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Abstract We evaluate quasinormal modes of a massive
scalar field of the Ernst spacetime, an exact solution of
the Einstein–Maxwell equations, describing a black hole
immersed in a uniform magnetic field B. It is well known
that the quasinormal spectrum for a massive scalar field in
the vicinity of the magnetized black holes acquires an effec-
tive mass μeff = √

4B2m2 + μ2, where m is the azimuthal
number and μ is the mass of scalar field. The numerical result
shows that increasing of the field effective mass and the mag-
netic field B gives rise to decreasing of the imaginary part of
the quasinormal modes until reaching a vanishing damping
rate.

1 Introduction

It has been well understood that when a classical black hole
is perturbed by an exterior field, the dynamical evolution of
the field will undergo three stages [1]. The first one is an
initial wave burst coming directly from the source, and it is
dependent on the initial form of the original wave field. The
second one involves the damped oscillations called the quasi-
normal modes (QNMs), which do not depend on the initial
values of the wave but are characteristic of the background
black hole spacetimes. The QNMs are defined as the complex
solutions to the perturbation wave equations under certain
boundary conditions. The QNM frequencies have complex
values because of radiation damping. The last stage is the
power-law tail behavior. Here we would like to concentrate
on the intermediate stage of the evolution of the massive
scalar field where the QNMs dominate.

Astrophysical interest in QNMs originated from their rel-
evance in gravitational wave analysis. The QNMs of black
holes are expected to be detected by gravitational wave detec-
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tors such as LISA [2]. Recently the study of the QNMs has
gained considerable attention coming from the AdS/CFT cor-
respondence in string theory. The lowest quasinormal fre-
quencies of black holes have a direct interpretation as dis-
persion relations of hydrodynamic excitations in the ultra-
relativistic heavy ion collisions [3]. All of these aspects moti-
vated the extensive numerical and analytical study of QNMs
for different spacetimes and different fields (both massive
and massless) around black holes. We refer the reader to the
reviews [4–7] where a lot of references to the recent research
of QNMs can be found.

It is well known that the massive QNMs decay more slowly
than the massless ones, as shown both by frequency domain
methods [8–10] and by time domain methods [11–13]. In Ref.
[8], Simone and Will have investigated massive QNMs on a
Schwarzschild black hole spacetime using the WKB method
[14–16]. They studied the dependence of QNM frequencies
on the mass of the scalar field, which is restricted to a narrow
range due to the restriction required by the WKB method.
A full revelation of the dependence of QNM frequencies
on a wide range of field masses is still expected. Ohashi
and Sakagami [17] investigated QNMs for the decay of the
massive scalar field on the Reissner–Nordström black hole
spacetime by using the continued fraction method [18] and
found that there are QNMs with arbitrarily long life when
the field mass has special values. They named these modes
quasi-resonance modes (QRMs).

The magnetic field is one of the most important con-
stituents of the cosmic space and one of the main sources
of the dynamics of interacting matter in the universe. It was
found that the equation of state of compact stars is strongly
affected by a strong magnetic field [19,20]. Moreover, strong
magnetic fields of up to 104–108G are supposed to exist near
supermassive black holes in the active galactic nuclei and
even around stellar mass black holes [21]. The interaction
between a black hole and a magnetic field can happen in a
lot of physical situations, such as a charged accretion disk
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or other charged matter distributions around a black hole. If
mini-black holes are created in ultra-relativistic particle col-
lisions in brane-world scenarios, there exists a possibility of
interaction between strong magnetic fields and mini-black
holes in a great variety of high energy processes when quan-
tum gravity states are excited. So astrophysicists are highly
interested in investigating the magnetic fields around black
holes. In Ref. [22], Konoplya and Fontana have found the
QNMs for the Ernst black hole [23], that is, a black hole
immersed in an external magnetic field. They described the
influence of the magnetic field on the characteristic quasi-
normal spectrum of black holes.

In this paper, we consider the massive scalar field pertur-
bations around the Ernst black hole. We shall find the QNMs
of the Ernst black holes in the frequency domain. Our numer-
ical investigation shows that the magnetic field B increases
with the decrement of the imaginary part of the QNM until
reaching a vanishing damping rate. When some threshold
values of B are exceeded, the particular QNMs disappear. In
Sect. 2, we consider the Klein–Gordon equation in the Ernst
spacetime and its reduction into a Schrödinger-like equation
with a particular effective potential. Then we evaluate the
quasinormal frequencies of the massive scalar field using the
continued fraction method. The last section ends this paper
with a summary and a conclusion.

