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Abstract The canonical Aharonov–Bohm effect is usually
studied with time-independent potentials. In this work, we
investigate the Aharonov–Bohm phase acquired by a charged
particle moving in time-dependent potentials. In particu-
lar, we focus on the case of a charged particle moving in
the time-varying field of a plane electromagnetic wave. We
work out the Aharonov–Bohm phase using both the poten-
tial (i.e.

∮
Aμdxμ) and the field (i.e. 1

2

∫
Fμνdσμν) forms

of the Aharonov–Bohm phase. We give conditions in terms
of the parameters of the system (frequency of the electro-
magnetic wave, the size of the space–time loop, amplitude
of the electromagnetic wave) under which the time-varying
Aharonov–Bohm effect could be observed.

1 Introduction

In this work, we investigate the Aharonov–Bohm phase dif-
ference picked up by charged particles that go around a closed
space–time loop in the presence of the time-dependent poten-
tials and fields of an electromagnetic plane wave.

Theoretical investigations of the Aharonov–Bohm effect
[1,2] generally involve time-independent potentials. The
canonical example of the Aharonov–Bohm effect is that of
charged particles in a two-slit experiment with an infinite
solenoid, carrying a constant magnetic flux, placed between
the slits. Each charged particle picks up an additional phase
due to the non-zero vector potential outside the solenoid, even
though the electric and magnetic fields outside the solenoid
are zero. The experimental tests of the Aharonov–Bohm
effect have also generally been done with time-independent
fields [3,4].
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In contrast to the time-independent Aharonov–Bohm
effect, there have been only a few theoretical studies of the
time-dependent Aharonov–Bohm effect. Some work [5–10]
has focused on a solenoid with a time-dependent magnetic
flux, while other work [11,12] has used an electromagnetic
plane wave to obtain time-dependent potentials and fields.

On the experimental side, there are only two cases that
we have found where the time-dependent Aharonov–Bohm
effect was tested experimentally. The first test was an acci-
dental experiment by Marton et al. [13] where an electron
two-slit interference experiment was set up and the inter-
ference pattern was observed. However, it was later deter-
mined that the region through which the electrons traveled
was contaminated with a 60 Hz magnetic field of unknown
strength. The question in regard to the results of the acciden-
tal experiment in [13] are: “Why was the interference pattern
seen at all? Why did it not shift back and forth at 60 Hz?”
At first, it was thought that the result of Marton et al. was
evidence against the Aharonov–Bohm effect. However, two
explanations have been put forward as to why the experi-
ment in [13] saw a static interference pattern. In [14], the
idea was advanced that the time-varying Aharonov–Bohm
phase was compensated for by a phase shift coming from the
direct v × B force which acted on the electrons. In [15], the
explanation given for the observation of the static interfer-
ence pattern in [13] was due to a cancellation between the
time-varying Aharonov–Bohm phase and a phase coming
from the induced electric field that accompanied the time-
varying magnetic field. The second test of the time-dependent
Aharonov–Bohm was the experiment in [16,17]. This exper-
iment used fields from an electromagnetic wave with a fre-
quency in the microwave region and was along the lines
of the set-up suggested in [11] for testing the time-varying
Aharonov–Bohm effect. This experiment was also along the
lines of [12], which studied decoherence effects due to the
time-varying Aharonov–Bohm phase coming from an elec-
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tromagnetic wave. The results of the experiment described
in [16,17] were that evidence for an Aharonov–Bohm phase
from the time-varying fields and potentials was not observed
– thus these results were similar to the accidental experi-
ment of Marton et al., where the effect of the time variation
was not seen in the interference pattern. The explanation of
the non-observation of the time variation in the experiment
[16] was that the parameters of the set-up were such that
the time variation effect was too small to be seen [17]. We
come to a similar conclusion from our analysis – in order to
observe the time variation one must carefully choose the var-
ious parameters of the set-up: the frequency and amplitude of
the electromagnetic wave, the size of the loop, the velocity of
the particle, etc. In the conclusion, we give conditions under
which one might see evidence of the time-varying Aharonov–
Bohm effect.

