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Abstract We evaluate the Hadamard function and the vac-
uum expectation value (VEV) of the current density for a
charged scalar field, induced by flat boundaries in spacetimes
with an arbitrary number of toroidally compactified spatial
dimensions. The field operator obeys the Robin conditions
on the boundaries and quasiperiodicity conditions with gen-
eral phases along compact dimensions. In addition, the pres-
ence of a constant gauge field is assumed. The latter induces
Aharonov–Bohm-type effect on the VEVs. There is a region
in the space of the parameters in Robin boundary conditions
where the vacuum state becomes unstable. The stability con-
dition depends on the lengths of compact dimensions and is
less restrictive than that for background with trivial topol-
ogy. The vacuum current density is a periodic function of the
magnetic flux, enclosed by compact dimensions, with the
period equal to the flux quantum. It is explicitly decomposed
into the boundary-free and boundary-induced contributions.
In sharp contrast to the VEVs of the field squared and the
energy-momentum tensor, the current density does not con-
tain surface divergences. Moreover, for Dirichlet condition
it vanishes on the boundaries. The normal derivative of the
current density on the boundaries vanish for both Dirichlet
and Neumann conditions and is nonzero for general Robin
conditions. When the separation between the plates is smaller
than other length scales, the behavior of the current density is
essentially different for non-Neumann and Neumann bound-
ary conditions. In the former case, the total current density
in the region between the plates tends to zero. For Neumann
boundary condition on both plates, the current density is dom-
inated by the interference part and is inversely proportional
to the separation.

a e-mail: bellucci@lnf.infn.it
b e-mail: saharian@ysu.am

1 Introduction

In a number of physical problems one needs to consider the
model in the background of manifolds with boundaries on
which the dynamical variables obey some prescribed bound-
ary conditions. In quantum field theory, the imposition of
boundary conditions on the field operator gives rise to a num-
ber of physical consequences. The Casimir effect is among
the most interesting phenomena of this kind (for reviews see
[1–6]). It arises due to the modification of the quantum fluctu-
ations of a field by boundary conditions and plays an impor-
tant role in different fields of physics, from microworld to
cosmology. The boundary conditions in the Casimir effect
may have different physical natures and can be divided into
two main classes. In the first one, the constraints are induced
by the presence of boundaries, like macroscopic bodies in
QED, interfaces separating different phases of a physical sys-
tem, extended topological defects, horizons in gravitational
physics, branes in high-energy theories with extra dimen-
sions and in string theories. In the corresponding models the
field operator obeys the boundary condition on some space-
like surfaces (static or dynamical). The original problem with
two conducting plates, discussed by Casimir in 1948 [7],
belongs to this class. Since the original research by Casimir,
much theoretical and experimental work has been done on
this problem for various types of bulk and boundary geome-
tries. Different methods have been developed including direct
mode-summation and the zeta function techniques, semiclas-
sical methods, the optical approach, worldline numerics, the
path integral approach, methods based on scattering theory,
and numerical methods based on an evaluation of the stress
tensor via the fluctuation–dissipation theorem. The recent
high precision measurements of the Casimir force allow for
an accurate comparison between the experimental results and
theoretical predictions.

In the second class, the boundary conditions on the field
operator are induced by the nontrivial topology of the space.
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The changes in the properties of the vacuum state generated
by this type of conditions are referred to as the topological
Casimir effect. The importance of this effect is motivated
by that the presence of compact dimensions is an inher-
ent feature in many high-energy theories of fundamental
physics, in cosmology and in condensed matter physics. In
particular, supergravity and superstring theories are formu-
lated in spacetimes having extra compact dimensions. The
compactified higher-dimensional models provide a possibil-
ity for the unification of known interactions. Models of a
compact universe with nontrivial topology may also play
an important role by providing proper initial conditions for
inflation in the early stages of the Universe expansion [8].
In condensed matter physics, a number of planar systems
in the low-energy sector are described by an effective field
theory. The compactification of these systems leads to the
change in the ground state energy, which is the analog of
the topological Casimir effect. A well-known example of
this type of systems is a graphene sheet. In the long wave-
length limit, the dynamics of the quasiparticles for the elec-
tronic subsystem is described in terms of the Dirac-like the-
ory in two-dimensional space (see Refs. [9,10]). The cor-
responding effective three-dimensional relativistic field the-
ory, in addition to Dirac fermions, involves scalar and gauge
fields (see [11,12] and references therein). The single-walled
carbon nanotubes are generated by rolling up a graphene
sheet to form a cylinder and for the corresponding Dirac
model one has the spatial topology R1 × S1. For another
class of graphene-made structures, called toroidal carbon
nanotubes, the background topology is a two-dimensional
torus, T 2.

Many authors have investigated the Casimir energies and
stresses associated with the presence of compact dimensions
(for reviews see Refs. [1–6,13–18]). In higher-dimensional
models the Casimir energy of bulk fields induces an effec-
tive potential for the compactification radius. This has been
used as a stabilization mechanism for the corresponding mod-
uli fields and as a source for dynamical compactification
of the extra dimensions during the cosmological evolution.
The Casimir effect has also been considered as a possible
origin for the dark energy in both Kaluza–Klein-type and
braneworld models [19–27]. Extra-dimensional theories with
low-energy compactification scale predict Yukawa-type cor-
rections to Newton’s gravitational law and the measurements
of the Casimir forces between macroscopic bodies provide
a sensitive test for constraining the parameters of the cor-
responding long-range interactions [28–32]. The influence
of extra compactified dimensions on the Casimir effect in
the classical configuration of two parallel plates has been
recently discussed for scalar [33–40], electromagnetic [41–
45] and fermionic [46–48] fields.

The vast majority of the works on the influence of the
compactification on the properties of the quantum vacuum

in the Casimir effect has been concerned with global quan-
tities such as the force or the total energy. More detailed
information on the vacuum fluctuations is contained in the
local characteristics. Among the most important local quan-
tities, because of their close connection with the structure
of spacetime, are the vacuum expectation values (VEVs) of
the vacuum energy density and stresses. For charged fields,
another important characteristic is the VEV of the current
density. Due to the global nature of the vacuum, this VEV
carries information on both global and local properties of
the vacuum state. Besides, the VEV of the current density
appears as a source of the electromagnetic field in semiclas-
sical Maxwell equations, and, hence, it is needed in model-
ing a self-consistent dynamics involving the electromagnetic
field.

In models with a nontrivial topology, the nonzero current
densities in the vacuum state may appear as a consequence of
quasiperiodicity conditions along compact dimensions or by
the presence of gauge field fluxes enclosed by these dimen-
sions. Note that the gauge field fluxes in higher-dimensional
models will also generate a potential for moduli fields and
this provides another mechanism for moduli stabilization (for
a review see [49]). The VEV of the fermionic current density
in spaces with toroidally compactified dimensions has been
considered in [50]. In the special case of a two-dimensional
space, applications are found in the electrons in cylindrical
and toroidal carbon nanotubes, described within the frame-
work of the effective field theory in terms of Dirac fermions.
The vacuum currents for charged fields in de Sitter and anti-
de Sitter spacetimes with toroidally compact spatial dimen-
sions are investigated in [51,52]. Finite temperature effects
on the charge density and on the current densities along com-
pact dimensions have been discussed in [53] and [54] for
scalar and fermionic fields, respectively. The changes in the
fermionic vacuum currents induced by the presence of paral-
lel plane boundaries, with the bag boundary conditions, are
investigated in [55].