2 The basic equations and numerical results

In 1976 Ernst found a class of exact black hole solutions of
the Einstein–Maxwell equations [23]. The simplest of these
solutions corresponds to a magnetized Schwarzschild black
hole, described by the Ernst metric, which has the form

ds2 = �2

(

−
(

1− 2M

r

)
dt2+

(
1− 2M

r

)−1

dr2+r2dθ2

)

+r2sin2θ

�2 dφ2, (1)

where the external magnetic field B is determined by the
relation

�2 = 1 + B2r2 sin2 θ. (2)

The vector potential giving rise to the homogeneous magnetic
field reads

Aμdxμ = − Br2 sin2 θ

�
dφ. (3)

As a magnetic field is assumed to exist everywhere in space,
the above metric is not asymptotically flat.

The Klein–Gordon equation describing the evolution of
the massive scalar perturbation field outside the Ernst black
hole is given by

1√−g
∂μ(gμν√−g∂ν�) + μ2� = 0. (4)

Generally, the Klein–Gordon equation for the Ernst black
hole spacetime does not allow for separation of radial and
angular variables. Yet because of a small B in our problem,
one can safely neglect terms higher than B2 in Eq. (4). In
this way it is known that we have only a dominant correction
due to the magnetic field to the effective potential of the
Schwarzschild black hole approximately [22]. The Klein–
Gordon equation for the angular part has the form

Psch(θ, φ)�

r2 + �4 − 1

r2 sin2 θ
∂φφ� = 0, (5)

with Psch(θ, φ) meaning the corresponding pure-Schwarzs-
child part of the angular equation, Psch(θ, φ)� = −l(l +
1)�; then one finds

1

sin θ

∂

∂θ

(
sin θ

∂Ylm
∂θ

)
+ 1

sin2 θ

∂2Ylm
∂2φ

=
(
−l(l + 1) + 4B2m2r2

)
Ylm . (6)

After separation of the angular variables, one can reduce
the wave equation (4) in the Ernst background to the
Schrödinger wave equation,
(

d2

dr∗2 + ω2 − V (r∗)
)

	(r∗) = 0, (7)

with the effective potential V (r):

V (r) = f (r)

(
l(l + 1)

r2 + 2M

r3 + 4B2m2 + μ2
)

, (8)

where

f (r) = 1 − 2M

r
, dr∗ = dr

f (r)
, (9)

and m is the azimuthal quantum number. One can see that
the effective potential Eq. (8) coincides with the potential
for the massive scalar field with the effective mass μeff =√

4B2m2 + μ2 in the Schwarzschild background.
Note that the wave equation with the obtained potential

Eq. (8) satisfies the quasinormal mode boundary condition
at spatial infinity, which in our particular case takes the form

ψ(r∗) ∼ C+eiχr
∗
r iMμ2

eff/χ (r, r∗ → +∞), (10)

χ =
√

ω2 − μ2
eff . (11)

Within the continued fraction method we can calculate the
singular factor of the solution of Eq. (7) that satisfies an in-
going wave boundary condition at the horizon and Eq. (10) at
infinity, and we expand the remaining part into the Frobenius
series that are convergent in the R-region (−∞ < r∗ <

+∞). The solution of Eq. (7) is expanded as follows:
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ψ(r) = eiχr r (2iMχ+iMμ2
eff/χ)

(
1 − 2M

r

)−2iMω

×
∑

n

an

(
1 − 2M

r

)n

. (12)

Substituting Eq. (12) into Eq. (7) we obtain the following
recursion relation for the coefficients an :

α0a1+β0a0 =0, αnan+1+βnan+γnan−1 =0, n > 0,

(13)

where

αn = (n + 1)(n + 1 − 4Mωi), (14)

βn = −2n(n + 1) − 1 − l(l + 1)

+M(ω+χ)(4M(ω+χ)2+i(2n+1)(ω+3χ))

χ
, (15)

γn = (n − Mi(ω + χ)2/χ)2. (16)

Since the series are convergent at infinity, the ratio of suc-
cessive an will be given by the infinite continued fraction:

an+1

an
= γn

αn

αn−1

βn−1 − αn−2γn−1
βn−2−αn−3γn−2/...

− βn

αn

= − γn+1

βn+1 − αn+1γn+2
βn+2−αn+2γn+3/...

. (17)

Thus the QNM frequencies are given by the vanishing
point of the following continued fraction equation:

βn− αn−1γn

βn−1− αn−2γn−1
βn−2−αn−3γn−2/...

=− γn+1αn

βn+1− αn+1γn+2
βn+2−αn+2γn+3/...

.

(18)

The quasinormal modes for massive scalar fields were
studied for the first time by Simone and Will [8] and later in
[9,10] with the help of the WKB method [14–16]. The mas-
sive QNMs are characterized by the growing of the damping
time with the mass until the appearance of the infinitely long
lived modes called quasi-resonances [17].

We obtained the QNMs for different values of B, l, andm.
The results are summarized in Table 1. From the available
data we can see that the Re ω grows and Im ω decreases
when the magnetic field B increases. Therefore a black
hole is a better oscillator in the presence of a magnetic

field, i.e., in this case the quality factor Q ∼ Re ω/Im ω

increases, compared to the nonmagnetic circumstance. Fig-
ure 1 shows that increasing of the magnetic field B gives
rise to decreasing of the imaginary part of the QNM until
reaching a vanishing damping rate. When some thresh-
old values of B are exceeded, the particular QNMs disap-
pear.