There are two points to make before we move on to our
detailed analysis. First, the time-dependent Aharonov–Bohm
effect is invariably a type II Aharonov–Bohm effect. The type
I Aharonov–Bohm effect is when the charged particle devel-
ops a phase while moving through a region that is free of elec-
tric and magnetic fields, as in the original time-independent,
infinite solenoid set-up. The type II Aharonov–Bohm effect
is when the charged particle develops an Aharonov–Bohm
phase, but while moving through a region of space where the
fields are not zero. A typical example of a type II effect is the
Aharonov–Casher effect [18], where a neutral particle with
a magnetic moment moves through an electric field and, in
doing so, picks up a Aharonov–Bohm-like phase. Second,
the set-up we study here is a combination and generalization
of the time-dependent Aharonov–Bohm effect studied in [11]
and [12]. In particular for our set-up, both the electric and the
magnetic Aharonov–Bohm effects are non-zero. In Ref. [11],
the set-up was taken so that only the time-varying magnetic
field gave an Aharonov–Bohm phase, while in Ref. [12], the
set-up was such that only the time-varying electric field gave
a non-zero contribution to the Aharonov–Bohm phase. Fur-
ther, these two prior works calculated the Aharonov–Bohm
phase in different ways: Ref. [11] used the line integral of
the potentials to obtain the phase while Ref. [12] used the
area integral of the fields. Here, we calculate the phase using
both the line integral of the potentials and the area integral of
the fields. This provides an explicit working out of Stokes’
theorem in 4D. In the literature, we have found no examples
of this, although there are of course plenty of explicit worked
out examples of Stokes’ theorem in 3D.

2 General set-up of potentials, fields and path

In this section, we give the set-up for the potentials, fields
and path that we will use. We consider a linearly polarized
plane wave traveling along the z-axis in either the + or −
direction. The covariant, four-vector potential for this is

Fig. 1 The full space–time loop in t xz

Aμ = (0, A0 f (ωt ± kz), 0, 0) , (1)

where A0 is the amplitude and ω, k are the frequency and
wave number for the wave. The (+) sign is a wave traveling
in the −z direction and the (−) is a wave traveling in the +z
direction. The electric and magnetic fields can be obtained
from (1) using Fμν = ∂μAν − ∂ν Aμ with the result

F01 = Ex = A0
ω

c
f ′(ωt ± kz);

F13 = By = ∓A0k f
′(ωt ± kz),

(2)

where a prime means a derivative with respect to the
argument of f , namely ζ± = ωt ± kz. The electro-
magnetic wave in (2) is polarized in the x direction.
We could consider a more complicated wave traveling in
the z-direction, with the electric and magnetic fields hav-
ing components in both x and y directions. The vec-
tor potential for such wave would have the form Aμ =
(0, A0 f (ωt ± kz + ϕ1), B0 f (ωt ± kz + ϕ2), 0), where A0,

B0 are amplitudes and ϕ1, ϕ2 are phases. For our purposes,
the four-potential in (1) is sufficient since for the closed loop
path that we pick, with no motion of the particles in the y
direction, only the x component of the four-vector poten-
tial will contribute. If we had picked our loop to be in the
yz plane, then it would be a vector potential of the form
Aμ = (0, 0, B0 f (ωt ± kz), 0), which would give a non-zero
contribution.

The closed space–time path that we chose in evaluating
the loop integral

∮
Aμdxμ is shown fully in Fig. 1. The pro-

jections in the t x and zx planes are shown, respectively, in
Figs. 2 and 3. In the experiment, the charged particles would
travel both paths 1 and 2, and 3 and 4, in the forward time-
direction, i.e. the charged particles would leave the origin and
travel forward along 1 and 2 and also forward along 3 and 4,
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Fig. 2 The projection of the space–time loop in t x plane. This also
represents the upright diamond which we will discuss in the next section

Fig. 3 The projection of the space–time loop in xz plane

with each picking up some different Aharonov–Bohm phase
along these paths. To take the phase difference between path
1 and 2 versus path 3 and 4, one puts a negative sign in front
of the integral along path 3 and 4 (or as well one could put
the negative sign in front of the integrals along path 1 and
2) thus reversing the direction of the space–time loop in Fig.
1. In this way, one ends with a closed space–time loop inte-
gral. This is what is done in the usual static Aharonov–Bohm
analysis, but with purely spatial loop integrals.

