SNIa) data with
systematic errors [33], the cosmic microwave background
(CMB) [34], and the baryon acoustic oscillation (BAO) data
including the radial BAO scale measurement [35] and the
peak-positions measurement [36–38].
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2 A time-varying gravitational constant theory with
unified dark sectors and a cosmic string fluid

We adopt the Lagrangian quantity of system

L = √
g

(
R

G(t)
+ 16πLu

)
(1)

with a parameterized time-varying gravitational constant
G = G0a(t)−β . t is the cosmic time, a = (1 + z)−1 is
the cosmic scale factor, and z denotes the cosmic redshift.
g is the determinant of metric, R is the Ricci scalar, and
Lu = Lb + Lr + Ld + Ls corresponds to the Lagrangian
density of universal matter including the visible ingredients:
baryon Lb and radiation Lr and the invisible ingredients:
dark sectors Ld and cosmic string (CS) fluid Ls . Utilizing
the variational principle, the gravitational field equation can
be derived [39],

Rμν − 1

2
Rgμν = 8πGTμν

+G
(
∇μ∂νG

−1 − gμν∇σ ∂σG−1
)

, (2)

in which Rμν is the Ricci tensor, Tμν is the energy-
momentum tensor of universal matter that comprises the
pressureless baryon (wb = pb

ρb
= 0), the positive-pressure

photon (wr = pr
ρr

= 1
3 ), the CS fluid (ws = ps

ρs
=

− 1
3 ), and the unknown dark components (wd = pd

ρd
). w

is for the equation of state (EoS), p is the pressure, and ρ

denotes the energy density, respectively. Taking the covari-
ant divergence for Eq. (2) and utilizing the Bianchi identity
result in

3H

(
Ġ

G

)2

+ 3
ä

a

Ġ

G
+ 8π [Ġρ + Gρ̇ + 3HG(ρ + p)] = 0

(3)

or its equivalent form

3Hβ[(β−1)H2− Ḣ ] + 8πG [ρ̇ + 3H(ρ + p)−βHρ] = 0.

In the Friedmann–Robertson–Walker geometry, the evolu-
tion equations of the universe in VG theory are

H2 = 8πG0

3
a−βρ − βH2, (4)

2
ä

a
+ H2 = −8πG0a

−β p − βH2 − β2H2 − β
ä

a
. (5)

From Eq. (4), we can see that a CS fluid can be equivalent to
a curvature term in constant-G theory, while this fluid could

not be equivalent to the curvature term in the VG theory due
to the term a−β multiplying the density. Combing Eqs. (3),
(4), and (5), we have

ρ̇ + 3H

(
ρ + 2 + 2β

2 + β
p

)
= β − β2

2 + β
Hρ. (6)

A dot represents the derivative with respect to cosmic time
t . Integrating Eq. (6) one obtains the energy density of

baryon ρb ∝ a
−β2−2β−6

2+β , the energy density of radiation

ρr ∝ a
−β2−4β−8

2+β , and the energy density of the cosmic string

ρs ∝ a
−β2−4

2+β . Relative to the constant-G theory, the evolu-
tion equations of the energy densities are obviously modified
in VG theory as regards the existence of the VG parameter
β.

We concentrate on the Lagrangian density of the dark

components in the form Ld = −A
1

1+α

[
1 − (V

′
(ϕ))

1+α
2α

] α
1+α

from the generalized Born–Infeld theory [40], in which V (ϕ)

is the potential. Relating this scalar field ϕ with the time-
varying gravitational constant by ϕ(t) = G(t)−1, it is then
found that the dark ingredients can be induced by the vari-
ation of G. The energy density of the dark fluid in the VG
frame complies with

ρd = ρ0d

[
Bs + (1 − Bs)a

(−3+ β−β2

2+β
)(1+α)

] 1
1+α

, (7)

here the parameter β reflects the variation of G; α and Bs =
6+6β

β2+2β+6
A

ρ1+α
0VG−GCG

are model parameters. Equation (7) shows

that the behavior of ρd is like cold DM at early time1 (for a �
1, ρd ≈ ρ0d(1 − Bs)

1
1+α a−3+ β−β2

2+β ), and like cosmological-

constant type DE at late time (for a 	 1, ρd ≈ ρ0d B
1

1+α
s ).

Then Eq. (7) introduces a unified model (UM) of dark sectors
in VG theory (called VG-UM). The Hubble parameter H in
the VG-UM model reads

H =
√

H2
0

1 + β

{
�0d [Bsa−β(1+α) + (1 − Bs)a

−(3+ 2β2+β
2+β

)(1+α)] 1
1+α + �ba

−2β2−4β−6
2+β + �r a

−2β2−6β−8
2+β + �sa

−2β2−2β−4
2+β

}
, (8)

with Hubble constant H0 and dimensionless energy densities
�b = 8πG0ρ0b

3H2
0

, �r = 8πG0ρ0r

3H2
0

, �s = 8πG0ρ0s

3H2
0

, and �0d +
�b + �r + �s = 1 + β. For β = 0, the above equations are
reduced to the standard forms in the constant-G theory.