In the present paper we consider the effect of two par-
allel plane boundaries on the vacuum expectation value of
the current density for a charged scalar field in background
spacetime with spatial topology Rp+1×T q , where T q stands
for a q-dimensional torus. The organization of the paper is
as follows. In the next section the geometry of the problem
is described and the Hadamard function is evaluated in the
region between the plates for general Robin boundary con-
ditions. By using the expression for the Hadamard function,
in Sect. 3, we evaluate the current density in the geometry
of a single plate. The corresponding asymptotics are dis-
cussed in various limiting cases and numerical results are
presented. In Sect. 4 the current density is investigated in the
region between two plates. The main results of the paper are
summarized in Sect. 5. An alternative representation of the
Hadamard function is given in “Appendix”.
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2 Formulation of the problem and the Hadamard
function

We consider (D+1)-dimensional flat spacetime with spatial
topology Rp+1×T q , p+q+1 = D (for a review of quantum
field-theoretical effects in toroidal topology see Ref. [18]).
The set of Cartesian coordinates in the subspace Rp+1 will be
denoted by xp+1 = (x1, . . . , x p+1) and the corresponding
coordinates on the torus by xq = (x p+2, . . . , xD). If Ll is the
length of the l th compact dimension then one has −∞ <

xl < ∞ for l = 1, .., p, and 0 � xl � Ll for l = p +
2, . . . , D. Our main interest in this paper is the VEV of the
current density for a quantum scalar field ϕ(x) with the mass
m and charge e. The equation for the field operator reads
(
gμνDμDν + m2

)
ϕ = 0, (2.1)

where gμν = diag(1,−1, . . . ,−1), Dμ = ∂μ + ieAμ, and
Aμ is the vector potential for a classical gauge field. We
assume the presence of two parallel flat boundaries1 placed
at x p+1 = a1 and x p+1 = a2, on which the field obeys Robin
boundary conditions

(1 + β j n
μ
j Dμ)ϕ(x) = 0, x p+1 ≡ z = a j , (2.2)

with constant coefficients β j , j = 1, 2, and with nμ
j being

the inward pointing normal to the boundary at x p+1 = a j .
Here, for the further convenience we have introduced a spe-
cial notation z = x p+1 for the (p + 1)th spatial dimension.
Note that Robin boundary conditions in the form (2.2) are
gauge invariant (for the discussion of various types of gauge
invariant boundary conditions see [56,57]). In what follows
we will consider the region between the plates, a1 � z � a2.
For this region one has nμ

j = (−1) j−1δ
μ
p+1. The expres-

sions for the VEVs in the regions z � a1 and z � a2 are
obtained by the limiting transitions. The results for Dirichlet
and Neumann boundary conditions are obtained from those
for the condition (2.2) in the limits β j → 0 and β j → ∞,
Aμ = 0, respectively. Robin type conditions appear in a
variety of situations, including the considerations of vacuum
effects for a confined charged scalar field in external fields
[58], gauge field theories, quantum gravity and supergrav-
ity [56,57,59], braneworld models [60–62] and in a class of
models with boundaries separating the spatial regions with
different gravitational backgrounds [63–65]. In some geome-
tries, these conditions may be useful for depicting the finite
penetration of the field into the boundary with the “skin-
depth” parameter related to the coefficient β j . It is interesting
to note that the quantum scalar field constrained by the Robin
condition on the boundary of cavity violates the Bekenstein

1 In analogy with the standard Casimir effect, in the discussion below
we will refer the boundaries as plates.

entropy-to-energy bound near certain points in the space of
the parameter β j [66].

In addition to the boundary conditions on the plates, for
the theory to be completely defined, we should also spec-
ify the periodicity conditions along the compact dimensions.
Different conditions correspond to topologically inequiva-
lent field configurations [67,68]. Here, we consider generic
quasiperiodicity conditions,

ϕ(t, x1, . . . , xl + Ll , . . . , x
D)

= eiαlϕ(t, x1, . . . , xl , . . . , xD), (2.3)

with constant phases αl , l = p+2, . . . , D. The special cases
of the condition (2.3) with αl = 0 and αl = π correspond to
the most frequently discussed cases of untwisted and twisted
scalar fields, respectively. As it will be seen below, one of
the effects of nontrivial phases in (2.3) is the appearance of
nonzero vacuum currents along compact dimensions (for a
discussion of physical effects of phases in periodicity condi-
tions along compact dimensions see [69–75] and references
therein).

For a scalar field, the operator of the current density is
given by the expression

jμ(x) = ie[ϕ+(x)Dμϕ(x) − (Dμϕ(x))+ϕ(x)], (2.4)

l = 0, 1, . . . , D. Its VEV is obtained from the Hadamard
function

G(x, x ′) = 〈0|ϕ(x)ϕ+(x ′) + ϕ+(x ′)ϕ(x)|0〉, (2.5)

with |0〉 being the vacuum state, by using the formula

〈0| jμ(x)|0〉 ≡ 〈 jμ(x)〉
= i

2
e lim
x ′→x

(∂μ − ∂ ′
μ + 2ieAμ)G(x, x ′). (2.6)

In the discussion below we will assume a constant gauge
field Aμ. Though the corresponding field strength vanishes,
the nontrivial topology of the background spacetime leads
to the Aharonov–Bohm-like effects on physical observables.
In the case of a constant gauge field Aμ, the latter can be
excluded from the field equation and from the expression for
the VEV of the current density by the gauge transformation
Aμ = A′

μ + ∂μχ , ϕ(x) = e−ieχϕ′(x), with the function
χ = Aμxμ. In the new gauge one has A′

μ = 0. However,
unlike to the case of a trivial topology, here the constant vec-
tor potential does not completely disappear from the prob-
lem. It appears in the periodicity conditions for the new field
operator:

ϕ′(t, x1, . . . , xl + Ll , . . . , x
D)

= ei α̃lϕ′(t, x1, . . . , xl , . . . , xD), (2.7)

where now the phases are given by the expression

α̃l = αl + eAl Ll . (2.8)
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In the discussion below we shall consider the problem in the
gauge (ϕ′(x), A′

μ = 0) omitting the prime. For this gauge,
in (2.1), (2.2), (2.4) one has Dμ = ∂μ and in the expressions
(2.6) the term with the vector potential is absent.

From the discussion above it follows that in the problem
at hand the presence of a constant gauge field is equivalent
to the shift in the phases of the periodicity conditions along
compact dimensions. The shift in the phase is expressed in
terms of the magnetic flux Φl enclosed by the lth compact
dimension as

eAl Ll = −eAl Ll = −2πΦl/Φ0, (2.9)

where Φ0 = 2π/e is the flux quantum and Al is the l th
component of the spatial vector A = (−A1, . . . ,−AD). In
the discussion below the physical effects of a constant gauge
field will appear through the phases α̃l . In particular, the
VEVs of physical observables are periodic functions of these
phases with the period 2π . In terms of the magnetic flux, this
corresponds to the periodicity of the VEVs, as functions of
the magnetic flux, with the period equal to the flux quantum.

For the evaluation of the Hadamard function in (2.6) we
shall use the mode-sum formula

G(x, x ′) =
∑
k

∑
s=±

ϕ
(s)
k (x)ϕ(s)∗

k (x ′), (2.10)

where ϕ
(±)
k (x) form a complete set of normalized positive-

and negative-energy solutions to the classical field equa-
tion obeying the boundary conditions of the model. In the
region between the plates, introducing the wave vectors
kp = (k1, . . . , kp) and kq = (kp+2, . . . , kD), these mode
functions can be written in the form

ϕ
(±)
k (x) = Ck cos

[
kp+1

(
z − a j

) + γ j (kp+1)
]
eik‖·x‖∓iωkt ,

(2.11)

wherek‖ = (kp,kq),k = (kp, kp+1,kq), ωk = √
k2 + m2,

and x‖ stands for the coordinates parallel to the plates.
For the momentum components along the dimensions xi ,
i = 1, . . . , p, one has −∞ < ki < +∞, whereas the com-
ponents along the compact dimensions are quantized by the
periodicity conditions (2.7):

kl = (2πnl + α̃l) /Ll , nl = 0,±1,±2, . . . ., (2.12)

with l = p + 2, . . . , D. We will denote by ω0 the smallest

value for the energy in the compact subspace,
√
k2
q + m2 �

ω0. Assuming that |α̃l | � π , we have

ω0 =
√√√√

D∑
l=p+2

α̃2
l /L

2
l + m2. (2.13)

This quantity can be considered as the effective mass for the
field quanta.