The paths start from the origin, x = z = t = 0, and
then travel with velocity v = (±vx , 0, vz), for a time �t ,
to the two spatial points (±�x, 0,�z). This gives paths 1
and 4. From these two points, one traces back to the point
(0, 0, 2�z) in a time �t (this means a total time of 2�t); this
gives paths 2 and 3. Note, the total time from the origin to
(0, 0, 2�z) is 2�t , so �t = �z

vz
= �x

vx
. Now, for the explicit

evaluation of
∮
Aμdxμ in the next section, we need to give

the equations describing each path:

Path 1 (0 < t < �t) : t = x

vx
= z

vz
, (3)

Path 2 (�t < t < 2�t) : t = − x

vx
+ 2�t = z

vz
, (4)

Path 3 (�t < t < 2�t) : t = x

vx
+ 2�t = z

vz
, (5)

Path 4 (0 < t < �t) : t = − x

vx
= z

vz
. (6)

The magnitude of the velocity along any path is v =√
v2
x + v2

z ≤ c. For the projections of the full space–time
path from Fig. 1 into the t x plane in Fig. 2, the slopes of the
paths are greater than 1 since vx , vz < c.

For the Aharonov–Bohm effect with a plane wave back-
ground, both the electric and the magnetic Aharonov–Bohm
effects can be non-trivial at the same time. For the usual
static magnetic Aharonov–Bohm effect, the line integral of
the 3-vector potential, A, is related to the surface area of the
magnetic field via Stokes’ theorem in 3D,

∮
A·dx = ∫

B·da.
In order for this magnetic Aharonov–Bohm phase to be
non-zero, the magnetic field, B, must have a component
along the area normal direction, da. For our space–time
area, the spatial projection is in the xz plane, which there-
fore has a spatial area in the y-direction. This then gives
a non-zero contribution for the magnetic field of the plane
wave since B ∝ ŷ. For the usual static electric Aharonov–
Bohm effect, it is the time integral of the scalar potential, φ,
which is important (i.e.

∫
φdt). Using E = −∇φ, one finds

that the electric Aharonov–Bohm phase can be written as∫
φdt = − ∫

E·dxdt . Note that the spatial area of the mag-
netic case, da, is replaced by a space–time area dxdt . In order
to get an electric contribution to the Aharonov–Bohm phase,
the electric field must have a component along the direction
of the path.

For the wave traveling in the z-direction, and for the area
of the loop which has a projection in the xz plane, both the
magnetic field in the y-direction and the electric field in the x-
direction will give non-zero contributions to the time-varying
Aharonov–Bohm phase. In the case studied in [12], the wave
was taken to be traveling in the y-direction, the electric field
was polarized in the z-direction, and the magnetic field was
in the x-direction. The loop chosen in [12] was also in the xz
plane, so, in that situation, there was only a non-zero elec-
tric Aharonov–Bohm phase; the magnetic Aharonov–Bohm
phase was zero. In our set-up both the magnetic and electric
Ahronov–Bohm phases play a role.

3 Aharonov–Bohm phase via the potentials

Using the above set-up, we now calculate
∮
Aμdxμ, which

gives the Aharonov–Bohm phase when multiplied by e
h̄c . We

will calculate the phase picked up along the four path lengths
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given in Fig. 1 and then add them. The electromagnetic wave
has a frequency and wave number given by ω and k, which
satisfy ω

k = c. The velocity on any given leg of the path in
Fig. 1 is v = (±vx , 0, vz).

In carrying out the calculation for the loop integral for the
case in Fig. 1, we will first calculate

∮
Aμdxμ in the frame

where vz = 0; this is the “upright diamond” loop of Fig.
2. Then, to obtain the more general case, we will boost the
result of the upright diamond so that the particle develops a
velocity, vz , in the +z direction.
The “upright diamond” For the upright diamond in Fig. 2,
we have z = 0 and v = (±v0, 0, 0), and we take the wave
number and frequency as k0 and ω0, respectively. The four
paths are parametrized as:

Path 1 (0 < t < �t) : t = x

v0
, (7)

Path 2 (�t < t < 2�t) : t = − x

v0
+ 2�t, (8)

Path 3 (�t < t < 2�t) : t = x

v0
+ 2�t, (9)

Path 4 (0 < t < �t) : t = − x

v0
. (10)

Along each path, since z = 0, f (ω0t ± k0z) simplifies to
f (ω0t). For path 1, from (7), we find

∫

1
Aμdxμ = A0

∫ �x

0
f

(
k0

β0
x

)

dx = A0β0

k0
[F(�ζ0)−F(0)]