1 β describes the effect on the energy density of dark matter from a
variation of G.
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Table 1 The 38 data points of galaxy age [22,23]. The first six data are from Ref. [22]

zi 0.10 0.25 0.60 0.70 0.80 1.27 0.1171 0.1174 0.222 0.2311 0.3559 0.452 0.575 0.644 0.676 0.833 0.836 0.922 1.179

ti 10.65 8.89 4.53 3.93 3.41 1.60 10.2 10.0 9.0 9.0 7.6 6.8 7.0 6.0 6.0 6.0 5.8 5.5 4.6

zi 1.222 1.224 1.225 1.226 1.34 1.38 1.383 1.396 1.43 1.45 1.488 1.49 1.493 1.51 1.55 1.576 1.642 1.725 1.845

ti 3.5 4.3 3.5 3.5 3.4 3.5 3.5 3.6 3.2 3.2 3.0 3.6 3.2 2.8 3.0 2.5 3.0 2.6 2.5

3 Data fitting

3.1 Lookback time

References [41,42] define the LT as the difference between
the current age t0 of universe at z = 0 and the age tz of a
light ray emitted at z,

tL(z) =
∫ z

0

dz
′

(1 + z′
)H(z′

)
. (9)

Then the age t (zi ) of an object at redshift zi can be expressed
by the difference between the age of universe at zi and the
age of universe at zF (when the object was born) [22],

t (zi ) =
∫ ∞

zi

dz
′

(1 + z′
)H(z′

)
−

∫ ∞

zF

dz
′

(1 + z′
)H(z′

)

= tL(zF ) − tL(zi ). (10)

For an object at redshift zi , the observed LT is subject to

tobs
L = tL(zF ) − tL(zi ) = [tobs

0 − t (zi )] − [tobs
0 − tL(zF )]

= tobs
0 − t (zi ) − d f. (11)

One defines

χ2
age =

∑
i

[
tL(zi ) − tobs

L (zi , d f )
]2

σ 2
T

+
[
t0 − tobs

0

]2

σ 2
tobs
0

, (12)

with σ 2
tobs
0

+ σ 2
i = σ 2

T . σtobs
0

is the uncertainty of the total

universe age, and σi is the uncertainty of the LT of galaxy i .
Marginalizing the ‘nuisance’ parameter df results in [43]

χ2
LT (ps) = −2 ln

∫ ∞

0
d(d f ) exp(−χ2

age/2)

= A − B2

C
+ [t0 − tobs

0 ]2

σ 2
tobs
0

− 2 ln

[√
π

2C
erfc

(
B√
2C

)]
, (13)

where A = ∑
i

2

σ 2
T
, B = ∑

i


σ 2
T
,C = ∑

i
1

σ 2
T

and  =
tL(zi ) − [tobs

0 − t (zi )], respectively. ps denotes the theoreti-
cal model parameters. erfc(x) = 1−erf(x) is the complemen-
tary error function of x . The observational universal age at

present, tobs
0 = 13.75±0.13 Gyr [44], is used, and the obser-

vational data on the galaxies age are listed in Table 1.

3.2 Gamma ray bursts

In GRBs observation, the famous Amati’s correlation is
log Eiso

erg = a + b log
Ep,i
300 keV [45,46], where Eiso = 4πd2

L
Ssolo/(1 + z) and Ep,i = Ep,obs(1 + z) are the isotropic
energy and the cosmological rest-frame spectral peak energy,
respectively. dL is the luminosity distance and Sbolo is the
bolometric fluence of GRBs. Reference [47] introduced a
model-independent quantity for a distance measurement,

r p(zi ) = rp(z)

rp(z0)
, rp(z) = (1 + z)1/2

z

H0

c
r(z),

r(z) = dL(z)

1 + z
(14)

with z0 being the lowest GRBs redshift. For the GRBs con-
straint, χ2

GRBs has the form

χ2
GRBs(ps) = [r p(zi )] · (Cov−1

GRBs)i j · [r p(zi )], (15)

in which r p(zi ) = rdata
p (zi ) − r p(zi ), and (Cov−1

GRBs)i j
is the covariance matrix. Using 109 GRBs data, Ref. [24]
obtained five model-independent datapoints listed in Table
2, where σ(r p(zi ))+ and σ(r p(zi ))− are the 1σ errors. The
{r p(zi )} correlation matrix is [24]

(CovGRB) =

⎛
⎜⎜⎜⎜⎝

1.0000 0.7780 0.8095 0.6777 0.4661
0.7780 1.0000 0.7260 0.6712 0.3880
0.8095 0.7260 1.0000 0.6046 0.5032
0.6777 0.6712 0.6046 1.0000 0.1557
0.4661 0.3880 0.5032 0.1557 1.0000

⎞
⎟⎟⎟⎟⎠

,

(16)

Table 2 Distances calculated by using the 109 GRBs data via Amati’s
correlation [24]

Number z rdatap (z) σ (r p(zi ))+ σ(r p(zi ))−

0 0.0331 1.0000 – –

1 1.0000 0.9320 0.1711 0.1720

2 2.0700 0.9180 0.1720 0.1718

3 3.0000 0.7795 0.1630 0.1629

4 4.0480 0.7652 0.1936 0.1939

5 8.1000 1.1475 0.4297 0.4389
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Table 3 The observational data of the growth function fobs

zi 0.15 0.22 0.32 0.35 0.41 0.55 0.60 0.77 0.78 1.4

fobs 0.51 ± 0.11 0.60 ± 0.10 0.654 ± 0.18 0.70 ± 0.18 0.50 ± 0.07 0.75 ± 0.18 0.73 ± 0.07 0.91 ± 0.36 0.70 ± 0.08 0.90 ± 0.24

Refs. [25,26] [27] [28] [29] [27] [30] [27] [31] [27] [32]

with the covariance matrix

(CovGRB)i j = σ(r p(zi ))σ (r p(z j ))(CovGRB)i j , (17)

where σ(r p(zi )) = σ(r p(zi ))+, if r p(z) ≥ r p(z)data;
σ(r p(zi )) = σ(r p(zi ))−, if r p(z) < r p(z)data.