Now we should impose on the modes (2.11) the boundary
conditions (2.2) with Dμ = ∂μ. From the boundary condition
on the plate at z = a j , for the function γ j (kp+1) in (2.11)
one gets

e2iγ j (kp+1) = ikp+1β j (−1) j + 1

ikp+1β j (−1) j − 1
. (2.14)

From the boundary condition on the second plate it follows
that the eigenvalues for kp+1 are solutions of the equation

e2iy = 1 + ib2y

1 − ib2y

1 + ib1y

1 − ib1y
, (2.15)

where

y = kp+1a, b j = β j/a, (2.16)

anda = a2−a1 is the separation between the plates. Equation
(2.15) can also be written in the form
(

1 − b1b2y
2
)

sin y − (b2 + b1)y cos y = 0. (2.17)

Unlike to the cases of Dirichlet and Neumann conditions, for
Robin boundary condition the eigenvalues of kp+1 are given
implicitly, as solutions of the transcendental equation (2.17).
This equation has an infinite number of positive roots which
will be denoted by y = λn , n = 1, 2, . . ., and for the cor-
responding eigenvalues of kp+1 one has kp+1 = λn/a. For
b j � 0 or {b1 + b2 � 1, b1b2 � 0} there are no other roots
in the right-half plane of a complex variable y, Re y � 0
(see [76]). In the remaining region of the plane (b1, b2), Eq.
(2.17) has purely imaginary roots ±iyl , yl > 0. Depending
on the values of b j , the number of yl can be one or two. In
the presence of purely imaginary roots, under the condition
ω0 < yl , there are modes of the field for which the energy
ωk becomes imaginary. This would lead to the instability of
the vacuum state. In the discussion below we will assume
that ω0 > yl . Note that in the corresponding problem on
background of spacetime with trivial topology the stability
condition is written as m > yl . Now, by taking into account
that ω0 > m, we conclude that the compactification, in gen-
eral, enlarges the stability range in the space of parameters
of Robin boundary conditions.

The coefficient Ck in (2.11) is found from the orthonor-
malization condition
∫

dDxϕ(λ)
k (x)ϕ(λ′)∗

k′ (x)

= δλλ′

2ωk
δ(kp − k′

p)δnn′δn p+2,n′
p+2

. . . .δnD,n′
D
, (2.18)

where the integration over x p+1 goes in the region between
the plates. Substituting the functions (2.11), one gets

|Ck|2 =
{
1 + cos[y + 2γ̃ j (y)] sin(y)/y

}−1

(2π)paVqωk
, (2.19)
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where y is a root of Eq. (2.17) and Vq = L p+1 . . . .LD is
the volume of the compact subspace. The function γ̃ j (y) is
defined by the relation

e2i γ̃ j (y) = iyb j − 1

iyb j + 1
. (2.20)

First we shall consider the case when all the roots of (2.17)
are real and y = λn .

Having the complete set of normalized mode functions,
the mode-sum (2.10) for the Hadamard function is written in
the form

G(x, x ′) = 1

aVq

∫
dkp

(2π)p

∑
nq

∞∑
n=1

1

ωk
g j (z, z

′, λn/a)

× λn cos(ωk�t)eikp ·�xp+ikq ·�xq

λn + cos
[
λn + 2γ̃ j (λn)

]
sin λn

, (2.21)

where �xp= xp − x′
p, �xq= xq − x′

q , �t = t − t ′, and
nq = (n p+2, . . . , nD), −∞ < nl < +∞. In (2.21), the
energy for the mode with a given k is written as

ωk =
√
k2
p + λ2

n/a
2 + ω2

nq , (2.22)

and

ωnq =
√
k2
q + m2, k2

q =
D∑

l=p+2

(
2πnl + α̃l

Ll

)2

. (2.23)

Here and in what follows we use the notation

g j (z, z
′, u)=cos (u�z)+ 1

2

∑
s=±1

esiy|z+z′−2a j | iuβ j − s

iuβ j + s
.

(2.24)

Note that g j (z, z′,−y) = g j (z, z′, y) and g j (z, z′, 0) = 0.
In (2.21), the eigenvalues λn are given implicitly and this

expression is not convenient for the evaluation of the VEVs.
In order to obtain an expression in which the explicit knowl-
edge of λn is not required, we apply to the series over n the
Abel–Plana-type summation formula [76,77]

∞∑
n=1

πλn f (λn)

λn + cos[λn + 2γ̃ j (λn)] sin λn

= − π f (0)/2

1 − b2 − b1
+

∫ ∞

0
du f (u)

+i
∫ ∞

0
du

f (iu) − f (−iu)

c1(u)c2(u)e2u − 1
, (2.25)

where, for further convenience, the notation

c j (u) = b ju − 1

b ju + 1
(2.26)

is introduced. In (2.25) we have assumed that b j � 0. The
changes in the evaluation procedure in the case b j > 0 will

be discussed below. For the series in (2.21), we take in the
summation formula

f (λn) = cos(ωk�t)

ωk
g j (z, z

′, λn/a). (2.27)

Note that f (0) = 0 and the first term in the right-hand side
of (2.25) is absent.

The use of the summation formula (2.25) with (2.27)
allows us to write the Hadamard function in the decomposed
form

G(x, x ′) = G j (x, x
′)

+ 2

πVq

∫
dkp

(2π)p

∑
nq

∫ ∞

aωk‖
du g j (z, z

′, iu/a)

× eikp ·�xp+ikq ·�xq

c1(u)c2(u)e2u − 1

cos h
(
�t

√
u2/a2 − ωk‖

)
√
u2 − a2ωk‖

, (2.28)

where ωk‖ =
√
k2
p + ω2

nq . Here, the part

G j (x, x
′) = 1

πVq

∫
dkp

(2π)p

∑
nq

eikp ·�xp+ikq ·�xq

×
∫ ∞

0
dkp+1

cos(ωk�t)

ωk
g j (z, z

′, kp+1), (2.29)

comes from the first integral in the right-hand side of (2.25)
and corresponds to the Hadamard function in the geometry
of a single plate at x p+1 = a j when the second plate is
absent. This function is further decomposed by taking into
account that the part in (2.24) coming from the first term in
the right-hand side of (2.24),

G0(x, x
′) = 1

Vq

∫
dkp+1

(2π)p+1

×
∑
nq

eikp+1·�xp+1+ikq ·�xq cos(ωk�t)

ωk
, (2.30)

is the Hadamard function for the boundary-free geometry.
After the integration over the components of the momen-
tum along non-compactified dimensions, this function can
be presented in the form

G0(x, x
′) = 2V−1

q

(2π)p/2+1

×
∑
nq

eikq ·�xqω
p
nq f p/2(ωnq

√
|�xp+1|2 − (�t)2), (2.31)

with the notations

fν(x) = Kν(x)/x
ν, (2.32)

where Kν(x) is the Macdonald function.
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Consequently, the Hadamard function in the geometry of
a single plate is written as

G j (x, x
′) = G0(x, x ′)

+ 1

2πVq

∫
dkp

(2π)p

∑
nq

eikp ·�xp+ikq ·�xq

×
∑
s=±1

∫ ∞
0

dkp+1
cos(ωk�t)

ωk
esikp+1|z+z′−2a j | ikp+1β j − s

ikp+1β j + s
,

(2.33)

where the second term in the right-hand side is induced by
the presence of the plate at x p+1 = a j . For the further trans-
formation of the boundary-induced part in (2.33) we rotate
the integration contour over kp+1 by the angle sπ/2. In the
summation over s the integrals over the intervals (0,±iωk‖)
cancel each other and we get

G j (x, x
′) = G0(x, x

′)

+ 1

πVq

∫
dkp

(2π)p

∑
nq

eikp ·�xp+ikq ·�xq

×
∫ ∞

ωk‖
du

cos h
(
�t

√
u2 − ω2

k‖

)
√
u2 − ω2

k‖

uβ j + 1

uβ j − 1
e−u|z+z′−2a j |.

