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Abstract Based on a correction from instanton–gluon
interference to the correlation function, the properties of
the 0−+ pseudoscalar glueball are investigated in a family
of finite-width Gaussian sum rules. In the framework of a
semiclassical expansion for quantum chromodynamics in the
instanton liquid background, the contribution arising from
the interference between instantons and the quantum gluon
fields is calculated, and it is included in the correlation func-
tion together with a pure-classical contribution from instan-
tons and the perturbative one. The interference contribution
turns out to be gauge-invariant, to be free from an infrared
divergence, and to have a great role to play in restoring the
positivity of the spectra of the full correlation function. The
negligible contribution from vacuum condensates is excluded
in our correlation function to avoid double counting. Instead
of the usual zero-width approximation for the resonances, the
usual Breit–Wigner form with a suitable threshold behav-
ior for the spectral function of the finite-width resonances
is adopted. Consistency between the subtracted and unsub-
tracted sum rules is very well justified. The values of the
mass, decay width, and coupling constants for the 0−+ reso-
nance in which the glueball fraction is dominant are obtained,
and they agree with the phenomenological analysis.

1 Introduction

A significant issue in quantum chromodynamics (QCD) is
to seek for the signal of the existence of glueballs. Because
glueballs are bound states composed of only gluons in the
quarkless world, such a signal may give a unique insight
into the non-Abelian dynamics of QCD. Theoretical inves-
tigations including lattice simulations [1–3], model research
[4–6], and sum rule analyses [7–12] have been going on for a
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long time, but no decisive evidence of the existence of glue-
balls has been confirmed by experimental research up to now
[13,14]. Further investigation on glueballs still makes sense.

One of the obstacles in theoretical research of glueballs is
that non-perturbative dynamics of QCD, which is responsi-
ble for the formation of hadrons, is difficult to handle, and
the QCD vacuum is recognized to be a medium with a com-
plicated structure, and it may impact greatly on the attributes
of hadrons. In particular, the tunneling effect between the
degenerate vacua of QCD should be taken into account. In the
leading order, this effect is described by instantons [15,16]
and shown to be of great significance in generating the prop-
erties of the unusual hadrons, glueballs. Moreover, the glue-
ball may be mixed with the usual mesons of the same quan-
tum numbers, making the identification of the glueball more
complicated [12,17].

Instantons, as the strong topological fluctuations of gluon
fields in QCD, are widely believed to play an important role in
the physics of the strong interaction (for reviews see [16,18]).
In particular, instantons provide mechanisms for the violation
of bothU (1)A and the chiral symmetry in QCD, and they may
therefore be important in determining hadron masses and in
the resolution of the famous U (1)A problem. Furthermore, it
was recently shown that instantons persist through the decon-
finement transition, so that instanton–induced interactions
between quarks and gluons may underlie the unusual prop-
erties of the so-called strongly coupled quark–gluon plasma
recently discovered at RHIC [19].

In the instanton liquid model, in a precise sense one
describes the QCD vacuum as a sum of independent instan-
tons with radius ρ̄ = (600 MeV)−1 and effective density
n̄ = (200 MeV)4 [20]. This model avoids the infrared prob-
lem caused by an infinite instanton density in the diluted
gas model. The correctness of the instanton liquid model is
still intensively being investigated. So far the model is essen-
tially justified by its phenomenological success. The most
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important predictions are probably the breaking of the chiral
symmetry (SBCS) in the axial triplet channel [21,22] and the
absence of Goldstone bosons in the axial singlet channel.

The non-perturbative effects of QCD is commonly cast
into the form of the description of a non-perturbative vac-
uum, such as quark and gluon condensates and the instan-
ton configurations. When contributions from both conden-
sates and the instanton are included into the correlation func-
tion together, it leads to a double counting in the sense that
there can be two alternative ways for parametrizing the non-
perturbative vacuum [23,24]. Moreover, the instanton dis-
tribution is closely connected with the vacuum condensates
since the mean size and density of instantons can be deduced
from the quark and gluon condensates, and, conversely, the
values of the condensates can be reproduced from the instan-
ton distribution [25–28]. The contributions of the instanton
and those of the condensates should be equivalent to each
other in some cases, and thus to include both contributions at
the same time will cause a double counting problem. To avoid
it, many authors invoke some special techniques in dealing
with the two contributions [29–32]. This issue is, however,
not settled really. Fortunately, the contribution of conden-
sates to the correlation function in the glueball channels is
unusually weak, as demonstrated in this work and by many
other authors [33,34]. Therefore, it is assumed that the con-
densate contributions can be understood as a small fraction
of the corresponding instanton one in the local limit. To thor-
oughly avoid the problem of double counting, we choose to
work in the instanton vacuum model of QCD, and carry out
a semiclassical expansion in instanton background fields as
suggested in our previous work to analyze the properties of
the lowest 0++ scalar glueball [35,36] and the 0−+ pseu-
doscalar one [37,38], where the correlation function of the
glueball currents are calculated by just including the contri-
butions from the pure instantons, the pure quantum gluons,
and the interference between both, instead of working with
both instantons and condensates at the same time.

Zhang and Steele [39] have reported a disparity between
their Laplace sum rule and Gaussian sum rule for the pseu-
doscalar glueball. In this reference, the optimized parame-
ters of the pseudoscalar glueball have been obtained from
the Gaussian sum rule, while it fails to achieve satisfying
the Laplace sum rule. This result seems strange, since both
Laplace and Gaussian sum rules are derived from the same
underlying dynamical theory, and should, at least approxi-
mately, be consistent. It reflects the inconsistency for includ-
ing both condensate and instanton contributions in the corre-
lation function and disregarding the important contribution
from the interaction between instantons and their quantum
counterparts at the same time.

Another serious problem in the 0−+ glueball sum rule
approach is that the fundamental spectral positivity bound
is violated when including the strong repulsive pure instan-

ton contribution, and as a consequence, the signal for the
pseudoscalar glueball disappears [39]. To cure this pathol-
ogy of positivity violation, the topological charge screening
effect in the QCD vacuum is added to the correlation func-
tion, and a suitable instanton-size distribution is taken into
account [7,40]. However, comparing with the interference
contribution, which we have recalculated in this paper, and
the pure perturbative one in the considered energy region,
the topological screening effect turns out to be negligible.
The pathology of the positivity violation disappears when
including the interference contribution (see below).

Phenomenologically, the identification of the pseudoscalar
glueball has been a matter of debate since the Mark II exper-
iment proposed glueball candidates [41]. Later, in the mass
region of the first radial excitation of the η and η′ mesons, a
supernumerous candidate, the η(1405) has been observed. It
seems to be clear that η(1405) is allowed as a glueball domi-
nated state mixed with isoscalar qq̄ states due to its behavior
in production and decays, namely, it has comparably large
branching ratios in the J/ψ radiative decay, but it has not
been observed in γ γ collisions [13,42,43]. A review on the
experimental status of the η(1405) is given in Ref. [13]. How-
ever, this state lies considerably lower than the theoretical
expectations: the lattice QCD predictions suggest a glueball
around 2.5 GeV [44,45]; the mass scale of the pseudoscalar
glueball obtained in the QCD sum rule approach is above
2 GeV [7,37,38,40]. On the other hand, there are attractive
arguments for the scalar and pseudoscalar glueballs being
approximately degenerate in mass [46], and even the sce-
nario that a pseudoscalar glueball may be lower in mass than
the scalar one was recently discussed in Ref. [47]. The pos-
sibly non-vanishing gluonium content of the ground state η

and η′ mesons is discussed in [12,48–50]. Up to now, only the
topological model of the glueball as a closed flux tube [46]
predicts a degeneracy of the 0++ and 0−+ glueball masses
and admits the region 1.3–1.5 GeV.