3.3 Growth function of matter linear perturbations

The χ2
GF can be constructed by the growth function of matter

linear perturbations f

χ2
GF(ps) =

∑
i

[ fth(ps, zi ) − fobs(zi )]2

σ 2(zi )
, (18)

where the used the observational values of fobs listed in Table

3. f is defined via f (a) = aD
′
(a)

D(a)
, with D =

δρ
ρ

(a)

δρ
ρ

(a=1)
. A

prime denotes the derivative with respect to a. So in theory, f
can be obtained by solving the following differential equation
in VG theory:

D
′′
(a) +

[
H

′
(a)

H(a)
+ 1

a
+ 4 + 2β + 2β2

a(2 + β)

]
D

′
(a)

− 6 + 2β + β2

(2 + β)2

H2
0 �0m

H(a)2a2 a
−6−2β−β2

2+β D(a) = 0. (19)

For β = 0, the above equation reduces to the constant-G
theory. The derivation of the evolution equation for D(a) in
VG theory is shown in the appendix. Compared with the most
popular �CDM model, the effective current matter density
can be written �0m = �b+(1+β −�s −�b−�r )(1− Bs)

for VG-UM. Obviously, for β = 0 it is consistent with the
form of �0m in UM of constant-G theory [48–50].

3.4 Type Ia supernovae

We use the Union2 dataset of SNIa published in Ref. [33]. In
VG theory, the theoretical distance modulus μth(z) is writ-
ten as μth(z) = 5 log10[DL(z)] + 15

4 log10
G
G0

+ μ0, where

DL(z) = H0
c (1 + z)2DA(z) and μ0 = 5log10(

H−1
0

Mpc ) + 25 =
42.38 − 5log10h. h is a re-normalized quantity defined
by H0 = 100h km s−1 Mpc−1. DA(z) = c

(1+z)
√|�k |

sinn[√|�k |
∫ z

0
dz′
H(z′) ] is the proper angular diameter dis-

tance; here sinn(
√|�k |x) denotes sin(

√|�k |x), √|�k |x and
sinh(

√|�k |x) for �k < 0, �k = 0 and �k > 0, respectively.

A cosmic constraint from the SNIa observations can be found
by a calculation [51–60]:

χ2
SNIa(ps ) =

∑
SNIa

{μth(ps , zi ) − μobs(zi )}2

σ 2
μi

=
∑
SNIa

{5 log10[DL (ps , z)]+ 15
4 log10

G
G0

−mobs(zi )+M
′ }2

σ 2
i

,

(20)

where μobs(zi ) = mobs(zi ) − M is the observed distance
moduli, with the absolute magnitude M . The nuisance param-
eter M

′ = μ0 + M can be marginalized over analytically,
χ̄2

SNIa(ps) = −2 ln
∫ +∞
−∞ exp

[− 1
2χ2

SNIa(ps, M
′)
]
dM ′,

resulting in [61–70]

χ2
SNIa(ps) = A − (B2/C), (21)

where

A =
∑
SNIa

{
5 log10[DL (ps , zi )] + 15

4
log10

G

G0
− mobs(z j )

}
·

C−1
i j ·

{
5 log10[DL (ps , z j )] + 15

4
log10

G

G0
− mobs(z j )

}

B =
∑
SNIa

C−1
i j ·

{
5 log10[DL (ps , z j )] + 15

4
log10

G

G0
− mobs(z j )

}

C =
∑
SNIa

C−1
i i . (22)

The inverse of the covariance matrix C−1
i j with systematic

errors can be found in Refs. [33,71].

3.5 Cosmic microwave background

χ2
CMB has the form [72,73]

χ2
CMB(ps) = �di [Cov−1(di (ps), d j (ps))][�di ]t , (23)

with �di (ps) = d theory
i (ps)− dobs

i . Nine-year WMAP gives
dobs
i = [lA(z∗) = 302.04, R(z∗) = 1.7246, z∗ = 1090.88],

and the corresponding inverse covariance matrix [34]

Cov−1 =
⎛
⎝

3.182 18.253 − 1.429
18.253 11887.879 − 193.808
−1.429 − 193.808 4.556

⎞
⎠ . (24)

z∗ = 1048
[
1 + 0.00124(�bh2)−0.738

] [
1 + g1(�0mh2)g2

]
is the redshift at the decoupling epoch of the photons
with g1 = 0.0783(�bh2)−0.238

(
1 + 39.5(�bh2)0.763

)−1
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and g2 = 0.560
(
1 + 21.1(�bh2)1.81

)−1
, lA(ps; z∗) =

(1 + z∗)πDA(ps ; z∗)
rs (z∗) is the acoustic scale, and R(ps; z∗) =√

�0mH2
0 (1+ z∗)DA(ps; z∗)/c is the CMB shift parameter.