(2.34)

This expression is well suited for the investigation of
the current density. With the representation (2.34), the
Hadamard function in the region between the plates, given by
(2.28), is decomposed into the boundary-free, single plate-
induced and second-plate-induced contributions. An alterna-
tive expression for the Hadamard function is obtained in the
“Appendix”.

In deriving (2.28) and (2.34) we have assumed thatβ j � 0.
In the case β j > 0, the quantum scalar field in the geometry
of a single plate at z = a j has modes with kp+1 = i/β j for
which the dependence on the coordinate x p+1 has the form
e−z j /β j . In the case 1/β j > ω0, for a part of these modes
the energy is imaginary and the vacuum is unstable. In order
to have a stable vacuum, in what follows, for non-Dirichlet
boundary conditions, we shall assume that 1/β j < ω0 and
the mode with kp+1 = i/β j corresponds to a bound state.
For β j > 0 and in the absence of purely imaginary roots of
(2.17), in the right-hand side of the summation formula (2.25)
the residue terms at u = ±i/b j should be added (see [76]).
Now the integrand in (2.33) has a simple pole at kp+1 =
is/β j and after the rotation the contribution of the residue
at that pole should be added. This contribution cancels the
additional residue term in the right-hand side of (2.25). In the
case when the equation (2.17) has purely imaginary roots the
corresponding contributions have to be added to the mode-
sum (2.21) for the Hadamard function. But the corresponding
contributions should also be added in the left-hand side of

(2.25) and the further evaluation procedure remains the same.
Hence, the expressions (2.28) and (2.34) are valid for all
values of the coefficients in the Robin boundary conditions.
The only restrictions come from the stability of the vacuum
state: 1/β j < ω0 and yl < ω0. In the presence of compact
dimensions with α̃l �= 0 one has ω0 > m and these conditions
are less restrictive than those in the case of trivial topology.

The current density in the boundary-free geometry is
obtained by using the Hadamard function (2.31) and has been
investigated in [53]. The corresponding charge density and
the current densities along non-compact dimensions vanish.
As can be seen from (2.28) and (2.34), the same holds in
the case of the boundary-induced contributions in the VEVs.
Hence, the only nonzero components correspond to the cur-
rent density along compact dimensions.

3 Vacuum currents in the geometry of a single plate

In this section we investigate the VEV of the vacuum current
density in the geometry of a single plate at x p+1 = a j . This
VEV is obtained with the help of the formula (2.6) by using
the Hadamard function from (2.34). The component of the
VEV of the current density along the lth compact dimension
is presented in decomposed form,

〈 j l〉 j = 〈 j l〉0 + 〈 j l〉(1)
j , (3.1)

where 〈 j l〉0 is the current density in the boundary-free geom-
etry and 〈 j l〉(1)

j is the contribution induced by the presence
of the plate.

The current density in the boundary-free geometry has
been investigated in [53] and for completeness we will recall
the main results. The current density is given by the formula

〈 j l〉0 = 4eLlmD+1

(2π)(D+1)/2

∞∑
nl=1

nl sin(nl α̃l)

×
∑
nq−1

cos(nq−1 · α̃q−1) f D+1
2

(mgnq (Lq)), (3.2)

where α̃q−1 = (α̃p+2, . . . , α̃l−1, α̃l+1, . . . , α̃D), nq−1 =
(n p+2, . . . , nl−1, nl+1, . . . , nD), and gnq (Lq) = (

∑D
i=p+2

n2
i L

2
i )

1/2. The current density 〈 j l〉0 is an odd periodic func-
tion of α̃l with the period 2π and an even periodic function
of α̃r , r �= l, with the same period. This corresponds to the
periodicity in the magnetic flux with the period of flux quan-
tum. An alternative expression for the current density in the
boundary-free geometry is given by the formula

〈 j l〉0 = 4eLl/Vq
(2π)(p+3)/2

∞∑
n=1

sin (nα̃l)

(nLl)p+2

∑
nq−1

g p+3
2

(nLlωnq−1),

(3.3)
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where we have defined the function

gν(x) = xνKν(x), (3.4)

and

ω2
nq−1

= ω2
nq − k2

l . (3.5)

In the model with a single compact dimension (q = 1) the
representations (3.2) and (3.3) are identical.

When the length of the lth compact dimension, Ll , is much
larger than the other length scales, the behavior of the current
density crucially depends whether the parameter

ω0l =
⎛
⎝

D∑
i=p+2,�=l

α̃2
i /L

2
i + m2

⎞
⎠

1/2

, (3.6)

is zero or not. For ω0l = 0, which is realized for a massless
field with α̃i = 0, i �= l, to the leading order we have

〈 j l〉0 ≈ 2eΓ ((p + 3)/2)

π(p+3)/2L p+1
l Vq

∞∑
n=1

sin(nα̃l)

n p+2 . (3.7)

In this case, the leading term in the expansion of Vq〈 j l〉0/Ll

coincides with the current density in (p + 2) -dimensional
space with a single compact dimension of the length Ll . For
ω0l �= 0 and for large values of Ll one has

〈 j l〉0 ≈ 2eV−1
q sin(α̃l)ω

p/2+1
0l

(2π)p/2+1L p/2
l

e−Llω0l , (3.8)

and the current density is exponentially suppressed. In the
opposite limit of small values for Ll , to the leading order we
get

〈 j l〉0 ≈ 2eΓ ((D + 1)/2)

π(D+1)/2LD
l

∞∑
n=1

sin(nα̃l)

nD
. (3.9)

The leading term does not depend on the mass and on the
lengths of the other compact dimensions and coincides with
the current density for a massless scalar field in the space
with topology RD−1 × S1.

Now we turn to the investigation of the plate-induced con-
tribution in the current density. By using the expression for
the corresponding part in the Hadamard function from (2.34),
we get the following expression:

〈 j l 〉(1)
j = eCp

2pVq

∑
nq

kl

∫ ∞
ωnq

dy (y2−ω2
nq )

(p−1)/2e−2yz j
yβ j +1

yβ j −1
,

(3.10)

with the notations z j = |z − a j | for the distance from the
plate and

Cp = π−(p+1)/2

Γ ((p + 1)/2)
. (3.11)

Recall that, in order to have a stable vacuum state with
〈ϕ〉 = 0, we have assumed that 1/β j < ω0. Under this con-
dition, the integrand in (3.10) is regular everywhere in the
integration range. The integral in (3.10) is evaluated in the
special cases of Dirichlet and Neumann boundary conditions
with the result

〈 j l〉(1)
j = ∓ 2e/Vq

(2π)p/2+1

∑
nq

klω
p
nq f p/2(2ωnq z j ), (3.12)

where the upper and lower signs correspond to Dirichlet and
Neumann boundary conditions, respectively. Note that, in the
problem with a fermionic field, obeying the bag boundary
condition on the plate, the boundary-induced contribution
vanishes for a massless field [55].