= A0�x 〈 f (ζ )〉I, (11)

where β0 = v0/c, ck0 = ω0, and F(ζ ) = ∫
f (ζ )dζ is the

integral function of f . �ζ0 is the phase shift up to the half-
way point,

�ζ0 = k0

β0
�x = ω0�t. (12)

In the final expression in (11) we have written the result in
terms of 〈 f (ζ )〉I ≡ 1

�ζ0

∫ �ζ0
0 f (ζ )dζ , which is the average

of f (ζ ) in the interval I = {ζ : 0 < ζ < �ζ0}.
For path 2, we have, from (8),

∫

2
Aμdxμ = A0

∫ 0

�x
f

(

− k0

β0
x + 2ω0�t

)

dx

= − A0β0

k0

[

F (2ω0�t) − F

(

− k0

β0
�x + 2ω0�t

)]

= − A0β0

k0
[F (2�ζ0) − F (�ζ0)] = −A0�x 〈 f (ζ )〉II,

(13)

where 〈 f (ζ )〉II is the average of f (ζ ) over the interval II =
{ζ : �ζ0 < ζ < 2�ζ0}.

In a similar manner, for path 3 and path 4, one finds
∫

3
Aμdxμ =

∫

2
Aμdxμ;

∫

4
Aμdxμ =

∫

1
Aμdxμ. (14)

Altogether, the upright diamond loop integral is
∮

Aμdxμ =
∫

1
Aμdxμ +

∫

2
Aμdxμ +

∫

3
Aμdxμ

+
∫

4
Aμdxμ = 2

A0β0

k0
([F (�ζ0) − F(0)]

− [F (2�ζ0) − F (�ζ0)])

= 2
A0β0

k0
(2F (�ζ0) − F(0) − F (2�ζ0)) ,

(15)

or in terms of the averages of f (ζ ),
∮

Aμdxμ = 2A0�x (〈 f (ζ )〉I − 〈 f (ζ )〉II). (16)

The loop integral is zero if the average of the vector poten-
tial in the first half (I) and the second half (II) are the same.
Boost along z-direction In order to evaluate the loop integral
for vz 
= 0, we now boost the frame along the z-direction by
β. This gives the particle a velocity in the z direction, and
changes the upright diamond of Fig. 2 to the tilted diamond
of Fig. 1. In Eq. (15), the only parameters that change are the
wave number k0 and the x-component of velocity, β0. �ζ0

also transforms due to k0 and β0 changing. The parameters
�x and A0 do not change since they are perpendicular to the
boost direction. After the boost,

β0 → βx =
√

1 − β2β0 = β0/γ ; k0 → k =
√

1 ± β

1 ∓ β
k0.

(17)

In Eq. (15), only the combination k0
β0

shows up. Using (17)
we find

k0

β0
→

√
1 ∓ β

1 ± β
k · 1

γβx
= (1 ∓ β)

k

βx
(18)

Setting β = −βz = −vz/c, we get the final result,
∮

Aμdxμ = 2A0

k

βx

1 ± βz

[

2F

(
1 ± βz

βx
k�x

)

− F(0)

−F

(

2
1 ± βz

βx
k�x

)]

= 2A0

k′ [2F(k′�x) − F(0) − F(2k′�x)]

= 2A0

k′ [2F(�ζ) − F(0) − F(2�ζ)], (19)

where k′ is defined as

k′ = 1 ± βz

βx
k, (20)

and �ζ is the phase shift to the half-way point,

�ζ = k′�x = ω(1 ± βz)�t = ω�t ± k�z. (21)
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The last line of Eq. (19) is the main result of this sec-
tion and we want to make some comments/remarks about its
physical meaning. First, we can look at an expansion of the
function F(η) = F(0) + ηF ′(0) + 1

2η2F ′′(0) + · · · , where
η = �ζ = k′�x or η = 2�ζ = 2k′�x , depending on
which term in (19) one is expanding. Using this, one finds
that (19) becomes

∮
Aμdxμ = −2A0k

′�x2F ′′(0) + O((�ζ)3). (22)

Thus, to first order in �ζ , the time-varying Aharonov–
Bohm phase vanishes. This result can be compared to the
result in [9,10], where the authors found that for a solenoid
with a time-varying flux, the time-dependent part of the
Aharonov–Bohm phase vanishes to first order as well.