3.6 Baryon acoustic oscillation

The radial (line-of-sight) BAO scale measurement from
galaxy power spectra can be described by

zBAO(z) = H(z)rs(zd)

c
. (25)

Two observational values are zBAO(z = 0.24) = 0.0407±
0.0011 and zBAO(z = 0.43) = 0.0442 ± 0.0015, respec-
tively [35]. Here rs(z) is the comoving sound horizon size
rs = c

∫ t
0

csdt
a . cs is the sound speed of the photon–

baryon fluid, c−2
s = 3 + 4

3 ×
(

�b
�γ )

)
a. zd denotes the

drag epoch, zd = 1291(�0mh2)−0.419

1+0.659(�0mh2)0.828

[
1 + b1(�bh2)b2

]
with

b1 = 0.313(�0mh2)−0.419
[
1 + 0.607(�0mh2)0.674

]
and

b2 = 0.238(�0mh2)0.223.
The measurement of BAO peak positions can be per-

formed by the WiggleZ Dark Energy Survey [36], the
Two Degree Field Galaxy Redshift Survey [37], and the
Sloan Digitial Sky Survey [38]. Introducing DV (z) =[
(1 + z)2D2

A(z) cz
H(z;ps )

]1/3
, one can exhibit the observa-

tional data from BAO peak positions thus:

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rs (zd )
DV (0.106)

− 0.336

rs (zd )
DV (0.2)

− 0.1905

rs (zd )
DV (0.35)

− 0.1097

rs (zd )
DV (0.44)

− 0.0916

rs (zd )
DV (0.6)

− 0.0726

rs (zd )
DV (0.73)

− 0.0592

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

V−1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4444 0 0 0 0 0
0 30318 −17312 0 0 0
0 −17312 87046 0 0 0
0 0 0 23857 −22747 10586
0 0 0 −22747 128729 −59907
0 0 0 10586 −59907 125536

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(26)

where V−1 is the inverse covariance matrix shown in Ref.
[74].

The χ2
BAO can be constructed:

χ2
BAO(ps) = [zBAO(z = 0.24) − 0.0407]2

0.00112

+ [zBAO(z = 0.43) − 0.0442]2

0.00152 + XtV−1X.

(27)

Xt denotes the transpose of X .

4 Cosmic constraints on unified model of dark sectors
with (or without) a CS fluid in VG theory

Multiplying the separate likelihoods Li ∝ e−χ2
i /2, one can

express the joint analysis of χ2

χ2 = χ2
LT + χ2

GRBs + χ2
GF + χ2

SNIa + χ2
CMB + χ2

BAO. (28)

4.1 The case with a CS fluid

In order to obtain a stringent constraint on VG theory, we uti-
lize cosmic data different from Ref. [39] to calculate the joint
likelihood. Concretely, the LT data, the GRBs data, the GF
data, the SNIa data with systematic error, and the BAO data
from radial measurement are not used in Ref. [39]. After cal-
culation, the 1-dimension distribution and the 2-dimension
contours of the parameters for the VG-UM model with a
CS fluid are illustrated in Fig. 1. From Fig. 1 and Table 4,
we can see that the restriction on dimensionless energy den-
sity of CS is �s = −0.0106+0.0312+0.0582

−0.0305−0.0509 in the varying-G
theory containing unified dark sectors. In the constant-G the-
ory, one knows that a CS fluid with ws = −1/3 is usually
equivalent to a curvature term. But in the VG theory this
equivalence is lost due to the term a−β multiplying the den-
sity, as shown in Eq. (4). Comparing the VG theory with the
constant-G theory, it can be seen that the uncertainty of �s

in VG theory is larger than some results on �k in constant-
G theory. For example, using the same data to constrain
other models we have �k = −0.0002+0.0024+0.0052

−0.0024−0.0048 (with

model parameter �0de = 0.7098+0.0144+0.0265
−0.0140−0.0294) in �CDM

model,�k = −0.0001+0.0025+0.0052
−0.0025−0.0050 (with model parameters

Bs = 0.7665+0.0101+0.0194
−0.0099−0.0205 and α = 0.0209+0.0186+0.0401

−0.0189−0.0373)
in constant-G UM. Taking the �CDM model as a reference,
we can see that the influence on the fitting value of �k is
small from the added parameter Bs and α as seen in the
constant-G UM model, while the influence on the value of
�s is large by the added VG parameter β as indicated in the
VG-UM model. From Table 4, one reads off the VG param-
eter β = −0.0128+0.0394+0.0756

−0.0385−0.0718. The other parameters are

Bs = 0.7457+0.0147+0.0269
−0.0145−0.0299 and α = 0.0216+0.0757+0.1504

−0.0781−0.1466.
We then find at 1σ confidence level, the flat �CDM model
(�s = 0, β = 0 and α = 0) is included in the VG-UM model
with a CS fluid. This result in VG theory is the same as the
popular feature that the complicated cosmological model is
usually degenerate with the �CDM model.