Let us consider the behavior of the plate-induced con-
tribution in asymptotic regions of the parameters. At large
distances from the plate, z j � Li , one has z jωnq � 1.
Assuming that |α̃i | < π , the dominant contribution in (3.10)
comes from the region near the lower limit of the integration
and from the term with ni = 0, i = p + 2, . . . , D. To the
leading order we find

〈 j l〉(1)
j ≈ eα̃lω

(p−1)/2
0 e−2ω0z j

(4π)(p+1)/2Vq Ll z
(p+1)/2
j

ω0β j + 1

ω0β j − 1
, (3.13)

and the current density is exponentially small. Note that the
suppression is exponential for both massive and massless
field.

For points close to the plate, z j � Li , in (3.10) the con-
tribution of the terms with large values of |ni | dominates and
this formula is not convenient for the asymptotic analysis and
for numerical evaluations. In the case β j � 0, an alternative
expression is obtained by using the representation (A.6) for
the Hadamard function. The first term in the right-hand side
of this representation corresponds to the geometry with non-
compactified lth dimension and does not contribute to the
current density along that direction. In the geometry of a sin-
gle plate at x p+1 = a j the part in the Hadamard function
induced by the compactification is given by the first term in
the figure braces of (A.6). From this part, by making use of
(2.6), for the VEV of the lth component of the current density
we get

〈 j l〉 j = 21−p/2eLl

π p/2+2Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

×
∑
nq−1

∫ ∞

0
dy g(z j , y)gp/2+1

(
nLl

√
y2+ω2

nq−1

)
,

(3.14)

123



378 Page 8 of 17 Eur. Phys. J. C (2015) 75 :378

where we have defined the function

g(z j , y) = g j (z, z, y) = 1 + 1

2

∑
s=±1

e2siyz j iyβ j − s

iyβ j + s

= 1 − (1 − y2β2
j ) cos(2yz j ) + 2yβ j sin(2yz j )

1 + y2β2
j

.

(3.15)

The part with the first term in the right-side of (3.15) corre-
sponds to the current density in the boundary-free geometry.
In this part the integration over y is done with the help of the
formula
∫ ∞

0
dy g p

2 +1

(
nLl

√
y2 + b2

)
= √

π/2(nLl )
−1g p+3

2
(nLlb),

(3.16)

and one gets the expression (3.3).
Extracting the boundary-free part, for the plate-induced

contribution from (3.14) we find

〈 j l 〉(1)
j = 2−p/2eLl

π p/2+2Vq

∞∑
n=1

sin (nα̃l)

(nLl )p+1

×
∑
nq−1

∫ ∞

0
dy g p

2 +1

(
nLl

√
y2 + ω2

nq−1

) ∑
s=±1

e2siyz j iyβ j − s

iyβ j + s
.

(3.17)

In the case of single compact dimension one has q = 1, p =
D − 2, and the corresponding formula for the plate-induced
contribution in the current density is obtained from (3.17)
omitting the summation over nq−1 and putting ωnq−1 = m.

An important issue in quantum field theory with bound-
aries is the appearance of surface divergences in the VEVs
of local physical observables. Examples of the latter are the
VEVs of the field squared and of the energy density. These
divergences are a consequence of the oversimplification of
a model where the physical interactions are replaced by the
imposition of boundary conditions for all modes of a fluctu-
ating quantum field. Of course, this is an idealization, as real
physical systems cannot constrain all the modes (for a discus-
sion of surface divergences and their physical interpretation
see [1–6,78–94] and references therein). The appearance of
divergences in the VEVs of physical quantities indicates that
a more realistic physical model should be employed for their
evaluation on the boundaries. An important feature, which
directly follows from the representation (3.17), is that the
VEV of the current density is finite on the plate. This is in
sharp contrast with the behavior of the VEVs for the field
squared and energy-momentum tensor. The finiteness of the
current density on the boundary may be understood from gen-
eral arguments. The divergences in local physical observables
are determined by the local bulk and boundary geometries.
If we consider the model with the topology Rp+2 × T q−1

with the lth dimension having the topology R1, then in this

model the lth component of the current density vanishes by
the symmetry. The compactification of the lth dimension to
S1 does not change the two bulk end boundary local geome-
tries and, hence, does not add new divergences to the VEVs
compared with the model on Rp+2 × T q−1.

In deriving (3.17) we have assumed that β j � 0. In the
case β j > 0 the contribution of the bound state should be
added to (3.17). For 1/β j < ω0l , this contribution is obtained
from the corresponding part in the Hadamard function, given
by (A.7), and has the form

〈 jl〉(1)
bj = −22−p/2eLle−2z j /β j

π p/2+1Vqβ j

∞∑
n=1

sin (nα̃l)

(nLl)p+1

×
∑
nq−1

g p
2 +1

(
nLl

√
ω2
nq−1

− 1/β2
j

)
. (3.18)

In what follows for simplicity we shall consider the case
β j � 0. Recall that the representation (3.10) is valid for all
values of β j from the range of the vacuum stability.

For Dirichlet and Neumann boundary conditions, after the
evaluation of the integral in (3.17) by using the formula

∫ ∞

0
dy cos(2yz j )g p

2 +1

(
nLl

√
y2 + b2

)

=
√

π

2
(nLl)

p+2
g p+3

2

(
b
√

4z2
j + n2L2

l

)

(4z2
j + n2L2

l )
(p+3)/2

, (3.19)

one gets

〈 j l〉(1)
j = ∓ 4eL2

l /Vq
(2π)(p+3)/2

∞∑
n=1

n sin (nα̃l)

(4z2
j + n2L2

l )
(p+3)/2

×
∑
nq−1

g p+3
2

(
ωnq−1

√
4z2

j + n2L2
l

)
, (3.20)

where the upper and lower signs correspond to Dirichlet
and Neumann conditions, respectively. For a single compact
dimension with the length L and with the phase α̃ in the
periodicity condition for a massless field this gives

〈 j l〉(1)
j = ∓2Γ ((D + 1)/2)e

π(D+1)/2LD

∞∑
n=1

n sin (nα̃)

(n2 + 4z2
j/L

2)(D+1)/2
.

(3.21)

Now, combining the expressions (3.3) and (3.20), we see that
in the case of a Dirichlet boundary condition the boundary-
free and plate-induced parts of the current density cancel each
other for z j = 0 and, hence, the total current vanishes on the
plate. For a Neumann condition the current density on the
plate is given by
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〈 j l〉 j,z=a j = 2〈 j l〉0

= 8eLl/Vq
(2π)(p+3)/2

∞∑
n=1

sin (nα̃l)

(nLl)p+2

∑
nq−1

g p+3
2

(nLlωnq−1).

(3.22)

Note that the normal derivative of the current density on the
plate vanishes for both Dirichlet and Neumann boundary con-
ditions: (∂z〈 j l〉 j )z=a j = 0. This is not the case for a general
Robin condition.

Let us consider the behavior of the plate-induced contri-
bution in the current density in the limit Li � Ll . In this
investigation it is more convenient to use the representation
(3.17). For

∑D
i=p+2,�=l α̃

2
i �= 0, the dominant contribution in

the integral of (3.17) comes from the region near the lower
limit of the integration and from the term n = 1, ni = 0,
i = p + 2, . . . , D, in the summation. The argument of the
function gp/2+1(x) in the integrand is large and we can use
the asymptotic expression gν(x) ≈ √

π/2xν−1/2e−x . After
some intermediate calculations, for the leading term we get

〈 j l〉(1)
j ≈ 2e(1 − 2δ0β j )

(2π)p/2+1Vq L
p/2
l

ω
p/2+1
0l sin α̃l

eLlω0l (1+2z2
j /Ll

2)
. (3.23)

Here, we have additionally assumed that Li � |β j | for β j �=
0. For α̃i = 0, i = p + 2, . . . , D, i �= l, the dominant
contribution in (3.17) comes from the term ni = 0, i =
p + 2, . . . , D, with the leading term

Vq
Ll

〈 j l〉(1)
j ≈ 〈 j l〉(1)

j,Rp+1×S1

= 4e

(2π)p/2+2

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∫ ∞

0
dy

×g p
2 +1

(
nLl

√
y2 + m2

) ∑
s=±1

e2siyz j iyβ j − s

iyβ j + s
. (3.24)

Here, 〈 j l〉(1)

j,Rp+1×S1 is the plate-induced contribution in the
current density for (p+2)-dimensional space with topology
Rp+1×S1 (see (3.17) for the case q = 1 and, hence, ωnq−1 =
m).