Next, if we take the particle speed to be much less than

the speed of light, v =
√

v2
x + v2

z � c, then, from (20),

k′ ≈ k/βx . Hence the condition k′�x � 1 is identical to
�x/βx � λ, or equivalently �t � T = 2π

ω
, where λ and

T are the wavelength and the period of the electromagnetic
wave. Since the approximate vanishing of

∮
Aμdxμ requires

k′�x � 1, the condition above imposed on the wavelength or
the period of the electromagnetic wave is a condition for the
approximate vanishing of the loop integral. At the end of the
next section, we will comment more on the use of the result in
(22) to determine when the time-dependent Aharonov–Bohm
effect is important/observable.

One final question we want to address: “under what con-
ditions does

∮
Aμdxμ vanish exactly”. According to (19)

and (22), if k′ → 0, the loop integral vanishes, which in
turn means βz → ∓1 according to (20). Thus, if the parti-
cle traverses the loop at close to c and moves in the same
direction as the electromagnetic wave (in this case the z-
direction) the time-dependent Aharonov–Bohm phase will
vanish. This was the same conclusion reached for the time-
dependent, non-Abelian Aharonov–Bohm effect [19] using
the time-dependent, non-Abelian plane waves of Coleman
[20]. However, in the present case, due to the constraint√

β2
x + β2

z ≤ 1, βz → 1 means βx → 0, the x-component
of the velocity is vanishingly small, and that the diamond
shaped loop becomes elongated in the z direction since the
ratio of the lengths goes as �x/�z → 0.

There is another way that the loop integral vanishes
exactly. Rewriting (19) in terms of the original function
f (ωt ± kz), we have
∮

Aμdxμ = 2A0�x (〈 f (ζ )〉I − 〈 f (ζ )〉II) , (23)

where the notation is similar to Eq. (16) and with the intervals
defined as

I={ζ : 0<ζ <�ζ }; II={ζ : �ζ < ζ < 2�ζ }, (24)

where �ζ = ω�t±k�z, is the phase change to the half-way
point. This means that if the average of the vector potential
experienced by the particle in the first half, 0 < t < �t , is
the same as the average of that experienced in the latter half,
�t < t < 2�t , then the loop integral vanishes. From (19)
this happens if the integrand function, F(ζ ), is linear with
respect to ζ . This is another way of giving the result from
(22) that

∮
Aμdxμ vanishes to zeroth and first order in F(ζ ).

4 Aharonov–Bohm phase via the fields

In this section, we work out the Aharonov–Bohm phase using
the electric and magnetic fields and taking the “area” inte-
grals. This is a 4D example of the usual 3D Stokes’ theo-
rem, where one finds

∮
A·dx = ∫

B·da. In the 4D case, we
want

∮
Aμdxμ = 1

2

∫
Fμνdxμ ∧dxν , where we have written

the 4D area dσμν → dxμ ∧ dxν , using the antisymmetric
wedge product. Concise details of this notation can be found
in [21,22]. Taking the components of the electric and mag-
netic fields given in (2), we have

∫
F = 1

2

∫
Fμνdxμ ∧ dxν = −

∫ ∫
Ex dx ∧ cdt

−
∫ ∫

Bydz ∧ dx . (25)

In (25) we have written things in three vector notation
with Ex = F01 and By = F13. The first term is a space–time
area integral of the electric field, Ex , and the second term is
a purely spatial area integral of the magnetic field, By . As in
Sect. 3 we will do the “upright diamond” area and show that
this is equivalent to the loop integral of the “upright diamond”
from (15). Then by boosting in the z direction, one can obtain
the area integral for the general surface from Fig. 1. For the
upright diamond loop one has a surface only in the xt-plane
(see Fig. 2), and therefore only an electric contribution:

∫

upright
F = −

∫ ∫
Ex dx ∧ cdt. (26)

We will split the upright diamond into a left triangle and
a right triangle, evaluate these separately and then sum them
up:

∫

upright
F = −

(∫

left
+

∫

right

)

Ex dx ∧ cdt . (27)
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For the upright diamond, z = 0 and k, ω → k0, ω0,
so from (2) we have Ex = F01 = A0

ω
c f ′(ωt ± kz) →

A0
ω0
c f ′(ω0t). With this the left half of the surface integral is

−
∫ ∫

left
Ex dx ∧ cdt=−

∫ 0

−�x

∫ 2�t+x/v0

−x/v0

A0ω0 f
′(ω0t)dxdt

= −
∫ 0

−�x
A0

[

f

(

2ω0�t + ω0x

v0

)