4.2 The case without a CS fluid

For the case without a CS fluid, a stringent constraint on
VG parameter is β = 0.0007+0.0032+0.0062

−0.0033−0.0067, where a small
uncertainty at 2σ regions for β is given. Still, it is shown
that the value of β is around zero at 1σ confidence level for
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Fig. 1 1σ and 2σ contours of the parameters for the VG-UM model with a CS fluid (left) and the �CDM (right) model

Table 4 The mean values with limits and the best-fit values of the parameters for VG-UM model with a CS fluid

Mean values with limits (VG-UM) Best fit (VG-UM) Mean values with limits (�CDM) Best fit (�CDM)

– �s = −0.0106+0.0312+0.0582
−0.0305−0.0509 0.0006 �k = −0.0002+0.0024+0.0052

−0.0024−0.0048 −0.0004

β −0.0128+0.0394+0.0756
−0.0385−0.0718 0.0005 0 0

Bs 0.7457+0.0147+0.0269
−0.0145−0.0299 0.7520 – –

α 0.0216+0.0757+0.1504
−0.0781−0.1466 0.0004 0 0

h 0.6922+0.0149+0.0306
−0.0149−0.0289 0.6981 0.6916+0.0100+0.0197

−0.0101−0.0193 0.6930

100�bh2 2.2580+0.0555+0.1154
−0.0557−0.1051 2.2691 2.2683+0.0412+0.0815

−0.0420−0.0776 2.266

�0de 0.6983+0.0165+0.0347
−0.0161−0.0309 0.7175 0.7098+0.0144+0.0265

−0.0140−0.0294 0.7126

both cases: including or not including a CS fluid, and the
case containing a CS fluid has a larger error for β than that
not containing a CS fluid. In VG theory, the constraints on
the UM model parameters are Bs = 0.7442+0.0137+0.0262

−0.0132−0.0292,

α = 0.0002+0.0206+0.0441
−0.0209−0.0422, h = 0.6905+0.0098+0.0191

−0.0096−0.0203, and

100�bh2 = 2.267+0.054+0.116
−0.051−0.102. At 1σ confidence level, the

value of α = 0 is not excluded, which demonstrates that
the �CDM model cannot be distinguished from VG-UM
model by the joint cosmic data. Besides the mean values with
limits, the best-fit values of the VG-UM model parameters
are determined and exhibited in Table 5 and Fig. 2, too. As
a reference, the �CDM model is calculated by using the
combined observational data appearing in Sect. III, and the
best-fit values and the mean values with limits on �CDM
model are shown in Table 5. In the �CDM model, one obtains
�0de = 0.7101+0.0126+0.0270

−0.0135−0.0282, that is, the result is compatible
with the effective result of �0de in the VG-UM model.

In order to agglomerate and form a structure of the uni-
verse, one uses that the baryonic (and DM) component must
have a near zero pressure. Given that wb = pb

ρb
= −β(1−β)

3(2+β)
∼

0, β ∼ 0 or β ∼ 1 could be solved. From the above constraint
on the parameter β, one can see that the solution β ∼ 0 is
consistent with our fitting result for both cases: including or
not including a CS fluid in the universe.

5 Behaviors of G with the confidence level in VG-UM
theory with or without a CS fluid

In VG-UM theory with or without a CS fluid, the best-fit evo-
lutions of Ġ

G with their confidence level (the shadow region)
are illustrated in Fig. 3 (one can also see in Table 6) by using
the best-fit values of model parameters with their covariance
matrix. A dot denotes the derivative with respect to t . In the
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Table 5 The mean values with limits and the best-fit values of model parameters for VG-UM model without a CS fluid

Mean values with limits (VG-UM) Best fit (VG-UM) Mean values with limits (�CDM) Best fit (�CDM)

β 0.0007+0.0032+0.0062
−0.0033−0.0067 0.0010 0 0

Bs 0.7442+0.0137+0.0262
−0.0132−0.0292 0.7440 – –

α 0.0002+0.0206+0.0441
−0.0209−0.0422 0.0073 0 0

h 0.6905+0.0098+0.0191
−0.0096−0.0203 0.6902 0.6925+0.0094+0.0207

−0.0104−0.0198 0.6923

100�bh2 2.267+0.054+0.116
−0.051−0.102 2.256 2.2647+0.0398+0.0789

−0.0394−0.0781 2.262

�0de 0.7093+0.0148+0.0296
−0.0150−0.0309 0.7095 0.7101+0.0126+0.0270

−0.0135−0.0282 0.7106
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Fig. 3 The best-fit evolutions of G
G0

and Ġ
G with their confidence level

in the VG-UM model containing (or not containing) a CS fluid

VG-UM model with a CS fluid, the limit on the variation ofG
at present is

(
Ġ
G

)
today

� −0.3496+26.3135
−26.3135 × 10−13 year−1,

and at z = 3.5 we have
(

G
G0

)
z=3.5

� 0.9917+0.0104
−0.0131 and

(
Ġ
G

)
z=3.5

� −1.800+135.396
−135.396 × 10−13 year−1. For the case

without a CS fluid, Fig. 3 shows the prediction that today’s

value is
(
Ġ
G

)
today

� −0.7252+2.3645
−2.3645 × 10−13 year−1. This

restriction on
(
Ġ
G

)
today

is more stringent than the other

results in Table 7. Also, using the best-fit value of the
parameter β with error, the shapes of G