If the length of the i th compact dimension is large, i �= l,
the dominant contribution to the sum over ni comes from
large values of |ni | and in (3.17) we can replace the summa-
tion over ni by the integration in accordance with

∞∑
ni=−∞

f (|ki |) → Li

π

∫ ∞

0
dx f (x). (3.25)

The integral over x is evaluated by using the formula (3.16).
As a result, from (3.17), to the leading order, we obtain the
current density along the lth compact dimension for the spa-
tial topology Rp+2 × T q−1 with the lengths of the compact
dimensions (L p+2, . . . , Li−1, Li+1, . . . , LD).

Now let us consider the limiting case when Ll is large
compared with the other length scales in the problem, Ll �
Li , z j , i �= l. The dominant contribution in (3.17) comes
from the term ni = 0, i �= l. For ω0l �= 0 we find

〈 j l〉(1)
j ≈ 2e

(
2δβ j ,∞ − 1

)

(2π)p/2+1Vq

sin α̃l

Ll
p/2 ω

p/2+1
0l e−Llω0l , (3.26)

where, for non-Neumann boundary conditions (β j �= ∞),
we have assumed that β jω0l � (Llω0l)

1/2. For ω0l = 0 the
leading term is given by the expression

〈 j l〉(1)
j ≈ 2e

(
2δβ j ,∞ − 1

)

π(p+3)/2Vq L
p+1
l

Γ ((p + 3)/2)

∞∑
n=1

sin (nα̃l)

n p+2 .

(3.27)

Comparing with the corresponding asymptotics (3.7) and
(3.8), we see that for non-Neumann boundary conditions,
in the both cases ω0l �= 0 and ω0l = 0, the leading terms in
the boundary-induced and boundary-free parts of the current
density cancel each other.

An equivalent representation for the plate-induced current
density is obtained from (3.17) rotating the integration con-
tour in the complex plane y by the angle π/2 for the term
with s = 1 and by the angle −π/2 for the term with s = −1.
The integrals over the intervals (0,±iωnq−1) are canceled
and we find

〈 j l〉(1)
j = 2−p/2eLl

π p/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

× e−2yz j yβ j + 1

yβ j − 1
wp/2+1

(
nLl

√
y2 − ω2

nq−1

)
, (3.28)

where

wν(x) = xν Jν(x), (3.29)

and Jν(x) is the Bessel function. The equivalence of the rep-
resentations (3.10) and (3.28) can also be directly seen by
applying to the series over nl in (3.10) the relation

+∞∑
nl=−∞

kl g(|kl |) = 2Ll

π

∞∑
n=1

sin(nα̃l)

∫ ∞

0
dx x sin(nLl x)g(x).

(3.30)

The latter is a direct consequence of the Poisson resummation
formula. After using (3.30) in (3.10), we introduce a new

integration variable u =
√
y2 − x2 − ω2

nq−1
and then pass

to polar coordinates in the (u, x)-plane. The integration over
the polar angle is expressed in terms of the Bessel function
and the representation (3.28) is obtained.

Another expression is obtained by applying to the series
over nl in (3.10) the summation formula (A.1). For the series
in (3.10) one has g(u) = u and the first integral vanishes.
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Fig. 1 The total current density, LD〈 j l 〉 j/e, in the topology R3×S1 for
a D = 4 massless scalar field with Dirichlet (left panel) and Neumann
(right panel) boundary conditions in the geometry of a single plate, as

a function of the phase in the quasiperiodicity boundary condition and
of the distance from the plate

As a result, the plate-induced part in the VEV of the current
density is presented as

〈 j l〉(1)
j = −eCpLl sin α̃l

2pπVq

∑
nq−1

∫ ∞

0
dx

× x

cos h(Ll .

√
x2 + ω2

nq−1
) − cos α̃l

×
∫ x

0
dy

(1 − y2β2
j ) cos

(
2yz j

) + 2yβ j sin
(
2yz j

)

(1 + y2β2
j )
(
x2 − y2

)(1−p)/2
.

(3.31)

For Dirichlet and Neumann boundary conditions we obtain

〈 j l〉(1)
j = ∓ 2eLl sin α̃l

(4π)p/2+1Vqz
p/2
j

×
∑
nq−1

∫ ∞

0
dx

x p/2+1 Jp/2(2xz j )

cos h(Ll .

√
x2 + ω2

nq−1
) − cos α̃l

. (3.32)

In Fig. 1, for the simplest Kaluza–Klein model with a
single compact dimension of the length L and with the
phase α̃ (D = 4), we have plotted the total current den-
sity, LD〈 j l〉 j/e, for a massless scalar field in the geom-
etry of a single plate as a function of the distance from
the plate and of the phase α̃. The left/right panel corre-
spond to Dirichlet/Neumann boundary conditions. As has
been already noticed before, in the Dirichlet case the total
current density vanishes on the plate.

For the same model, Fig. 2 presents the plate-induced con-
tribution to the current density as a function of the distance
from the plate for various values of the coefficients in the

Robin boundary condition (left panel) and as a function of
the ratio β j/L (right panel). The numbers near the curves on
the right panel correspond to the value of β j/L . The left panel
is plotted for the fixed value of the relative distance from the
plate z j/L = 0.3. On both panels, the dashed curves are
plotted for Dirichlet and Neumann boundary conditions. For
the phase in the quasiperiodicity condition we have taken
α̃ = π/2. On the right panel, for the values of β j/L between
the ordinate axis and the vertical dotted line (β j/L = 1/α̃)
the vacuum is unstable.

4 Current density between two plates

Now we turn to the geometry of two plates. In the region a1 �
x p+1 � a2, by using the formula (2.28) for the Hadamard
function, the VEV of the current density is decomposed as

〈 j l〉 = 〈 j l〉 j + eCp

2p−1Vq

∑
nq

kl

∫ ∞

ωnq

dy

× (y2 − ω2
nq )

(p−1)/2g(z j , iy)

c1(ay)c2(ay)e2ay − 1
. (4.1)

Here, the second term in the right-hand side is induced by
the plate at x p+1 = a j ′ , j ′ �= j .