− f

(

−ω0x

v0

)]

dx

= A0β0

k0
(2F (�ζ0) − F(0) − F (2�ζ0)) , (28)

where �ζ0 = ω0�t = (k0/β0)�x .
Likewise, for the right half of the upright diamond, we

have

−
∫ ∫

right
Ex dx ∧ cdt=−

∫ �x

0

∫ 2�t−x/v0

x/v0

A0ω0 f
′(ω0t)dxdt

= −
∫ �x

0
A0

[

f

(

2ω0�t − ω0x

v0

)

− f

(
ω0x

v0

)]

dx

= A0β0

k0
(2F (�ζ0) − F(0) − F (2�ζ0)) . (29)

Adding (28) and (29) gives the final result for the upright
diamond of
∫

upright
F = 2

A0β0

k0
[2F(�ζ0) − F(0) − F(2�ζ0)] . (30)

This is the identical result for the upright diamond loop
integral of Eq. (15), which confirms the 4D Stokes’ theorem.
To get the case with a general velocity in the z direction, we
can boost the result from Eq. (30), as we did in Sect. 3, to
obtain the final result of Eq. (19).

The upright diamond area integral is solely due to electric
field. However, after the boost, it gets a magnetic contri-
bution. The ratio of the electric and magnetic contributions
depends on the magnitude of the boost βz . One can calculate
the electric and magnetic contributions separately. Denot-
ing the Aharonov–Bohm phase due to electric and magnetic
field as �φE and �φB , respectively, one can derive (see the
Appendix)

�φB

�φE
=

∫
F31 dz ∧ dx

∫
F10 dx ∧ cdt

= ±βz . (31)

The ratio only depends on βz . At any speed less than c, the
electric contribution is larger. This is the reverse of what was
found in Ref. [7], under different conditions. In [7], the time-
dependent system was an infinite solenoid with a magnetic
flux which was pulsed on over a short time. In this case,
the magnetic Aharonov–Bohm phase was dominant over the
phase shift due to the electric Aharonov–Bohm effect. In
[9,10], the case of an infinite solenoid with a slowly varying
flux was considered. To linear order it was found that the
electric and magnetic Aharonov–Bohm phase shifts were of
equal magnitude but opposite sign and thus canceled.

For the case of the electromagnetic wave, the magnetic
contribution becomes equal to the electric contribution only
when the particles travel at the speed of light. When they
travel at c against the waves, the two contributions add up;
when they travel at c along the waves – riding on the waves –
the two contributions cancel completely and result in a zero
time-dependent Aharonov–Bohm phase, as derived in Sect.
3. In both cases, due to the relativistic constraint, βx → 0
as βz → 1. This behavior is different from the case of the
solenoid, where reversing the magnetic field of the solenoid
also reverses the direction of the electric field. Thus, in the
case of the solenoid, one has the same result whether the
magnetic field points along the +z or −z direction. In con-
trast, reversing the direction of the electromagnetic wave only
reverses the direction of one of the fields, so, in one case, the
electric and magnetic contributions add up, while in the other
case, the electric and magnetic contributions tend to cancel.

Using either the area integral of the fields or the line inte-
gral of the potentials, the Aharonov–Bohm phase picked up
in going around the space–time loop in Fig. 1 is

(
e

h̄c

) (
2A0

k′

)

[2F(k′�x) − F(2k′�x) − F(0)]. (32)

We now recall the expansion of the term in square bracket
from (19), in terms of k′�x = �ζ , and apply this to (32) to
give the Aharonov–Bohm phase up to O(k′�x)3 as

1

2

(
e

h̄c

) ∫
Fμνdxμ ∧ dxν =

(
e

h̄c

) ∮
Aμdxμ

= −2

(
e

h̄c

)

A0k
′�x2F ′′(0).

(33)

From the above equation, we can see that in order for
the time-dependent Aharonov–Bohm effect to be observable,
one wants to have

(
e

h̄c

)

A0k
′�x2 ∼ O(1). (34)

In writing (34) we have ignored the factor of −2 and
assumed that F ′′(0) ∼ O(1), which would be the case if
f (ζ±) and F(ζ±) were sinusoidal.