To reach a more realistic phenomenological situation, we
now reexamine the correlation function in the instanton liquid
vacuum, and we include all the resonances below and near
the η(1405) into the finite-width spectral function, and then
we achieve a series of results in traditional Gaussian sum rule
analyses which are consistent with the phenomenology. On
the other hand, as a crosscheck, these results are almost the
same as the Laplace ones (paper is accepted for publication in
Physical Review D), because both Laplace and Gaussian sum
rules are derived from the same underlying dynamical theory.
The paper is organized as follows: in Sect. 2, we present sys-
tematically the calculation of the contribution to the correla-
tion function due to the interference between instantons and
quantum gluons. This interference between instantons and
quantum gluons serves as a mechanism to keep the positivity
of the spectral function in contrast with the so-called topolog-
ical charge screening effect stressed in Ref. [7]. The effect of
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the contribution of topological charge screening is found to be
negligible as compared with the interference one in the con-
sidered energy region. The spectral function is constructed in
a similar way to the case of the 0++ glueball [36,51] with a
suitable threshold behavior in Sect. 3. In Sect. 4, a family of
Gaussian sum rules are constructed. The numerical simula-
tions are carried out in Sect. 5, and the results are consistent
with various Gaussian sum rules and in accordance with the
phenomenology. Finally, the main conclusions are given and
a discussion of some open interesting issues is presented.

2 Correlation function

We are working in Euclidean QCD. The pseudoscalar glue-
ball current is defined as

Op(x) = αsG
a
μν(x)˜Gμν,a(x) (1)

where αs is the strong coupling constant, Ga
μν(x) is the

gluon field strength tensor with the color index a and Lorentz
indices μ and ν, and

˜Gμν,a(x) = 1

2
εμνρσG

a
ρσ (x) (2)

is the dual of Ga
μν(x). The current Op(x) is a Lorentz-

irreducible, gauge-invariant, and local composite opera-
tor with the lowest dimension, and renormalization group-
invariant at least to the leading order αs in a quarkless world.
It is noticed that the current Op(x) is anti-hermitian due to the
imaginary time involved, while its analytic continuation to
Minkowskian space-time is hermitian. The QCD correlation
function is defined as

Π(q2) =
∫

d4xeiq·x 〈Ω|T {Op(x)O
†
p(0)}|Ω〉 (3)

where O†
p is the hermitian conjugation of Op. The advan-

tages to use the hermitian conjugation in the definition are,
first, the spectral functions both in Euclidean space-time and
in its analytic continuation into Minkowskian space-time are,
in principle, positively definite; and second, the relation-
ship between the correlation functions both in Euclidean and
Minkowskian formulations becomes very simple:

ΠE (Q2 = q2) ↔ ΠM (Q2 = −q2), (4)

because the overall minus sign arising from the analytic con-
tinuation due to (εμνρσ εμνρσ )E = −(εμνρσ εμνρσ )M is just
canceled with another minus sign arising from the mentioned
different hermiticity of the pseudoscalar glueball current.
Therefore, the expressions for ΠE (Q2) and ΠM (Q2) are,
in fact, the same function of Q2.

In the framework of a semiclassical expansion, the glue
potential field B(x) can be decomposed into a summation

of the classical instanton A and the corresponding quantum
gluon field a:

Bμ(x) = Aμ(x) + aμ(x). (5)

Consequently, the pure-glue Euclidean action can be
expressed as

S[B] = S0 −
∫

d4x

{

L[A + a] + 1

2ξ
aaμD

ab
μ Dbc

ν acν

}

= S0 − 1

2

∫

d4x

{

aaμ

[

Dab
λ Dbc

λ δμν + 2g f abcFb
μν

−
(

1 − 1

ξ

)

Dab
μ Dbc

ν

]

acν − 2g fabcaμbaνcDμ,adaνd

− 1

2
g2 fabcaμbaνc fadeaμdaνe

}

(6)

where S0 = 8π2/g2 is the one-instanton contribution to the
action, Fμνa is the instanton field strength tensor

Fμν,a(A) = ∂μAν,a − ∂ν Aμ,a + gs fabc Aμ,b Aν,c, (7)

and Dab
μ (A) is the covariant derivative associated with the

classical instanton field Aa
μ

Dab
μ (A) = ∂μδab + g facb A

c
μ. (8)

In addition, the background field gauge

Dμ(A)aμ = 0 (9)

is used with ξ being the corresponding gauge parameter, and
certainly the corresponding Faddeev–Popov ghosts accord-
ing to the standard rule should be added to restore unitar-
ity. We note here that the structure constants fabc should be
understood as εabc when any one of the color-indices a, b,
and c is associated with an instanton field due to the property
of the closure of any group.

According to the decomposition (5), the correlation func-
tion Π splits into three parts, namely the pure-classical part,
the pure quantum part, and the interference part in the leading
order

ΠQCD(Q2) = Π(cl)(Q2) + Π(qu)(Q2) + Π(int)(Q2) (10)

where the superscript indicates that it is calculated in the
underlying dynamical theory, QCD. It is important to note
that every part in the r.h.s. of (10) is gauge-invariant because
the decomposition (5), in principle, has no impact on the
gauge-invariance of the correlation function. The pure instan-
ton contribution Π(cl)(Q2) and the perturbative contribution
Π(qu)(Q2) up to three-loop level in the chiral limit of QCD
are shown in Eqs. (80) and (81), respectively, in Appendix A.
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The contribution of the topological charge screening which
is not included in the r.h.s. of (10) is given in Appendix B.

One of our main tasks in this work is to calculate the contri-
bution Π(int)(Q2) in (10), which is arising from the interfer-
ence between the classical instantons and quantum gluons in
the framework of the semiclassical expansion for QCD with
the instanton background. After imposing the background
covariant Feynman gauge (ξ = 1) for the quantum gluon
fields, we are still free to choose a gauge for the background
field A. In the following, the singular gauge is chosen to the
non-perturbative instanton field configurations as

Aμa(x) = 2

gs
ηaμν(x − z)νφ(x − z), (11)

with

φ(x − z) = ρ2

(x − z)2[(x − z)2 + ρ2] , (12)

and the corresponding field strength tensor is

Fμν,a(x) = − 8

gs

[

(x − z)μ(x − z)ρ
(x − z)2 − 1

4
δμρ

]

× ηaνρ

ρ2

((x − z)2 + ρ2)2 − (μ ↔ ν), (13)

where z and ρ denote, respectively, the center and size of
the instanton, called collective coordinates together with the
color orientation, and ηaμν is the ’t Hooft symbol, which
should be replaced with the anti-’t Hooft one η̄aμν for an anti-
instanton field. For the sake of simplicity, in practice the one
most used is the spike size distribution n(ρ) = n̄δ(ρ − ρ̄),
where n̄ is the overall instanton density and ρ̄ is the aver-
age instanton size. The fact that the strong coupling constant
gs emerges in the denominator of the r.h.s. of (11) reveals
the non-perturbative nature of these classical configurations.
In fact, instantons play a quite important role in the QCD
sum rule. Early QCD sum rules neglecting instanton–induced
continuum contributions did not obtain reliable results in
many cases, but these problems were then solved by includ-
ing such instanton–induced effects [9,30].

Before starting with the contraction between the quantum
fields, we note that the time-development of the instanton
vacuum produces the pre-exponential factor for the distribu-
tion of the instantons [15,52,53], and Π(int) is understood as
taking an ensemble average over the collective coordinates
besides taking the usual vacuum expectation value due to the
separation (5),

Π(int)(x)

=
∑

I, Ī

∫

dρn(ρ)

∫

d4z〈Ω|T {Op(x)O
†
p(0)}(int)|Ω〉,

(14)

where the super index ‘(int)’ indicates the corresponding
quantity containing only the interference part between the
quantum and classical ones. Using the spike distribution, (14)
becomes

Π(int)(x) = 2n̄
∫

d4z〈Ω|T {Op(x)O
†
p(0)}(int)|Ω〉, (15)

where the factor 2 comes from the mutually equal contribu-
tions of both instanton and anti-instanton. The next important
step is to specify the form of the gluon propagator which in
the background field Feynman gauge can be read from the
part of the S[B] quadratic in a [54,55]

Dab
μν(x, y) = 〈Ω|T {aaμ(x)abν (y)}|Ω〉

=
〈

x

∣

∣

∣

∣

∣

(

1

P2δμν − 2Fμν

)ab
∣

∣

∣

∣

∣

y

〉

(16)

with Pab
μ = −i Dab

μ . Keeping only terms proportional to F ,
one has [56]

∫

d4xeiq·xDab
μν(x, 0)

= eiq·(y−z)
{

1

q2 δμν + gs
2

q4 Fμν(z)

− igs
(y − z)ρFρσ (z)qσ

q4 δμν(z) + · · ·
}

(17)

where the first term in the r.h.s. of the above equation is the
pure-gluon propagator in the usual Feynman gauge, and the
second and third ones are the leading contributions of the
instanton field to the gluon propagator. For the short distance
region, we assume that the contribution from a single instan-
ton is dominant over multi-instantons [57]. At the leading
loop level, the gluon propagator (17) becomes the pure-gluon
one.