Extracting from the second term in the right-hand side of
(4.1) the part induced by the second plate when the first one
is absent, the current density is written in a more symmetric
form:

〈 j l〉 = 〈 j l〉0 +
∑
j=1,2

〈 j l〉(1)
j + �〈 j l〉, (4.2)
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Fig. 2 The plate-induced contribution to the current density for the
model corresponding to Fig. 1 as a function of the distance from the
plate (left panel) for different values of the ratio β j/L (numbers near

the curves) and as a function of β j/L (right panel) for z j/L = 0.3. The
dashed curves correspond to Dirichlet and Neumann boundary condi-
tions and the graphs are plotted for α̃ = π/2

where the interference part is given by the expression

�〈 j l〉 = eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq )

p−1
2

× 2 + ∑
j=1,2 e

−2yz j /c j (ay)

c1(ay)c2(ay)e2ay − 1
. (4.3)

By taking into account the expression for the current density
in the geometry of a single plate, for the total current density
we can also write

〈 j l〉 = 〈 j l〉0 + eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq )

p−1
2

×2 + ∑
j=1,2 c j (ay)e

2yz j

c1(ay)c2(ay)e2ay − 1
. (4.4)

For special cases of Dirichlet and Neumann boundary con-
ditions on both plates the general formula is simplified to

〈 j l〉 = 〈 j l〉0 + eCp

2pVq

∑
nq

kl

∫ ∞

ωnq

dy (y2 − ω2
nq )

p−1
2

× 2 ∓ ∑
j=1,2 e

2yz j

e2ay − 1
, (4.5)

where, as before, the upper and lower signs correspond to
Dirichlet and Neumann boundary conditions, respectively. In
particular, for Dirichlet boundary condition the part induced
by the second plate vanishes on the first plate. Note that in
the system of two fields with Dirichlet and Neumann condi-
tions the distribution of the total current density in the region
between the plates is uniform and the current density van-
ishes in the regions z < a1 and z > a2. Another form for
(4.5) is obtained by making use of the expansion

1

e2ay − 1
=

∞∑
n=1

e−2nay, (4.6)

After the integration over y we get

〈 j l〉 = 〈 j l〉0 + 2e/Vq
(2π)p/2+1

∞∑
n=1

∑
nq

klω
p
nq

⎡
⎣2 f p

2
(2naωnq )

∓
∑
j=1,2

f p
2
(2(na − z j )ωnq )

⎤
⎦ . (4.7)

A similar representation for the interference part �〈 j l〉 is
obtained from (4.7) by the replacement z j → −z j . For
Dirichlet boundary condition, on the plates, z = a j , one
has

�〈 j l〉z=a j = 2e/Vq
(2π)p/2+1

∑
nq

klω
p
nq f p

2
(2aωnq ). (4.8)

Combining this result with the formulas for single plates, we
see that in the case of Dirichlet boundary condition the total
current vanishes on the plates: 〈 j l〉z=a j = 0.

An equivalent representation for the current density in
the region between the plates and for Robin conditions is
obtained by using the representation (A.6) for the corre-
sponding Hadamard function:

〈 j l〉 = 〈 j l〉 j + 21−p/2eLl

π p/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×
wp/2+1(nLl

√
y2 − ω2

nq−1
)

c1(ay)c2(ay)e2ay − 1
g(z j , iy). (4.9)
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Combining Eqs. (3.28) and (4.9), for the total current density
we find

〈 j l〉 = 〈 j l〉0 + 2−p/2eLl

π p/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

× 2 + ∑
j=1,2 e

2yz j c j (ay)

c1(ay)c2(ay)e2ay − 1
wp/2+1(nLl

√
y2 − ω2

nq−1
).

(4.10)

Now, by taking into account the expression (3.28) for the
single-plate-induced part, from (4.9) for the interference part
we get

�〈 j l〉 = 2−p/2eLl

π p/2+1Vq

∞∑
n=1

sin (nα̃l)

(nLl)p+1

∑
nq−1

∫ ∞

ωnq−1

dy

×2 + ∑
j=1,2 e

−2yz j /c j (ay)

c1(ay)c2(ay)e2ay − 1
wp/2+1

(
nLl

√
y2 − ω2

nq−1

)
.

(4.11)

The equivalence of the representations (4.4) and (4.9) can be
seen directly by using the formula (3.30) in a way similar to
that for the geometry of a single plate.

For Dirichlet and Neumann conditions, after using the
expansion (4.6), the integral over y in (4.10) is expressed in
terms of the MacDonald function and one gets the represen-
tation

〈 j l〉 = 2(1−p)/2eL2
l

π(p+3)/2Vq

∞∑
n=1

n sin (nα̃l)
∑
nq−1

ω
p+3
nq−1

×
∞∑

r=−∞

{
f p+3

2
(ωnq−1

√
4(ra)2 + n2L2

l )

∓ f p+3
2

(ωnq−1

√
4(ra − z + a1)2 + n2L2

l )

}
, (4.12)

where we have taken into account the expression (3.3) for the
current density in the boundary-free geometry. In the model
with a single compact dimension with the length L and for a
massless field, from (4.12) we find

〈 j l〉 = 2Γ ((D + 1)/2)e

π(D+1)/2LD

∞∑
n=1

∞∑
r=−∞

n sin (nα̃)

×
{[

4(ra/L)2 + n2
]− D+1

2

∓
[
4(ra − z + a1)

2/L2 + n2
]− D+1

2
}

. (4.13)

In the case of Dirichlet boundary condition on the left plate,
x p+1 = a1, and Neumann boundary condition on the right
one, x p+1 = a2, the corresponding formulas are obtained
from (4.12) and (4.13) with the upper sign, adding the factor
(−1)r in the summation over r . The corresponding current
density vanishes on the left plate. From (4.12) we can also

see that the normal derivative of the current density vanishes
on the plates for both Dirichlet and Neumann boundary con-
ditions.

In the limit a � Li , i �= l, the dominant contribution to
the series over nq−1 in (4.11) comes from large values of |ni |,
i �= l, and we can replace the summation by the integration
in accordance with

∑
nq−1

f (ωnq−1)→
2 (4π)(1−q)/2 Vq
Γ ((q − 1)/2)Ll

∫ ∞
0

du uq−2 f (
√
u2 + m2).

(4.14)

Changing the integration variable y to x = √
y2 − u2, we

introduce polar coordinates in the (u, x)-plane. After the inte-
gration over the polar angle, we get

�〈 j l〉 ≈ �〈 j l〉RD×S1 , (4.15)

where �〈 j l〉RD×S1 is the corresponding quantity in the
geometry of a single compact dimension with the length Ll .
The expression for �〈 j l〉RD×S1 is obtained from (4.11) tak-
ing p = D − 2, Vq = Ll , ωnq−1 = m, and omitting the
summation over nq−1. If, in addition, am � 1, one finds

�〈 j l〉 ≈ 2e

(2π)D/2 a

∞∑
n=1

sin (nα̃l)

(nLl)D−1

∫ ∞

0
dy

×2 + ∑
j=1,2 e

−2yz j /a/c j (y)

c1(y)c2(y)e2y − 1
wD/2(nLl y/a). (4.16)

Now let us also assume that a � Li ,m−1, for all i =
p + 2, . . . , D. This means that the separation between the
plates is smaller than all other length scales in the problem.
In order to estimate the integral in (4.16), we note that for a
fixed b and for λ → +∞, the dominant contribution to the
integral

∫ ∞
0 dy f (y)e−bywD/2(λy) comes from the region

with y � a/L . By taking into account that
∫ ∞

0
dy e−bywD/2(λy) = 2D/2λDΓ ((D + 1)/2)

√
π
(
b2 + λ2

)(D+1)/2
, (4.17)

to the leading order we get
∫ ∞

0
dy f (y)e−bywD/2(λy) ≈ 2D/2

√
πλ

Γ ((D + 1)/2) f (0).

(4.18)

For the integral in (4.16) we take b = 2 and

f (y) = 2 + ∑
j=1,2 e

−2yz j /a/c j (y)

c1(y)c2(y) − e−2y . (4.19)

In the case of non-Neumann boundary conditions one has
f (0) = 1 and, hence,

�〈 j l〉 ≈ 2eΓ ((D + 1)/2)

π(D+1)/2LD

∞∑
n=1

sin (nα̃l)

nD
. (4.20)
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Fig. 3 The VEV of the current density in the region between the plates
evaluated at z = a/2, as a function of the separation between the plates.
The graphs are plotted for Dirichlet and Neumann boundary conditions
on both plates, for Dirichlet condition on the left plate and Neumann
condition on the right one, and for Robin boundary conditions with the
values of β j/L given near the curves. For the phase we have taken the
value α̃ = π/2

Combining this result with the expressions from the previous
section for the geometry of a single plate, we conclude that
lima→0〈 j l〉 = 0, i.e., for non-Neumann boundary conditions
the total current density in the region between the plates tends
to zero for small separations between the plates. For non-
Neumann boundary condition on one plate and Neumann
boundary condition on the other we have f (0) = −1 and
the corresponding formula is obtained from (4.20) changing
the sign of the right-hand side. In this case we have again
lima→0〈 j l〉 = 0.