G0
= (1 + z)β are

exhibited. Taking the high redshift z = 3.5 as another

reference point, we find
(

G
G0

)
z=3.5

� 1.0015+0.0071
−0.0075 and(

Ġ
G

)
z=3.5

� −0.3792+1.2314
−1.2314 ×10−12 year−1 in the VG-UM

model without a CS fluid. It is important to rigorously con-
strain the value of β, since the monotonicity of Ġ

G = −βH
depends on the value of β. Figure 3 reveals that the behav-
iors of G and its derivative are around the constant-G the-
ory for both cases: including or not including a CS fluid in
universe.
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Table 6 The best-fit values of
G
G0

and Ġ
G with their confidence

level in the VG-UM model
containing (or not containing) a
CS fluid

With CS Without CS

(
G
G0

)
z=3.5

1.0008+0.0620
−0.0584 1.0015+0.0071

−0.0075(
Ġ
G

)
today

−0.3496+26.3135
−26.3135 × 10−13 year−1 −0.7252+2.3645

−2.3645 × 10−13 year−1

(
Ġ
G

)
z=3.5

−1.800+135.396
−135.396 × 10−13 year−1 −3.792+12.314

−12.314 × 10−13 year−1

Table 7 Limits on the variation of G

Observations Limits (year−1)

Pulsating white dwarf
G117-B15A [2]

| Ġ
G |≤ 4.1 × 10−10

Nonradial pulsations of
white dwarfs [3]

−2.5 × 10−10 ≤ Ġ
G ≤ 4 × 10−11

Millisecond pulsar PSR
J0437-4715 [4]

| Ġ
G |≤ 2.3 × 10−11

Type-Ia supernovae [5] Ġ
G ≤ 10−11

Neutron star masses [6] Ġ
G = (−0.6 ± 4.2) × 10−12

Helioseismology [75] | Ġ
G |≤ 1.6 × 10−12

Lunar laser ranging
experiment [76]

Ġ
G = (4 ± 9) × 10−13

Big Bang Nuclei-synthesis
[77]

−3.0 × 10−13 < Ġ
G < 4.0 × 10−13

6 Behaviors of EoS with the confidence level in VG-UM
theory with or without a CS fluid

The EoS of UM in VG theory is demonstrated by

wVG−UM(z) = pVG−UM

ρVG−UM

= β − 3

3

Bs

Bs + (1 − Bs)(1 + z)(1+α)(3−β)
.

(29)

From Fig. 4 (left), we can see that wVG−UM ∼ 0 (DM) at
early time and wVG−UM ∼ −1 (DE) in the future for the
VG-UM model with or without a CS fluid. If the dark sectors
are thought to be separable, it is interesting to investigate the
properties of both dark components in the VG-UM model.
Supposing that the behavior of dark matter is known i.e. its

EoS wdm = 0

(
ρdm = ρ0dma

−β2−2β−6
2+β

)
, the EoS of dark

energy in the VG-UM model is subject to

wde = pde

ρde
= pVG−UM

ρVG−UM − ρdm
= −A

ρ1+α
VG−UM − ρdmρα

VG−UM

.

(30)

Using the best-fit values of model parameters and the covari-
ance matrix, the evolutions of wde with confidence level in

the VG-UM model containing (or not containing) a CS fluid
are plotted in Fig. 4 (middle). If one deems the behavior
of dark energy is the cosmological constant i.e. w� = −1
(p� = −ρ�), the EoS of dark matter in VG-UM model obeys

wdm = pdm

ρdm
= pVG−UM − p�

ρVG−UM − ρ�

= ρ�ρα
VG−UM − A

ρ1+α
VG−UM − ρ�ρα

VG−UM

,

(31)

which is drawn in Fig. 4 (right) with the confidence level for
two cases (with or without a CS fluid).

From Fig. 4, we get the current values w0dm =
0.0009+0.0304

−0.0304 in the VG-UM model with a CS fluid and

w0dm = 0.0072+0.0170
−0.0170 in the VG-UM model without a

CS fluid, which have the larger uncertainties than w0dm =
0.0010+0.0016

−0.0016 calculated by the non-unified model of
constant-G theory by Ref. [78]. For the current value w0de,
it approximates −1 with the very small uncertainty for both
VG-UM model with a CS fluid (w0de = −0.9998+0.0125

−0.0125) and

VG-UM model without a CS fluid (w0de = −0.9986+0.0011
−0.0011).

From the best-fit evolution in the VG-UM model with a CS
fluid, we can see that both wde(∼ −1) and wdm(∼ 0) tend
to be constant, but the uncertainties of them are much larger
than that in model without a CS fluid. For the best-fit evolu-
tion in the VG-UM model without a CS fluid, wde and wdm

are variable with the time and wdm tends to have a small devi-
ation from zero (small-positive pressure) at the recent time.
In addition, at high redshift the uncertainty of wde (or wdm)
is enlarged (or narrowed) for both VG-UM model with a CS
fluid and VG-UM model without a CS fluid (Table 8).