In the calculation, we expand the current Op into terms
which are the products of quantum gluon fields and their
derivatives with the coefficients being composed of the
instanton fields,

OP (x) = 1

2
εμνρσ αs

10
∑

i=1

Oi (x), (18)

where the operators Oi in terms of instanton and quantum
gluon fields are listed in Appendix C. Equation (15) can be
rewritten as
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Π(int)(q2) = −1

2
α2
s n̄εμνρσ εμ′ν′ρ′σ ′

×
∑

i, j

∫

d4z
∫

d4xeiq·x 〈Ω|T {Oi (x)Oj (0)}|Ω〉

=
12
∑

i=1

Π
(int)
i (q2) + · · · (19)

where the · · · denotes the contributions from the products
of operators being proportional to g3

s , and the expressions

of Π
(int)
i (q2) in terms of Oi are shown in Appendix D. The

corresponding 12 kinds of Feynman diagrams are shown in
Fig. 1, where the contributions from the first three diagrams
are of the order of αs , and the contributions of the remain-
ders are superficially of the order of α2

s , and those from the
diagrams 4, 5, and 6 in Fig. 1, in fact, are vanishing because
of violating the conservation of the color-charge, namely

Π
(int)
i (q2) = 0, for i = 4, 5, 6 (20)

Now we are in the position to evaluate the contributions
of the remaining diagrams in Fig. 1. Using the standard tech-
nique of regularizing the ultraviolet divergence in the modi-
fied minimal subtraction scheme, the result for the interfer-
ence part of the correlation function is

Π int(Q2) = c0αs n̄π + α2
s n̄

{

c1 + c2(Qρ)−2

+
[

c3(Qρ)2 + c4 + c5(Qρ)−2
]

ln
Q2

μ2

}

, (21)

where we have ignored terms proportional to the positive
powers of q2, which vanish after a Borel transformation, and
the dimensionless coefficients ci are numerically determined
to be

c0 = −118.23, c1 = −3700.59αs, c2 = −2394.47αs,

c3 = 11561.90αs, c4 = 1850.30αs, c5 = 1197.24αs,

(22)

through a tedious calculation. It should be noted that there
is no infrared divergence as expected by the instanton size
being fixed in the liquid instanton vacuum model. Comparing
Eq. (21) with our previous result [37,38], they differ not only
in some coefficients but also in the logarithm structures due
to the fact that the newly improved calculation is free from
an infrared divergence, while our old ones were not, and it
would need a corresponding cutoff to regularize the integral
in the infrared limit.

Putting everything above together, our final correlation
function for the pseudoscalar glueball current is of the form

Fig. 1 Feynman diagrams for the interference contribution Π(int)(Q2)

up to order α2
s , where spiral lines, dotted lines, and the lines with cir-

cles denote gluons, instantons, and the instanton field strength tensor,
respectively, and a cross stands for the position of the instantons

ΠQCD(Q2) = −25π2n̄ y4K 2
2 (y)

+ αs n̄

[

c0π + c1 + c2y
−2

+ (c3y
2 + c4 + c5y

−2) ln
Q2

μ2

]

+
(αs

π

)2
Q4 ln

Q2

μ2

[

a0 + a1 ln
Q2

μ2

+ a2 ln2 Q2

μ2

]

(23)

with y = Qρ̄.
Before going on, let us compare the roles of the various

parts of the contributions in correlation function. The imagi-
nary part of the correlation function (23) can be worked out
to be
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e−
(s
− ŝ

)2
/
4τ

×
1 π
Im

Π
( s

)[
G

eV
4
] Im Πinstanton(s)/π

Im Πperturbation(s)/π

Im Π interference(s)/π
Im Πtop(s)/π
Im ΠQCD(s)/π (without ImΠtop(s)/π )

e−(s−ŝ)2/4τ×

τ = 1GeV4

ŝ = 1.4052GeV2

Fig. 2 The contributions to the imaginary part of the correlation func-
tion from the pure instanton (cross line), interference (dashed–dotted
line), pure perturbative (dotted line) and topological charge screening
(dashed line), and the total contribution without the topological charge
screening one (solid line) versus s

1

π
ImΠQCD(s) = 16π3s2n̄ρ̄4 J2(ρ̄

√
s)Y2(ρ̄

√
s)

+ α2
s n̄
[

c3ρ̄
2s − c4 + c5(ρ̄

2s)−1]

− s2
(αs

π

)2
[

a0 + 2a1 ln
s

μ2

+
(

3 ln2 s

μ2 − π2
)

a2

]

(24)

where the pure-classical contribution (the first term on the
r.h.s. of (24)) is most dominant, and the contribution of the
interference terms (the second term on the r.h.s.) comes on
the second place, the pure perturbative contribution simply
plays the role of the third place, as shown in Fig. 2, where
the imaginary part of the correlation function is multiplied
with a weight function exp (−(s − ŝ)/4τ), as required by the
Gaussian sum rules, and in accordance with the spirit of the
semiclassical expansion. We note that the contribution from
the topological charge screening, from (84), is displayed in
Fig. 2 as well, and its role is almost insignificant. Moreover,
it is easy to see from Fig. 2 that the imaginary part of the cor-
relation function is already positive from s = 0.5 GeV2 to
s = 10 GeV2 without including the contribution of the topo-
logical charge screening, and the so-called positivity problem
is no longer there. Therefore, the interference contribution to
the correlation function is significant important not only in its
magnitude but also in restoring the positivity to the spectral
function.

We note here that the so-called condensate contribution to
the correlation function of the pseudoscalar glueball current
is proven to be very small on comparing with the one of (23),
as shown in Appendix E, where the comparison between
the real and imaginary parts of the correlation function and
condensate contribution to it are made; they are shown in
Figs. 8 and 9. For the reasons given above, the contributions

from the topological charge screening effect and the usual
condensates are omitted in our sum rule analysis.

3 Spectral function

In the isosinglet channel there are five gauge-invariant com-
posite operators with the quantum numbers of the 0−+, which
are bilinear in the fundamental quark, antiquark, and gluon
fields, namely the pseudoscalar quark densities, the diver-
gences of the axial quark currents, and the gluon anomaly:

Ĵ 8,0
5 = i q̄γ5(λ

8,0/2)q, (25)

∂μ Ĵ
8,0
μ5 = ∂μ[q̄γμγ5(λ

8,0/2)q], (26)

Ôp = αsG
a
μν
˜Ga

μν, (27)

where λ8 is the flavor Gell-Mann matrix, and λ0 = √
2/3I

with I being the 3 × 3 flavor unit matrix. Only three of these
operators are independent due to the two renormalization-
invariant axial Ward identities

∂μ Ĵ
8
μ5 = 1

3
(mu + md + 4ms) Ĵ

8
5

+ 1

3
(4mu + 4md + 2ms) Ĵ

0
5 , (28)

∂μ Ĵ
0
μ5 =

√
2

3
(mu + md − 2ms) Ĵ

8
5

+ 2

3
(mu + md − 2ms) Ĵ

0
5 +

√
3

4
√

2π
Ôp. (29)

Further, under renormalization and the flavor space rotation,
we have

(m Ĵ 8,0
5 )(r) = m Ĵ 8,0

5 , (30)

(∂μ Ĵ
8
μ5)(r) = ∂μ Ĵ

8
μ5, (∂μ Ĵ

0
μ5)(r) = Z∂μ Ĵ

0
μ5, (31)

(Ôp)(r) = Ôp + 4
√

2π√
3

∂μ Ĵ
0
μ5, (32)

where the quantities with subscript (r) are the renormal-
ized ones. As a consequence, the gluon anomaly operator
Ôp, even though renormalization-invariant in the pure-gluon
world, is a linear combination of the three operators Ĵ 8

5 , Ĵ 0
5 ,

and Ôp after renormalization. Therefore, one assumes that
there may be some isosinglet quark–antiquark pseudoscalar
states mixed with the pseudoscalar glueball ground state G.