We now investigate a few different scenarios for the condi-
tion in (34). In regard to the spatial size of our loop, we follow
[12] and estimate that �x ∼ 100µm. We will take the speed
of our particle to be non-relativistic with v ∼ 106 m

s . Thus,
from (20), we have k′ ≈ k c

v
= ω

v
. Under these assumptions,

the condition in (34) has two free parameters: A0 andω. Com-
bining all this, we find that the condition in (34) becomes

A0ω ∼ 108 J/(C s). (35)
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Conditions (34) and (35) can be used to determine how
to pick A0 and/or ω in order to see the time-dependent
Aharonov–Bohm effect experimentally. From (35), we find
that one should pick A0ω to be of order 108. However, if
one picks A0 and/or ω to be too large, the electrons will
experience a direct force which could then overwhelm the
Aharonov–Bohm effect. For example, one could consider
soft x-ray frequencies of ω ∼ 1017 Hz, which would only
require an amplitude of A0 ∼ 10−9 J

C . However, the x-ray
photons could scatter the electrons significantly. Whether this
would be an issue would depend on the photon number den-
sity, which is related to the energy density, ρE&M ∝ A2

0ω
2.

Alternatively, one could start by picking a smaller ω and
therefore a larger A0. One does not want to make ω too small
since this would imply a large wavelength λ = 2π/k and
the large wavelength limit tends to force the time-dependent
Aharonov–Bohm phase to zero. As a crude estimate, we
might require that the wavelength of the electromagnetic
wave be one order of magnitude smaller than the loop size.
Since we have set the scale for the loop size at �x ∼ 100µm,
as in [12], this estimate implies we should take λ ∼ 10µm.
This yields a frequency of ω ∼ 1014 Hz, which is in the
infrared/optical part of the spectrum. For this choice of ω,
Eq. (35) implies that one would need A0 ∼ 10−6 J

C . The
above discussion is by no means exhaustive, but it is merely
to show the interrelatedness of the system parameters, A0 and
ω (and in more general situations �x and v), in determining
when the time-dependent Aharonov–Bohm phase would be
observable. Some of the same conclusion were reached in
[17].

5 Conclusions and summary

In this article, we have investigated the time-dependent
Aharonov–Bohm phase of a charged particle traveling
around a closed space–time loop, given in Figs. 1, 2 and 3, in
the presence of a time-varying electromagnetic field, given by
a plane wave traveling in the ±z direction and with a polariza-
tion in the x direction. Our work is a generalization of earlier
work, [11,12], in that we consider both the electric and the
magnetic Aharonov–Bohm effects, and thus we are able to
see the interplay between the two. In addition, we calculated
the time-varying Aharonov–Bohm phase both in terms of the
path integral of the vector potential,

∮
Aμdxμ, and in terms

of the area integral of the fields, 1
2

∫
Fμνdxμ ∧ dxν .

The overall conclusion of our calculation of the Aharonov–
Bohm phase for the time-varying fields of an electromagnetic
plane wave is that this phase vanishes under a broad range of
conditions. Thus one must carefully choose the parameters
of the electromagnetic wave and of the loop that the elec-
trons traverse in order to see the effect. This is similar to the
conclusion of the work in [16,17] where the time-varying

Aharonov–Bohm phase was searched for experimentally but
not observed. First, from (23), one finds that the time-varying
Aharonov–Bohm phase vanishes if the average of the wave
form over the first half of the loop equals the average over the
second half of the loop i.e. 〈 f (ζ )〉I = 〈 f (ζ )〉II. Second, from
(33), we showed that expanding the time-varying Aharonov–
Bohm phase, to lowest order, gave a phase with a magnitude

of
(

e
h̄c

)
A0k′�x2. In this expansion, only the second order

term in k′�x remained; the zeroth and first order terms van-
ished. Third, in the long wavelength limit (i.e. k, k′ → 0), one
finds that the functional part of the Aharonov–Bohm phase
from (32) vanishes i.e. [2F(k′�x)−F(2k′�x)−F(0)] → 0.
This occurs when the velocity of the particle traversing the
loop moves completely in the z direction at the speed of
light, βz = 1. In this case the particle “rides along” with the
electromagnetic wave. This smallness of the time-varying
Aharonov–Bohm phase is in accord with earlier results. In
Refs. [9,10,15], it was found that the time-varying part of the
Aharonov–Bohm phase shift vanished under the assumption
that the time variation of the flux in the solenoid was slow
compared to the time it took the charged particles to traverse
the loop.