7 Perturbation behaviors in structure formation
for VG-UM theory

The study of the structure formation is necessary for a cos-
mological theory. We investigate the evolutions of the growth
function f and the growth factor D in VG-UM theory. The
derivations of the evolutionary equations for f and D are

shown in the appendix. Using the definition f (a) = aD
′
(a)

D(a)
=
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Fig. 4 The evolutions of EoS with confidence level in VG-UM model
including (lower) or not including (upper) a CS fluid. The evolution of
wVG−UM(z) (left), the evolution of wde(z) in the VG-UM model with

assuming wdm = 0 at prior (middle), and the evolution of wdm(z) in
the VG-UM model assuming wde = −1 a priori (right)

Table 8 The best-fit values of
w0VG−UM, w0dm, and w0de with
their confidence level hinted by
VG-UM model with or without
a CS fluid

w0VG−UM w0dm (with w0de = −1) w0de (with w0dm = 0)

With CS −0.7519+0.0112
−0.0112 0.0009+0.0304

−0.0304 −0.9998+0.0125
−0.0125

Without CS −0.7438+0.0134
−0.0134 0.0072+0.0170

−0.0170 −0.9986+0.0011
−0.0011
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Fig. 5 The evolutions of f (z), f (a), and D(a). The solid lines correspond to the �CDM model, the short-dash lines correspond to the VG-UM
model with a CS fluid, and the dot lines correspond to the VG-UM model without a CS fluid

d ln δ
d ln a , we obtain the dynamically evolutionary equation of f

(1 + z) f ′ − f 2 + (1 + z) f
E ′

E
− 4 + 2β + 2β2

2 + β
f

+ 6 + 2β + β2

(2 + β)2

�0m

E2 (1 + z)
6+2β+β2

2+β = 0 (32)

where a prime denotes the derivative with respect to redshift
z and E(z) = H(z)/H0.

In Fig. 5, we use the best-fit values of cosmological param-
eters in Tables 4 and 5 to plot the evolutions of the growth
function f and the growth factor D for the VG-UM model
and the �CDM model by numerically solving Eqs. (19) and
(32) with the initial conditions ai = 0.0001, D(ai ) = ai ,
D

′
(ai ) = 0, and f (ai ) = 1. We can see that the evolutions

of f (a) for the VG-UM model (including or not including a
CS fluid) fit well as in the �CDM model, and the behavior of
f (z) are well consistent with the observational growth data
listed in Table 3. In the VG-UM model with or without a CS

fluid, D(a) evolves more slowly (slower growth of the per-
turbations) than that in the �CDM model. The current value
of D(a = 1) in the �CDM model is approximately 12 %
larger than that in the VG-UM model without a CS fluid.

8 Conclusions

Observations anticipate that G may be variable and most of
the universal energy density invisible. The attractive proper-
ties of this study is that the variation of G naturally results
in the invisible components in the universe. The VG could
provide a solution to the original problem of DM and DE. We
apply recently observed data to constrain the unified model
of the dark sectors with or without a CS fluid in the frame-
work of VG theory. Using the LT, the GRBs, the GF, the
SNIa with systematic error, the CMB from 9-year WMAP,
and the BAO data from measurements of the radial and the
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peak positions, the uncertainties of the VG-UM parameter
space are obtained.

For the case without a cosmic string fluid, the con-
straint on the mean value of the VG parameter is β =
0.0007+0.0032+0.0062

−0.0033−0.0067 with a small uncertainty around zero,
and restrictions on the UM model parameters are Bs =
0.7442+0.0137+0.0262

−0.0132−0.0292 and α = 0.0002+0.0206+0.0441
−0.0209−0.0422 with 1σ

and 2σ confidence level. For the case with a cosmic string
fluid, the restriction on the dimensionless density parameter
of the CS fluid is �s = −0.0106+0.0312+0.0582

−0.0305−0.0509 in the VG-
UM theory. Obviously, the uncertainty of �s is larger than
some results on �k in the framework of the G-constant the-
ory. At 1σ confidence level the flat �CDM model (�s = 0,
β = 0, and α = 0) is included in the VG-UM model.

Using the best-fit values of VG-UM parameters and their

covariance matrix, the limits on today’s value are
(
Ġ
G

)
today

=
−0.7252+2.3645

−2.3645 × 10−13 or
(
Ġ
G

)
today

� −0.3496+26.3135
−26.3135 ×

10−13year−1 for the universe with or without a CS fluid.

Corresponding to these two cases, we find
(

G
G0

)
z=3.5

�
1.0015+0.0071

−0.0075 and
(

G
G0

)
z=3.5

� 1.0008+0.0620
−0.0584 at redshift

z = 3.5. If one considers that the DM and the DE could be
separable in the unified model, the EoS of DE and DM are
discussed by combing with the fitting results. It is shown that
w0dm = 0.0072+0.0170

−0.0170 or w0dm = 0.0009+0.0304
−0.0304 assuming

w0de = −1 for the VG-UM universe containing or not con-
taining a CS fluid, while we have w0de = −0.9986+0.0011

−0.0011 or

w0de = −0.9998+0.0125
−0.0125 assuming w0dm = 0 a priori for the

VG-UM model with or without a CS fluid.
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Appendix A: The growth of structures in linear pertur-
bation theory

In a sub-horizon region with length scale r < H−1, the
densities of DE and cold DM are expressed by ρ̃sde and
ρ̃sdm, respectively. We suppose that DE is not perturbed,
and DM is perturbed in the sub-horizon region. So, we have
ρ̃sde = ρde for the homogeneous DE in the whole universe
and ρ̃sdm = ρdm + δρdm for the perturbed DM, where ρde

and ρdm denote the density of the DE and DM at background
level, respectively. Obviously, the region of δρdm > 0 will

cluster and form a structure. In analogy to the equation at the
background level, the evolution of the matter density inside
the perturbed region can be given by the following conser-
vation equation:

˙̃ρsdm + 3h

(
6 + 2β + β2

6 + 3β
ρ̃sdm + 2 + 2β

2 + β
p̃sdm

)
= 0. (A1)

A tilde denotes the cosmological quantity in a perturbed
region. In this region, the local expansion is described by
h = ṙ/r and the acceleration is

r̈

r
=− 8πG(t)

3(2 + β)
(ρ̃sdm + ρde + 3 p̃sdm + 3pde) − β2

(2 + β)
h,

(A2)

which is the same as Eq. (5) for the background level. One
can define the density contrast of DM,

1 + δdm = ρ̃sdm

ρdm
(A3)

with δdm > 0. Differentiating Eq. (A3) with respect to t gives

δ̇dm +
(

6 + 2β + β2

2 + β

)
(1 + δdm)(h − H)

+ 6 + 6β

2 + β
(1 + δdm)(hw̃sdm − Hwdm) = 0 (A4)

after using Eqs. (A1) and (6). Taking the time derivative in
the above equation one obtains

δ̈dm − δ̇2
dm

1 + δdm
+ (

6 + 2β + β2

2 + β
)(1 + δdm)(ḣ − Ḣ)

+ 6 + 6β

2 + β

(
ḣw̃sdm + h ˙̃wsdm − Ḣw̃sdm

−H ˙̃wsdm)(1 + δdm

)
= 0, (A5)

where

ḣ − Ḣ = − H2

2 + β
�dmδdm − 4 + 2β + 2β2

2 + β
(h − H)H

− 3H2

2 + β

(
ρ̃sdm

ρ̃c
w̃sdm − �dmwdm

)
(A6)

is given by substituting Eqs. (5) and (A2) into Ḣ = ä
a − H2

and ḣ = r̈
r − h2, respectively. In addition, in the calculation

we used ρc = 3H2/8πG(t) and h + H � 2H . Inserting
(A6) into (A5) results in

δ̈dm − δ̇2
dm

1 + δdm
+ 4 + 2β + β2

2 + β
H δ̇dm

−
(

6 + 2β + β2

2 + β

)
H2�dm

2 + β
(δdm + δ2

dm)
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+
[

4 + 2β + 2β2

2 + β

6 + 6β

2 + β
H(hw̃sdm − Hwdm)

+ 6 + 6β

2 + β
(ḣwdm + h ˙̃wsdm − Ḣwdm − Hẇdm)

+
(

6 + 2β + β2

2 + β

)
3H2

2 + β
(
ρ̃sdm

ρ̃c
w̃sdm − �dmwdm)

]

× (1 + δdm) = 0. (A7)

Neglecting square terms of δm in (A7), we obtain the evolu-
tion equation of the density contrast in a spherical overdense
region,

δ̈dm + 4 + 2β + 2β2

2 + β
H δ̇dm −

(
6 + 2β + β2

2 + β

)
H2�dm

2 + β
δdm

+
[

4 + 2β + 2β2

2 + β

6 + 6β

2 + β
H (hw̃sdm − Hwdm)

+ 6 + 6β

2 + β

(
ḣw̃sdm + hẇdm − Ḣw̃sdm − Hẇsdm

)

+
(

6 + 2β + β2

2 + β

)
3H2

2 + β

(
ρ̃sdm

ρ̃c
w̃sdm − �dmwdm

)]

× (1 + δdm) = 0. (A8)

Taking β = 0, the above equation reduces to the case of
constant G given by Ref. [79]. Using the definition of the
growth factor D(a), we can rewrite Eq. (A8) as follows:

D
′′
(a) + [ E

′
(a)

E(a)
+ 1

a
+ 4 + 2β + 2β2

a(2 + β)
]D′

(a)

− 6 + 2β + β2

(2 + β)2

�0dm

E(a)2a2 a
−6−2β−β2

2+β D(a)

+ [ (4 + 2β + 2β2)(6 + 6β)

(2 + β)2a2H
(hw̃sdm − Hwdm)

+ 6 + 6β

(2 + β)aH
(h

′
w̃sdm+hw̃

′
sdm−H

′
wdm−Hw

′
dm)

+ 18 + 6β + 3β2

(2 + β)2a2 (
ρ̃sdm

ρ̃c
w̃sdm − �dmwdm)]

× [1 + D(a)δdm(a = 1)] = 0. (A9)

The linear regime of cosmological perturbations is valid for
all scales during the early radiation dominated era and for
most scales during the matter dominated era. For wdm �
wsdm � 0, the above equation reduces to

D
′′
(a) + [ E

′
(a)

E(a)
+ 1

a
+ 4 + 2β + 2β2

a(2 + β)
]D′

(a)

− 6 + 2β + β2

(2 + β)2

�0dm

E(a)2a2 a
−6−2β−β2

2+β D(a) = 0. (A10)

Transferring the function from D to f in the above equation,
we get

f
′
(a) + f 2(a)

a
+ [ E

′
(a)

E(a)
+ 2

a
(
2 + β + β2

(2 + β)
)] f (a)

− 6 + 2β + β2

(2 + β)2

�0dm

E(a)2a
a

−6−2β−β2

2+β = 0. (A11)
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