Now we construct the spectral function for the correlation
function of the pseudoscalar glueball current. The usual low-
est one-resonance plus a continuum model is used to saturate
the phenomenological spectral function:
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1

π
ImΠPHEN(s) = ρHAD(s)−θ(s−s0)

1

π
ImΠQCD(s), (33)

where s0 is the QCD-hadron duality threshold, θ(s − s0)

the step function and ρHAD(s) the spectral function for the
lowest pseudoscalar glueball state. In the usual zero-width
approximation, the spectral function for a single resonance
is assumed to be

ρHAD(s) = F2δ(s − m2), (34)

where m is the mass of the lowest glueball, and F is the
coupling constant of the current to the glueball defined as

〈0|Op(0)|G〉 = F. (35)

The threshold behavior for ρHAD(s) is known to be

ρHAD(s) → λ0s, for s → 0 (36)

from the low-energy theorem in a world without light quark
flavors [58] or the one in a world with three light flavors and
mu,d � ms [59]. In fact, the threshold behavior (36) is only
proven to be valid close to the chiral limit; it may not be
extrapolated far away. Therefore, instead of considering the
coupling F as a constant [7], we choose a model for F as

F =
{

λ0s, for s < m2
π ,

f m2, for s ≥ m2
π ,

(37)

where the λ0 and f are some constants to be determined later
in numerical simulation.

To go beyond the zero-width approximation, in facing the
near-actual situation, the Breit–Wigner form for a single res-
onance is assumed for ρHAD(s),

ρHAD(s) = F2mΓ

(s − m2 + Γ 2/4)2 + m2Γ 2 , (38)

where Γ is the width of the lowest glueball.
Further, the one-isolated lowest resonance assumption is,

however, questioned from the admixture with quarkonium
states, and it is known from the experimental data that there
are five 0−+ pseudoscalar resonances up to and around the
mass scale of 1.405 GeV (namely η(548), η(958), η(1295),
η(1405), and η(1475)). The form of the spectral function for
the five resonances is then taken to be

ρHAD(s) =
5
∑

i=1

F2
i miΓi

(s − m2
i + Γ 2

i /4)2 + m2
i Γ

2
i

, (39)

mi and Γi being the mass and width of the i th resonance,
respectively. For the sake of simplicity, all coupling constants
Fi for s < m2

π are fixed with the same λ0, as shown in (37).

It is noticed that there are other pseudoscalar resonances
η(1760) and η(2225), which are omitted from the summary
table of PDG. These two resonances are excluded in our con-
sideration. The reasons may be listed in order: First, although
η(1760) and η(2225) may certainly be coupled to the pseu-
doscalar glueball current via the gluon anomaly, such a cou-
pling, however, contains a factor of the running coupling,
as commonly seen in QCD, and it becomes weaker as Q2

increases, as demonstrated in an effective QCD low-energy
theory [60]. Second, the mixing between the considered pseu-
doscalar glueball and η(1760) and η(2225) is believed to be
very small because the locations of η(1760) and η(2225)

are far away from the scale of the lowest pseudoscalar glue-
ball. Third, the continuum threshold s0, determined in our
sum rule approach, is only in an effective sense due to the
accuracy level of the present calculation.

4 Finite-width Gaussian sum rules

In this section, we construct the appropriate sum rules of the
0−+ pseudoscalar glueball current, which has the form due
to the dispersion relation

ΠQCD(Q2) =
∫ ∞

0
ds

1

s + Q2

1

π
ImΠ(s) (40)

where ImΠ(s) could be simulated by the phenomenological
one ImΠPHEN(s) within an assumed model of the spectral
function in the spirit of the sum rule approach. Using the
Borel transformation [61]

B̂ ≡ lim
N → ∞
Q4 → ∞

∣

∣

∣

∣

∣

Q4/N≡4τ

(−1)N

(N − 1)! (Q4)N
(

d

dQ4

)N

(41)

to both sides of (40), a family of Gaussian sum rules can be
formed to be [61]

GHAD
k (s0, ŝ, τ ) = GQCD

k (s0, ŝ, τ )

+ 1√
4πτ

exp

[

− ŝ2

4τ

]

Π(0)δk,−1, (42)

where s0 is the continuum threshold; hadronic physics is
(locally) dual to QCD above it. We have

Π(0) = (8π)2 mumd

mu + md
〈q̄q〉, (43)

which comes from the low-energy theorem for QCD with
three light flavors [59], and

GHAD
k (s0, ŝ, τ )

= 1√
4πτ

∫ s0

0
dssk exp

[

− (s − ŝ)2

4τ

]

ρHAD(s)

π
, (44)
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for the phenomenological contributions to the sum rules;

GQCD
k (s0, ŝ, τ ) = GQCD

k (ŝ, τ ) − GCONT
k (s0, ŝ, τ ), (45)

for the theoretical contributions, whereGCONT
k (s0, ŝ, τ ) is the

contribution of the continuum being defined as

GCONT
k (s0, ŝ, τ )

= 1√
4πτ

∫ ∞

s0

dssk exp

[

− (s − ŝ)2

4τ

]

ImQCD(s)

π
, (46)

and GQCD
k (ŝ, τ ) is defined as

GQCD
k (ŝ, τ ) = 2τ√

4πτ
B̂
[

(ŝ + i Q2)kΠQCD(ŝ + i Q2)

i Q2

− (ŝ − i Q2)kΠQCD(ŝ − i Q2)

i Q2

]

. (47)

Substituting the correlation function (23) of the 0−+ pseu-
doscalar glueball into (47), one can derive the Gaussian sum
rules of k = −1, 0 and +1,

GQCD
−1 (ŝ, τ ) = Î · 16π3n̄ρ̄4 J2

(

ρ̄
√
s
)

Y2
(

ρ̄
√
s
)

s

+ n̄παsc0
1√
4πτ

exp

[

− ŝ2

4τ

]

+ n̄α2
s

1√
4πτ

{

−(c1 + c3γ ) exp

[

− ŝ2

4τ

]

+ c2ρ̄
2
√

2τe−ŝ2/8τ D−1(−ŝ/
√

2τ)

− (c4/ρ̄
2 − c5(γ − 1)/ρ̄2)

ŝ

2τ
exp

[

− ŝ2

4τ

]}

+ 1√
4πτ

D−2(−ŝ/
√

2τ)[a0 − (2γ − 2)a1

+ 0.5(6γ 2 − 12γ − π2)a2]2τe−ŝ2/8τ , (48)

GQCD
0 (ŝ, τ ) = Î · 16π3n̄ρ̄4 J2

(

ρ̄
√
s
)

Y2
(

ρ̄
√
s
)

s2

+ n̄α2
s

1√
4πτ

{

c2ρ̄
22τe−ŝ2/8τ D−2(−ŝ/

√
2τ)

− c3
√

2τe−ŝ2/8τ D−1(−ŝ/
√

2τ)

+ (c4/ρ̄
2 − c5γ /ρ̄2) exp

[

− ŝ2

4τ

]}

+ 1√
4πτ

D−3(−ŝ/
√

2τ)[2a0 + (6 − 4γ )a1

+ (6γ 2 − 18γ − π2 + 6)a2](2τ)3/2e−ŝ2/8τ ,

(49)

GQCD
1 (ŝ, τ ) = Î · 16π3n̄ρ̄4 J2

(

ρ̄
√
s
)

Y2
(

ρ̄
√
s
)

s3

+ n̄α2
s√

4πτ

{

2c2ρ̄
2(2τ)3/2e−ŝ2/8τ D−3(−ŝ/

√
2τ)