In order to see the time-varying Aharonov–Bohm effect,
we found a general condition, Eq. (34), which needed to be
satisfied. This condition depended on the wave amplitude,
frequency, particle velocity and size of the loop – A0, ω, v,
and �x . By making some reasonable choices (i.e. v ∼ 106 m

s
and �x ∼ 100µm) we arrived at the more specific condition
A0ω ∼ 108 J/(C s). One could easily satisfy this condition
by making either A0 and/or ω large enough. However, mak-
ing A0 large increases the strength of the electric field and
making ω large increased the energy of the photons of the
time-varying field. Both of these effects would tend to put
forces on (i.e. scatter) the charged particles, destroying the
pure Aharonov–Bohm effect, which is a phase shift not due
to direct forces. To observe the Aharonov–Bohm effect, one
wants to reduce as far as possible the forces/scattering, which
means making A0 and ω small. There is some trade off in
terms of the magnitude of A0 and ω – one needs the prod-
uct of A0 and ω to be large enough to see the time-varying
Aharonov–Bohm effect, but if one makes either of these two
parameters too large the electron will experience significant
direct forces, which will spoil the Aharonov–Bohm interfer-
ence pattern.

Note added in proof After this paper was accepted we learned of
Ref. [23] which deals with some experimental issues of the Aharonov–
Bohm effect connected with the present work.
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Appendix I

In this appendix, we derive the ratio �φB/�φE given in (31).
The total phase shift for the tilted diamond, given in (19), can
be split into an electric and magnetic contribution as

�φ = �φE + �φB=2A0

k′ [2F(�ζ) − F(0) − F(2�ζ)] .

(36)

To find the ratio of the magnetic to electric contributions,
we just need to find �φE for the “tilted diamond” and then
use this in (36) to obtain �φB . As in Sect. 4, we calculate the
electric part of the tilted diamond by calculating the left and
right sides and adding these together. Using (2), the electric
contribution for the left side of the tilted diamond is

(�φE )left = −
∫ ∫

left
Ex dx ∧ cdt

= −A0
ω

c

∫ 0

−�x
dx

(∫ 2�t+x/vx

−x/vx
f ′(ωt ± kz)cdt

)

= −A0
ω

ω′

∫ 0

−�x
[ f (2ω′�t + ω′x/vx )

− f (−ω′x/vx )] dx . (37)

In the above, we have replaced z = vz t using (3) and
defined ω′ = (ω ± kvz) = ω(1 ± βz). Next, performing the
x integration in (37), we find

(�φE )left =−A0
ωvx

(ω′)2 [F(2ω′�t)−F(ω′�t)

+F(0)−F(ω′�t)] = A0
βx

k(1 ± βz)2

×[2F(ω′�t) − F(2ω′�t) − F(0)]
= A0

1

k′(1 ± βz)
[2F(�ζ) − F(2�ζ) − F(0)],

(38)

where we have used k = βx
1±βz

k′ from (20) and �ζ = ω′�t
from (21). In the same way, one can obtain the right half of

the tilted diamond,

(�φE )right = −
∫ ∫

right
Ex dx ∧ cdt = −A0

ω

c

∫ �x

0

×
(∫ 2�t−x/vx

x/vx
f ′(ωt ± kz)cdt

)

dx

= −A0
ω

ω′

∫ �x

0
[ f (2ω′�t − ω′x/vx )

− f (ω′x/vx )] dx . (39)

Next, performing the x integration in (39), we find

(�φE )right = −A0
ωvx

(ω′)2 [F(2ω′�t) − F(ω′�t)

+F(0) − F(ω′�t)] = A0
βx

k(1 ± βz)2

×[2F(ω′�t) − F(2ω′�t) − F(0)]
= A0

1

k′(1 ± βz)
[2F(�ζ) − F(2�ζ) − F(0)].

(40)

Adding the left and right sides, we get the total electric
contribution for the tilted diamond as

�φE = 2A0

k′(1 ± βz)
[2F(�ζ) − F(0) − F(2�ζ)] . (41)

From (36), this gives for the magnetic contribution

�φB =�φ−�φE = ±2A0βz

k′(1±βz)
[2F(�ζ)−F(0)−F(2�ζ)] .

(42)

Hence,

�φB

�φE
= ±βz, (43)

which is the result given in (31).
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