Then for a given magnetic field, we calculated the QNMs
for Ernst black holes for different values of the scalar field
mass in the two cases of l = 1 and 2. We list our numer-
ical results in Table 2. The numerical investigation shows
that increasing of the field mass μ also gives rise to decreas-
ing of the imaginary part of the QNM until reaching a van-
ishing damping rate. When some threshold values of μ are
exceeded, the quasinormal modes also disappear. For a given
l, for example l = 1 and 2, the larger magnetic field B is, the
smaller the threshold value of μ becomes. In order to illus-
trate our results more transparently, we show our numerical
results in Fig. 2.

Fig. 1 Fundamental quasinormal modes of the massless scalar field for
Ernst black holes under different magnetic field B, for m = 1, l = 1, 2.
Given l = 1 for example, the larger the magnetic field B is, the smaller
the imaginary part of QNM becomes. When the threshold value of
B = 0.27 is exceeded, the particular QNMs disappear

Table 1 Fundamental
quasinormal modes for Ernst
black holes for different values
of the magnetic field B. Here,
M = 1, μ = 0

B l = 1,m = 1 l = 2,m = 1 l = 2,m = 2

0.005 0.292981–0.097633i 0.483675–0.096748i 0.483770–0.096716i

0.025 0.294054–0.096988i 0.484433–0.096488i 0.486804–0.095675i

0.050 0.297416–0.094957i 0.486804–0.095675i 0.496327–0.092389i

0.075 0.303040–0.091521i 0.490764–0.094312i 0.512346–0.086795i

0.100 0.310957–0.086593i 0.496327–0.092389i 0.535100–0.078676i

0.125 0.321199–0.080040i 0.503512–0.089891i 0.564937–0.067625i
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Table 2 Fundamental quasinormal modes for Ernst black holes for
different values of the scalar field mass for given B. The parameter m
is set to be 1

l B μ ω

1 0.1 0 0.310957–0.086593i

0.1 0.315507–0.083712i

0.2 0.329199–0.074756i

0.3 0.352055–0.058663i

0.4 0.383561–0.033446i

0.5 0.415513–0.010131i

1 0.2 0 0.365601–0.048286i

0.1 0.370064–0.044731i

0.2 0.383561–0.033446i

0.3 0.406864–0.018802i

0.4 0.431849–0.006525i

2 0.1 0 0.496327–0.092389i

0.1 0.499516–0.091283i

0.2 0.509127–0.087926i

0.3 0.525301–0.082200i

0.4 0.548279–0.073859i

0.5 0.578409–0.062441i

0.6 0.616040–0.047068i

0.7 0.660590–0.026323i

0.8 0.712166–0.008647i

2 0.2 0 0.535100–0.078676i

0.1 0.538382–0.077485i

0.2 0.548279–0.073859i

0.3 0.564937–0.067625i

0.4 0.588593–0.058421i

0.5 0.619495–0.045577i

0.6 0.657356–0.027823i

0.7 0.696345–0.010999i

2 0.3 0 0.602270–0.052867i

0.1 0.605705–0.051442i

0.2 0.616040–0.047068i

0.3 0.633343–0.039449i

0.4 0.657356–0.027823i

0.5 0.695061–0.010504i

3 Summary

In summary, we have presented in this paper the quasinormal
modes of massive scalar field of the Ernst black holes. Calcu-
lations show that the real oscillation frequency grows when
the magnetic field increases. The damping rate decreases with
the increment of the magnetic field, so that the magnetized
black hole is characterized by longer lived modes with higher
oscillation frequencies, i.e., by a larger quality factor. It is
shown that the effective mass μeff = √

4B2m2 + μ2 of the
scalar field has a crucial influence on the damping rate of

Fig. 2 Fundamental quasinormal modes of the massive scalar field for
Ernst black holes, for magnetic field B = 0.1,m = 1, l = 1, 2. Given
l = 1 for example, the larger the scalar field mass μ is, the smaller
the imaginary part of QNM becomes. When the threshold value of μ

(μ = 0.53) is exceeded, the particular QNMs disappear

the QNMs. In particular, the greater the effective mass of the
field is, the smaller the damping rate becomes. As a result,
purely real modes which correspond to non-damping oscil-
lations appear, and when the field’s effective mass is greater
than a certain threshold value, the corresponding QNMs dis-
appear. In Ref. [24], Brito et al. have made a fully consistent
study of massless scalar field perturbations of Ernst black
holes (including the rotating version of these solutions), with-
out performing the small-B approximation. Next we will
research their fully consistent linear analysis and consider
how their method influences the behavior of the QRMs.
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