− c32τe−ŝ2/8τ D−2(−ŝ/
√

2τ)

+ c5ρ̄
−2

√
2τe−ŝ2/8τ D−1(−ŝ/

√
2τ)
}

+ 1√
4πτ

D−4(−ŝ/
√

2τ)[6a0 + (22 − 12γ )a1

+ (18γ 2 − 66γ − 3π2 + 36)a2]4τ 2e−ŝ2/8τ ,

(50)

where

Î = 1√
4πτ

∫ ∞

0
ds exp

[

− (s − ŝ)2

4τ

]

, (51)

and the parabolic cylinder function D−d−1(ŝ
√

τ) is defined
as

D−d−1(z) =
√

2(−1)de−z2/4

d!
dd
(

ez
2/2
∫∞
z/

√
2 dye−y2

)

(dz)d
,

d ≥ 0. (52)

5 Numerical simulation

The expressions for the three-loop running coupling constant
αs(Q2) with three massless flavors (N f = 3) at the renor-
malization scale μ [62],

αs(μ
2)

π
= α

(2)
s (μ2)

π
+ 1

(β0L)3

[

L1

(

β1

β0

)2

+ β2

β0

]

, (53)

are used, where α
(2)
s (μ2)/π is the two-loop running coupling

constant with (N f = 0),

α
(2)
s (μ2)

π
= 1

β0L
− β1

β0

ln L

(β0L)2 (54)

and

L = ln

(

μ2

Λ2

)

, L1 = ln2 L − ln L − 1,

β0 = 1

4

[

11 − 2

3
N f

]

,

β1 = 1

42

[

102 − 38

3
N f

]

,

β2 = 1

43

[

2857

2
− 5033

18
N f + 325

54
N f

]

, (55)
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with the color number Nc = 3 and the QCD renormalization-
invariant scale Λ = 120 MeV. We take μ2 = √

τ after cal-
culating the Borel transforms based on the renormalization
group improvement for Gaussian sum rules [63]. The sub-
traction constant Π(0) has been fixed as [7]

Π(0) � −0.022 GeV4, (56)

and the values of the average instanton size and the overall
instanton density are adopted from the instanton liquid model
[25],

n = 1 fm−4 = 0.0016 GeV4,

ρ = 1

3
fm � 1.667 GeV−1. (57)

The resonance parameters in Eq. (39) could be estimated
by matching both sides of the sum rules, Eq. (42), optimally
in the fiducial domain. In doing so, the parameter ŝ and the
threshold s0 should be determined on priority. Firstly, it is
obvious that s0 must be greater than the mass square of the
highest lying isolated resonance considered, namely

s0 ≥ m2
max (58)

in our multi-resonance assumption (or just the resonance
mass itself in the case of a single-resonance assumption),
and it should guarantee that there is a sum rule window for
the Gaussian sum rules. Secondly, the peak positions of the
GQCD
k (s0, ŝ, τ ) versus ŝ curves should not change too much

with moderate variation of s0. Here we do not mention the
values of τ in this condition, because the peak positions
of these curves is not affected by the appropriate values of
τ . It is found that the behavior of these curves can satisfy
the above requirements as shown in Fig. 3 if s0 lies in the
interval of (4 GeV2, 5 GeV2). It is also remarkable that the
peak positions have already indicated the approximate mass
of the hadron considered. Thus, we would expect that the
mass of the pseudoscalar glueball should be near the value√
ŝ � 1.449 GeV. In another way, if one uses the curves of

GQCD
k (s0, ŝ, τ ) versus τ with fixed ŝ and s0 to obtain the phys-

ical parameters through (43), then ŝ should be set approxi-
mately to be ŝpeak of the curves of GQCD

k (s0, ŝ, τ ) versus τ ,
so as to highlight the underlying hadron state in our consid-
eration and suppress the contributions from other states.

Besides, one needs a sum rule window in which the hadron
physical properties should be stable in this region. For the
upper limit τmax of the sum rule window, the resonance con-
tribution should be great than the continuum one,

GQCD
k (s0, ŝ, τmax) ≥ GCONT

k (s0, ŝ, τmax) (59)

according to the standard requirement due to the fact that in
the energy region above τmax the perturbative contribution

−3 −2 −1 0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

ŝ [GeV2]

GQ
C

D
0

(s
0
,ŝ

,τ
)

[G
eV

4
]

s0=4 GeV2

s0=4.5 GeV2

s0=5 GeV2

τ = 1GeV4

Fig. 3 The curves of GQCD
0 (s0, ŝ, τ ) versus ŝ with different s0 at τ =

1 GeV4

is dominant. At τmin, which lies in the low-energy region,
we require that the single instanton contribution should be
relatively large, so that

Ginst
k (s0, ŝ, τmin)

GQCD
k (s0, ŝ, τmin)

≥ 50 %. (60)

In the same time, to require that the multi-instanton correc-
tions remain negligible, we simply adopt a rough estimate

τmin ≥ 2ρ̄−4 �
(

2

0.6 GeV

)4

. (61)

According to the above requirements, we find that in the
domain

τ ∈ (0.5, 4.5) GeV4, (62)

our sum rules work very well. Finally, in order to measure
the compatibility between both sides of the sum rules (42)
in our numerical simulation, we divide the sum rule win-
dow [τmin, τmax] into N = 100 segments of equal widths,
[τi , τi+1], with τ0 = τmin and τN = τmax, and we introduce
a variation δ (called the matching measure) which is defined
as

δ = 1

N

N
∑

i=1

[L(τi ) − R(τi )]2

|L(τi )R(τi )| , (63)

where L(τi ) and R(τi ) are the l.h.s. and r.h.s. of (42) evalu-
ated at τi .

Let us first consider the case of the single-resonance plus
continuum model (34) of the spectral function by exclud-
ing the interference contribution Π int(Q2) from ΠQCD(Q2)

(case A), in order to recover the earlier results. In this case,
the imaginary part of ΠQCD(Q2), however, becomes nega-
tive for s below 3.9 GeV2, and the full interaction plays the
role of a repulsive potential in the pseudoscalar channel. This
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Table 1 The optimal fitting values of the mass m, width Γ , coupling
constant f , continuum threshold s0, ŝ, and matching measure δ for the
possible 0−+ resonances in the sum rule window [τmin, τmax] for the best
matching between l.h.s. and r.h.s. of the sum rules (42) with k = −1, 0, 1
are listed, where in case A the correlation function ΠQCD(Q2) contains
only a pure perturbative contribution and a pure instanton one, and a
single zero-width resonance plus continuum model is adopted for the

spectral function, while all the contributions arising from a pure instan-
ton, pure perturbative, and interference between both are included in the
correlation function for cases B, C, and D, in which a single zero-width
resonance plus continuum model of the spectral function is adopted for
case B, and a single finite-width resonances plus continuum model for
case C, and the five finite-width resonances plus continuum model for
case D, respectively

Case k Resonances
√
ŝ (GeV) m (GeV) Γ (GeV) f (GeV) s0 (GeV2) [τmin, τmax] (GeV4) δ/10−5

A −1 2.050 1.950 ± 0.050 0 0.561 5.26 ± 0.14 [0.8, 4.0] 22.60 + 1.46

0 2.100 2.000 ± 0.035 0 0.599 5.18 ± 0.12 [0.5, 6.0] 1.99 + 0.13

1 2.110 2.080 ± 0.040 0 0.592 5.20 ± 0.10 [0.8, 6.0] 7.56 + 0.45

B −1 1.405 1.682 ± 0.023 0 1.457 5.24 ± 0.15 [1.0, 3.0] 49.72 + 2.98

0 1.490 1.620 ± 0.027 0 1.387 4.61 ± 0.09 [0.8, 2.5] 3.67 + 0.18

1 1.380 1.631 ± 0.031 0 1.392 4.45 ± 0.11 [1.4, 3.2] 8.97 + 0.43

C −1 1.405 1.405 ± 0.024 0.05 1.630 5.25 ± 0.14 [0.8, 4.0] 2.44 + 0.12

0 1.350 1.400 ± 0.025 0.08 1.671 4.45 ± 0.12 [0.5, 4.3] 4.47 + 0.21

1 1.380 1.416 ± 0.024 0.03 1.760 4.19 ± 0.11 [0.5, 4.5] 2.19 + 0.11

D −1 η(548) 1.405 0.548 ± 0.008 1.3 × 10−6 1.100 5.25 ± 0.12 [0.5, 4.5] 4.88 + 0.23

η(958) 0.958 ± 0.014 1.9 × 10−3 1.100

η(1295) 1.295 ± 0.020 0.055 1.200

η(1405) 1.405 ± 0.021 0.051 1.330

η(1475) 1.475 ± 0.023 0.085 1.010

0 η(548) 1.500 0.548 ± 0.009 1.3 × 10−6 1.200 4.79 ± 0.11 [0.5, 4.3] 3.38 + 0.17

η(958) 0.958 ± 0.016 1.9 × 10−3 1.300

η(1295) 1.295 ± 0.021 0.055 1.195

η(1405) 1.405 ± 0.022 0.051 1.300

η(1475) 1.475 ± 0.025 0.085 1.011

1 η(548) 1.405 0.548 ± 0.010 1.3 × 10−6 1.100 4.30 ± 0.10 [1.0, 4.0] 3.56 + 0.17

η(958) 0.958 ± 0.017 1.9 × 10−3 1.200

η(1295) 1.295 ± 0.022 0.055 1.210

η(1405) 1.405 ± 0.023 0.051 1.310

η(1475) 1.475 ± 0.024 0.085 1.050

is the reason why the authors in Ref. [39] cannot find the sig-
nal for the pseudoscalar glueball. When we choose to work in
the positively definite region, say s ∈ (4, 10) GeV2, the mass
of the 0−+ glueball can be worked out by using the family of
Gaussian sum rules (42). The fitting parameters are listed in
the first three lines of Table 1 and the corresponding match-
ing curves for k = −1, 0, and +1 are displayed in Fig. 4,
respectively. The optical values of mass, coupling constant,
and s0 of the 0−+ pseudoscalar glueball are

m = 2.010 ± 0.299 GeV, f = 0.584 ± 0.043 GeV,

s0 = 5.21 ± 0.43 GeV2, (64)

where the errors are estimated from the uncertainties of the
spread between the individual sum rules, and by varying the
value of Λ in the region of

Λ = 120 ∼ 200 MeV, (65)

as assumed hereafter. The mass values of the 0−+ pseu-
doscalar glueball in (64) are reasonably consist with the one
obtained in Ref. [7] by adding the topological charge screen-
ing effect and performing the so-called Gaussian-tail distri-
bution for the instanton size. However, after performing the
Gaussian-tail distribution for the instanton size, the mass of
the 0++ glueball is lower, around 1.25 GeV [7], in contradic-
tion with the lattice simulation [45,64] and phenomenology
[65]. The mass scales in (64) are located at the strong repul-
sive potential region of the energy (below 3.9 GeV2), where
the bound state of a glueball cannot form when working in the
spike distribution, which is motivated from the liquid instan-
ton model of QCD vacuum in the large Nc limit. In fact, the
fundamental spectral positivity bound can be traced back to
the definition of the correlation function (3). The spectral
function should be positive even before taking the average
with any specific instanton-size distribution. It is difficult for
us to understand that there is no artifice in changing the posi-
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Fig. 4 The l.h.s. (dashed line) and r.h.s. (solid line) of the sum rules
(42) with k = −1, 0, 1 versus τ in the case where the correlation func-
tion ΠQCD(Q2) contains only a pure perturbative contribution and a
pure instanton one, and a single zero-width resonance plus continuum
model is adopted for the spectral function

tivity behavior of the spectral function just by performing the
average with the Gaussian-tail distribution for the instanton
size.

From now on, the full correlation function ΠQCD(Q2)

including the interference contribution Π int(Q2), (23), is
used in our analysis of the Gaussian sum rules (42). In the
case of single-resonance plus continuum models, specified,
respectively, by (34) and (38), for the spectral function, the
optimal parameters governing the sum rules with zero (case
B) and finite (case C) widths are listed from the fourth to the

ninth line of Table 1 and the corresponding curves for the
l.h.s. and r.h.s. of (42) with k = −1, 0, and +1 are displayed
in Figs. 5 and 6, respectively. From Table 1, the optical values
of the pseudoscalar glueball mass, width, coupling, and the
duality threshold with the best matching are

m = 1.644 ± 0.194 GeV, f = 1.412 ± 0.129 GeV,

s0 = 4.77 ± 0.74 GeV2, (66)

for the one zero-width resonance model, and

m = 1.407 ± 0.162 GeV, Γ = 0.053 ± 0.018 GeV

f = 1.687 ± 0.145 GeV, s0 = 4.63 ± 0.62 GeV2, (67)

for one finite-width resonance model. It is shown in Fig. 5
that the topological charge screening effect has little impact
on Gaussian sum rules indeed.

In the numerical simulation for the case of the five finite-
width resonances plus continuum model (39) for the spectral
function (case D), we just choose the data in PDG as the
fitting parameters for masses and width of the resonances
η(548), η(985), η(1295), and η(1475), and the result of the
single-resonance model (case C) as the fitting parameters
for η(1405); while the couplings of the five resonances to
the current are chosen to be approximately the same as that
for η(1405) determined in case C because the pseudoscalar
quarkonia can be directly coupled to the gluon anomaly, and,
as a consequence, all five resonances should be coupled to
the current with the strengths of almost the same magnitude
of degree; finally, the optimal parameters are determined by
adjusting the chosen parameters so that the matching measure
δ for both sides of the Gaussian sum rules (42) is minimal.
The optimal parameters governing the sum rules are listed
in the remaining lines of Table 1. The corresponding curves
for the l.h.s. and r.h.s. of (42) with k = −1, 0, and +1 are
displayed in Fig. 7. Taking the average, the optical values of
the widths of the five lowest 0−+ resonances in the world
of QCD with three massless quarks and the corresponding
optical fit parameters are predicted to be

mη(548) = 0.548 ± 0.022 GeV,

fη(548) = 1.133 ± 0.167 GeV,

Γη(548) = 1.3 × 10−6 ± 3.9 × 10−8 GeV, (68)

mη(985) = 0.958 ± 0.051 GeV,

fη(985) = 1.200 ± 0.233 GeV,

Γη(985) = 1.9 × 10−3 ± 5.7 × 10−5 GeV, (69)

mη(1295) = 1.295 ± 0.075 GeV,

fη(1295) = 1.202 ± 0.112 GeV,
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Fig. 5 The l.h.s. without the topological charge screening contribution
(dashed line), the l.h.s. with the topological charge screening contri-
bution (dot line) and the r.h.s. (solid line) of the sum rules (42) with
k = −1, 0, 1 versus τ in the case where the interference contribution is
included in the correlation function ΠQCD(Q2), and a single zero-width
resonance plus continuum model is adopted for the spectral function

Γη(1295) = 0.055 ± 0.018 GeV, (70)

mη(1405) = 1.405 ± 0.081 GeV,

fη(1405) = 1.313 ± 0.105 GeV,

Γη(1405) = 0.051 ± 0.017 GeV, (71)

mη(1475) = 1.475 ± 0.092 GeV,

fη(1475) = 1.023 ± 0.097 GeV,

Γη(1475) = 0.085 ± 0.028 GeV, (72)
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ŝ = 1.3802GeV2

s0 = 4.19GeV2

m = 1.416GeV
f = 1.760GeV
Γ = 0.03GeV

Fig. 6 The l.h.s. (dashed line) and r.h.s. (solid line) of the sum rules
(42) with k = −1, 0, 1 versus τ in the case where the correlation func-
tion ΠQCD(Q2) contains the pure instanton, interference, and pure per-
turbative contributions, and a single finite-width resonance plus contin-
uum model is adopted for the spectral function

with

s0 = 4.78 ± 0.64 GeV2. (73)

Figures 6 and 7 show the satisfactory compatibility between
both sides of the sum rules over the whole fiducial region.
These results are well in accordance with the experimental
discovered resonance [14]
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Fig. 7 The l.h.s. (dashed line) and the r.h.s. (solid line) of the sum
rules (42) with k = −1, 0, 1 versus τ in the case where the correla-
tion function ΠQCD(Q2) contains the pure instanton, interference, and
pure perturbative contributions, and the five finite-width resonances plus
continuum model is adopted for the spectral function

mη(1405) = 1409.8 ± 2.5 MeV,

Γη(1405) = 51.1 ± 3.4 MeV. (74)

6 Discussion and conclusion

The instanton–gluon interference and its role in finite-width
Gaussian sum rules for the 0−+ pseudoscalar glueball are

analyzed in this paper. Our main results can be summarized
as follows:

First, the contribution to the correlation function arising
from the interference between the classical instanton fields
and the quantum gluon ones is reexamined and derived in the
framework of the a semiclassical expansion of the instanton
liquid vacuum model of QCD. The resultant expression is
gauge-invariant, and free of the infrared divergence, and it
differs from our previous one not only in some coefficients
but also in the logarithm structures [37,38]. Its magnitude
is just between the larger contribution from pure classical
instanton configurations and the smaller one from the pure
quantum fields, and it plays a great role in sum rule anal-
ysis in accordance with the spirit of a semiclassical expan-
sion. The imaginary part of the correlation function including
this interference contribution turns out to be positive with-
out including the topological charge screening effect, which
is proven to be smaller than the perturbative contribution
in the fiducial sum rule window and negligible in compar-
ison with the interference effect. The so-called problem of
positivity violations in the imaginary part of the correlation
function, stressed by Forkel [7], disappears. Moreover, in the
correlation function the traditional condensate contribution is
excluded to avoid double counting [7], because condensates
can be reproduced by the instanton distributions [25–28];
another reason to do so is that the usual condensate contri-
bution is proven to be unusually weak, and it cannot fully
reflect the non-perturbative nature of the low-lying gluonia
[7,37,38,66]. In our opinion, the condensate contribution can
be considered as a small fraction of the corresponding instan-
ton one, so it is naturally taken into account already.

Second, the properties of the lowest lying 0−+ pseu-
doscalar glueball are systematically investigated in a family
of Gaussian sum rules in five different cases. In case A, the
correlation function ΠQCD(Q2) contains only a pure per-
turbative contribution and a pure instanton one, and a sin-
gle zero-width resonance plus continuum model is adopted
for the spectral function, and, of course, the old results are
recovered (even excluding the topological charge screening
contribution), and some pathology is explored. To go beyond
the above constraint, all the contributions arising from pure
instanton, pure perturbative, and interference between both
are included in the correlation function for cases B, C, and
D, in which a single zero-width resonance plus continuum
model of the spectral function is adopted for case B, and
a single finite-width resonances plus continuum model for
case C, and the five finite-width resonances plus continuum
model for case D, respectively. The optimal fitting values
of the mass m, width Γ , coupling constant f , continuum
threshold s0 for the possible 0−+ resonances are obtained,
and quite consistent with each other. The main difference
between this work and our previous one [37,38] is as fol-
lows. For the spectral function of the considered resonances,
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instead of the zero-width approximation of one gluonic reso-
nance plus other low-lying quark–antiquark ones, the finite-
width Breit–Wigner form with a correct threshold behavior
for the lowest five resonances with the same quantum num-
bers is used in this work. This is done in order to compare
with the phenomenology. The resultant Gaussian sum rules
with k = −1, 0,+1 are carried out with a few of the QCD
standard input parameters, and it really is in accordance with
the experimental data.

Let us now identify where the lowest lying 0−+ pseu-
doscalar glueball is. The results of the single-resonance plus
continuum models B and C, namely Eqs. (66) and (67), imply
that the meson η(1405) may be the most favored candidate
for the lowest lying 0−+ pseudoscalar glueball, because the
difference between the two models is just the width of the
resonances, and this is of course believed to be more in accor-
dance with reality. This conclusion can further be justified
by the result of the five-resonances plus continuum model,
namely Eqs. (71), (72), and (73). Note that the first two reso-
nances η(548) and η(985) are far away from the mass scale
of η(1405), and they usually are considered as the superposi-
tion of the fundamental flavor-singlet and octet pseudoscalar
mesons composed of a quark–antiquark pair, thus having a
dominant role as regards responsibility for the axial anomaly
[67–69]. In order to explore the structures of the remaining
three resonances η(1295), η(1405), and η(1475), we would
like to use the η–η′–G mixing formalism based on the anoma-
lous Ward identity for the transition matrix elements [12,49]
to relate the physical states η, η′, and G to the fundamen-
tal flavor-singlet and octet quark–antiquark mesons and the
lowest pure gluon state through a rotation,

⎛

⎜

⎝

〈0|Ôp|η1295〉
〈0|Ôp|η1475〉
〈0|Ôp|η1405〉

⎞

⎟

⎠
= U

⎛

⎜

⎝

〈0|Ôp|η8〉
〈0|Ôp|η1〉
〈0|Ôp|G〉

⎞

⎟

⎠
, (75)

where the U is the mixing matrix [12,49]

U =
⎛

⎝

cos ϕp − sin ϕp 0
cos φG sin ϕp cos ϕp sin φG sin φG

− cos φG sin ϕp − cos ϕp sin φG cos φG

⎞

⎠ (76)

where ϕp ≈ 40◦ and φG ≈ 22◦ is the η–η′ [49] mixing angle
and the mixing angle of the pseudoscalar glueball with η′.
Then one has

U =
⎛

⎝

0.766044 −0.642788 0
0.595982 0.286965 0.374607

−0.595982 −0.286965 0.927184

⎞

⎠ . (77)

To be quantitative, the corresponding normalized couplings
F to the three resonances η, η′, and G with masses 1.295,
1.475, 1.405 GeV can be read from Table 1 to be

0.51 GeV3, 0.65 GeV3, 0.56 GeV3, (78)

after normalization, respectively. As a relatively rough esti-
mation, from Eq. (78) the values of the couplings of Ôp to
the states η1, η8, and pseudoscalar glueball G are obtained,

〈0|Ôp|η1〉 = −0.117 GeV3,

〈0|Ôp|η8〉 = 0.568 GeV3,

〈0|Ôp|G〉 = 0.813 GeV3, (79)

by reversing Eq. (75). This shows that the coupling of the 0−+
glueball current to the pure glueball state G is dominant, and
the signs of the couplings 〈0|Ôp|η1〉 and 〈0|Ôp|η8〉 are simi-
lar to those predicted by the scalar glueball–meson coupling
theorems [58,70].

Furthermore, η(1405) and η(1475) could originate from
a single pole [see Amsler and Masoni’s review for eta(1405)
in PDG]. To check whether the single pseudoscalar meson
assumption may be consistent with our sum rule approach,
or the dependence of the results on the model selected for the
spectral function, we add an analysis of the four-resonance
model for the spectral function. The result is shown in
Appendix F. From Fig. 10 and Table 2 it is easy to see that the
four-resonance model for the spectral function is inconsistent
with our sum rule analysis, because, first, the resultant mass
scale of the fourth resonance is approximately 1.41 GeV in
average, which is located outside of the sum rule window;
second, the matching degree δ of the four-resonance model
is obviously worse than the δ of the five-resonance model.

In summary, our result suggests thatη(1405) is a good can-
didate for the lowest 0−+ pseudoscalar glueball with some
mixture with the nearby excited isovector and isoscalar qq̄
mesons. This is a first theoretical support for the phenomeno-
logical estimation from the sum rule approach.
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Appendix A: Pure instanton and perturbative contribu-
tion

In the instanton liquid model, the pure instanton contribution
of 0−+ pseudoscalar glueball with a spike instanton distri-
bution in Euclidean space-time is known [7,71–73],

Π
(cl)
E (Q2) = −25π2n̄ρ̄4Q4K 2

2 (Qρ̄) (80)
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where K 2
2 is the McDonald function and n(ρ) is the size

distribution of instantons, and the appearance of the overall
minus sign in the r.h.s. of (80) is due to the anti-hermitian
property of the current, i.e. O†

p = −Op in Euclidean space-
time.

The second part of (10) has already been calculated up to
three-loop level in the MS dimensional regularization scheme
[11,71,74]

Π(qu)(Q2) =
(αs

π

)2
Q4 ln

Q2

μ2

[

a0 + a1 ln
Q2

μ2

+ a2 ln2 Q2

μ2

]

, (81)

where μ is the renormalization scale, and the coefficients
with the inclusion of the correct threshold effect are

a0 = −2

[

1 + 20.75
(αs

π

)

+ 305.95
(αs

π

)2
]

,

a1 = 2
(αs

π

)

[

9

4
+ 72.531

(αs

π

)

]

,

a2 = −10.1250
(αs

π

)2
(82)

for QCD with three massless quark flavors up to three-loop
level.

Appendix B: Topological charge screening

The topological charge screening effect can be understood
by tracing back to the anomaly of the axial-vector current
J 5
μ = Σi ψ̄iγ5γμψi with ψi being the quark field of flavor i

∂μ J
5
μ = 2N f Q(x) (83)

where the topological charge current Q(x) relates to the pseu-
doscalar glueball current by Q(x) = Op(x)/(8π). Equation
(83) indicates that instantons generate quark–antiquark pairs,
which then may form a light meson to mediate the long-
range multi-instanton interaction [16]. Kikuchi and Wudka
[75] suggest that such a light meson, which can couple to the
instanton in such a way that the instanton generates all light
quark flavors with identical probability, being the meson η0,
and that it leads to an effective Lagrangian (see also [76,77])
which gives rise to the topological charge screening contri-
bution Π top to the correlation function of the pseudoscalar
current [7],

Π top(Q2) = F2
η

Q2 + m2
η

+ F2
η′

Q2 + m2
η′

, (84)

where mη and mη′ are the masses of the mesons η and η′, and
the two constants Fη and Fη′ are evaluated to be 16π n̄ξ sin φ

and 16π n̄ξ cos φ; and ξ and φ ≈ 22◦ are the coupling
strength of η0 to an instanton and the η–η′ mixing angle,
respectively.

Appendix C: The operators Oi (x)

The operators Oi in terms of instanton and quantum gluon
fields are

O1(x) = Fμν,a[A(x)]Fρσ,a[A(x)],
O2(x) = 4Fμν,a[A(x)](∂ρaσa[A(x)]),
O3(x) = 4gs fabcFμν,a[A(x)]Aρb(x)aσc(x),

O4(x) = 4(∂μaνa(x))(∂ρaσa(x)),

O5(x) = 8gs fabc Aρb(x)(∂μaνa(x))aσc(x),

O6(x) = 4g2
s fabc fade Aμb(x)Aρd(x)aνc(x)aσe(x),

O7(x) = 2gs fabcFμν,a[A(x)]aρb(x)aσc(x),

O8(x) = 4gs fabcaμb(x)aνc(x)(∂ρaσa(x)),

O9(x) = 4g2
s fabc fade Aρd(x)aμb(x)aνc(x)aσe(x),

O10(x) = g2
s fabc fadeaμb(x)aνc(x)aρd(x)aσe(x), (85)

where Fμν,a[A(x)] is the instanton field strength associated
with the instanton field A.

Appendix D: The interference contributions Π
(int)
i (q2)

The expressions of the interference contributions Π
(int)
i (q2)

in terms of Oi are

Π
(cl+qu)

1 (q2) = T̂ 〈Ω|O2(x)O2(0)|Ω〉,
Π

(cl+qu)

2 (q2) = T̂ 〈Ω|O2(x)O3(0)|Ω〉,
Π

(cl+qu)

3 (q2) = T̂ 〈Ω|O3(x)O3(0)|Ω〉,
Π

(cl+qu)

4 (q2) = T̂ 〈Ω|O4(x)O5(0)|Ω〉,
Π

(cl+qu)

5 (q2) = T̂ 〈Ω|O4(x)O6(0)|Ω〉,
Π

(cl+qu)

6 (q2) = T̂ 〈Ω|O4(x)O7(0)|Ω〉,
Π

(cl+qu)

7 (q2) = T̂ 〈Ω|O5(x)O5(0)|Ω〉,
Π

(cl+qu)

8 (q2) = T̂ 〈Ω|O7(x)O7(0)|Ω〉,
Π

(cl+qu)

9 (q2) = T̂ 〈Ω|O5(x)O7(0)|Ω〉,
Π

(cl+qu)

10 (q2) = T̂ 〈Ω|O6(x)O7(0)|Ω〉,
Π

(cl+qu)

11 (q2) = T̂ 〈Ω|O5(x)O6(0)|Ω〉,
Π

(cl+qu)

12 (q2) = T̂ 〈Ω|O6(x)O6(0)|Ω〉, (86)

where

T̂ ≡ −1

2
α2
s n̄εμνρσ εμ′ν′ρ′σ ′

∫

d4z
∫

d4x . (87)

Appendix E: Comparison between the condensate
contributions and the instanton–induced ones

The contributions arising from condensates up to the eighth
dimensions are known to be as follows [7]:
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Fig. 9 The contributions to the correlation function arising from the
pure instanton (cross line), interference (dashed–dotted line), pure per-
turbative (dotted line), topological charge screening (dashed line), con-
densates (star line) and the total contribution without the topological
charge screening one (solid line) versus Q2

Πcond(Q2) = 4αs〈αsG
2〉 + 9

π
α2
s 〈αsG

2〉 ln
Q2

μ2

− 8α2
s 〈gG3〉 1

Q2 + 15π

2
α2
s 〈αsG

2〉2 1

Q4 , (88)

where

〈αsG
2〉 = 0.05 GeV4,

〈gG3〉 = 0.27 GeV2〈αsG
2〉, (89)

The imaginary part of condensates (88) has the form

1

π
ImΠCond(s) = − 9

π
α2
s 〈αsG

2〉 − 8α2
s 〈gG3〉δ(s)

+ 15π

2
α2
s 〈αsG

2〉2δ′(s). (90)

The comparison between the imaginary part of the correla-
tion function, (24), and the condensate contribution to it are
shown in Fig. 8, while the comparison between the various
real parts of (23) (which altogether are related with the imag-
inary part by the dispersion relation (40)) and the condensate
contribution to it are shown in Fig. 9.

Appendix F: The results for the four finite-width reso-
nance model from the Gaussian sum rules

The optimal parameters of the four finite-width resonance
model for the spectral function are listed in Table 2, and the
corresponding plots are shown in Fig. 10.

Table 2 For the four finite-width resonances plus continuum model,
the optimal fitting values of the mass m, width Γ , coupling constant
f , continuum threshold s0, ŝ, and matching measure δ for the possible

0−+ resonances in the sum rule window [tmin, tmax] (t = τ−1) for the
best matching between the l.h.s. and the r.h.s. of the sum rules with
k = −1, 0, 1 are listed

k Resonances
√
ŝ (GeV) m (GeV) Γ (GeV) f (GeV) s0 (GeV2) [tmin, tmax] (GeV−4) δ/10−4

−1 η(548) 1.405 0.548 1.3 × 10−6 1.100 5.30 [0.25, 1.00] 2.3

η(958) 0.958 1.9 × 10−3 1.100

η(1295) 1.295 0.055 1.200

1.412 0.051 1.340

0 η(548) 1.500 0.548 1.3 × 10−6 1.200 4.80 [0.29, 0.77] 2.2

η(958) 0.958 1.9 × 10−3 1.300

η(1295) 1.295 0.055 1.195

1.420 0.051 1.670

1 η(548) 1.405 0.548 1.3 × 10−6 1.100 4.29 [0.42, 0.83] 9.3

η(958) 0.958 1.9 × 10−3 1.200

η(1295) 1.295 0.055 1.210

1.410 0.051 1.740
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Fig. 10 The l.h.s. (dashed line) and r.h.s. (solid line) of the sum rules
(43) with k = −1, 0, 1 versus τ in the case where the correlation func-
tion ΠQCD(Q2) contains the pure instanton, interference, and pure per-
turbative contributions, and the four finite-width resonance plus contin-
uum model is adopted for the spectral function
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