For Neumann boundary condition on both plates, for the
function in (4.19) we have f (y) ∼ 2/y, y → 0. In order

to obtain the leading term in the asymptotic expansion for
small values of a it is more convenient to use the expression
(4.13) with the lower sign instead of the right-hand side of
(4.16). For small a/L the dominant contribution in (4.13)
comes from large values of r and, to the leading order, we
replace the corresponding summation by the integration. For
the leading term this gives

〈 j l〉 ≈ 2eΓ (D/2)

πD/2LD−1a

∞∑
n=1

sin (nα̃)

nD−1 , (4.21)

and for Neumann boundary condition the current density
diverges in the limit a → 0 like 1/a. The described features
in the behavior of the vacuum current density, LD〈 j l〉/e, in
the region between the plates located at z = 0 and z = a, as
a function of the separation between the plates, is illustrated
in Fig. 3 for a D = 4 massless scalar field in the model with
a single compact dimension of the length L and of the phase
α̃. The graphs are plotted for z = a/2 and α̃ = π/2, in the
cases of Dirichlet (D), Neumann (N) boundary conditions on
both plates, for Dirichlet boundary condition at z = 0 and
Neumann boundary condition at z = a (DN), and for Robin
boundary conditions with β j/L = −0.5 and β j/L = −1
(numbers near the curves). At large separations between the
plates, the boundary-induced effects are small and the current
density coincides with that in the boundary-free geometry.

In Fig. 4, in the model with a single compact dimension
of the length L and for a D = 4 massless scalar field with
Dirichlet (left panel) and Neumann (right panel) boundary
conditions, we have plotted the total current density as a
function of the ratio z/a in the region between the plates.
The numbers near the curves correspond to the values of
a/L and the graphs are plotted for α̃ = π/2. The fea-
tures, obtained before on the base of asymptotic analysis, are

Fig. 4 The current density between the plates as a function of the rel-
ative distance from the left plate in the model with a single compact
dimension. The graphs are plotted for a massless field with the parame-

ter α̃ = π/2 and with Dirichlet (left panel) and Neumann (right panel)
boundary conditions. The numbers near the curves correspond to the
values of a/L
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Fig. 5 The same as in Fig. 4 for Dirichlet boundary condition on the left plate and Neumann condition on the right one (left panel). The right
panel is plotted for Robin boundary condition on both plates with β1/L = β2/L = −1

clearly seen from the graphs: the current density for Dirich-
let/Neumann scalar decreases/increases with decreasing sep-
aration between the plates and for Dirichlet scalar it vanishes
on the plates.

The same graphs for Dirichlet boundary condition on the
left plate and Neumann condition on the right one are pre-
sented on the left panel of Fig. 5. The right panel in Fig. 5
is plotted for Robin boundary condition on both plates with
β1/L = β2/L = −1. In the Robin case, the current density
decreases with the further decrease of the separation between
the plates and it tends to zero in the limit a → 0, in accor-
dance with the general analysis described above.

5 Conclusion

In the present paper we have investigated the influence of
parallel flat boundaries on the VEV of the current density
for a charged scalar field in a flat spacetime with toroidally
compactified spatial dimensions, assuming the presence of a
constant gauge field. The effect of the latter on the current
is similar to the Aharonov–Bohm effect and is caused by the
nontrivial topology of the background space. Along com-
pact dimensions we have considered quasiperiodicity condi-
tions with general phases. The special cases of twisted and
untwisted fields are the configurations most frequently dis-
cussed in the literature. By a gauge transformation, the prob-
lem with a constant gauge field is mapped to the one with
zero field, shifting the phases in the periodicity conditions by
an amount proportional to the magnetic flux enclosed by a
compact dimension in the initial representation of the model.
On the plates we employed Robin boundary conditions, in
general, with different coefficients on the left and right plates.
The Robin boundary conditions for bulk fields naturally arise
in braneworld scenario and the boundaries considered here
may serve as a simple model for the branes.

We considered a free field theory and all the information
on the properties of the vacuum state is encoded in two-point
functions. Here we chose the Hadamard function. The VEV
of the current density is obtained from this function in the
coincidence limit by using (2.6). For the evaluation of the
Hadamard function we have employed a direct summation
over the complete set of modes. In the region between the
plates the eigenvalues of the momentum component perpen-
dicular to the plates are quantized by the boundary conditions
on the plates and are given implicitly, in terms of solutions
of the transcendental equation (2.17). Depending on the val-
ues of the Robin coefficients, this equation may have purely
imaginary solutions y = ±iyl . In order to have a stable vac-
uum with 〈ϕ〉 = 0, we assume that ω0 > yl . Compared
to the case of the bulk with trivial topology, this constraint
in models with compact dimensions is less restrictive. The
eigenvalues of the momentum components along compact
dimensions are quantized by the periodicity conditions and
are determined by (2.12). The application of the general-
ized Abel–Plana formula for the summation over the roots
of (2.17) allowed us to extract from the Hadamard func-
tion the part corresponding to the geometry with a single
plate and to present the second-plate-induced contribution
in the form which does not require the explicit knowledge
of the eigenmodes for kp+1 ’[see (2.28)]. In addition, the
corresponding integrand decays exponentially in the upper
limit. A similar representation, (2.34), is obtained for the
Hadamard function in the geometry of a single plate. The
second term in the right-hand side of this representation is
the boundary-induced contribution. An alternative represen-
tation for the Hadamard function, (A.6), is obtained in the
“Appendix”, by making use of the summation formula (A.1).
The second term in the right-hand side of this representation
is the contribution induced by the compactification of the lth
dimension.
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The VEVs of the charge density and the components of
the current density along non-compact dimensions vanish.
The current density along compact dimensions is a peri-
odic function of the magnetic flux with the period equal
to the flux quantum. The component along the lth compact
dimension is an odd function of the phase α̃l and an even
function of the remaining phases α̃i , i �= l. First we have
considered the geometry with a single plate. The VEV of
the current density is decomposed into the boundary-free
and plate-induced parts. The boundary-free contribution was
investigated in [53] and we have been mainly concerned with
the plate-induced part, given by (3.10). For special cases of
Dirichlet and Neumann boundary conditions the correspond-
ing expression is simplified to (3.12). The plate-induced part
has opposite signs for Dirichlet and Neumann conditions.
At distances from the plate larger than the lengths of com-
pact dimensions the asymptotic is described by (3.13) and
the plate-induced contribution is exponentially small. For the
investigation of the near-plate asymptotic of the current den-
sity it is more convenient to use the representation (3.17)
for the general Robin case and (3.20) for Dirichlet and Neu-
mann conditions. From these representations it follows that
the current density is finite on the plate. This property is in
sharp contrast with the behavior of the VEVs of the field
squared and of the energy-momentum tensor which diverge
on the plate. For Dirichlet boundary condition the current
density vanishes on the plate and for Neumann condition its
value on the plate is two times larger than the current den-
sity in the boundary-free geometry. The normal derivative of
the current density vanishes on the plate for both Dirichlet
and Neumann conditions. This is not the case for general
Robin condition. The behavior of the plate-induced part of
the current density along lth dimension, in the limit when the
lengths of the other compact dimensions are much smaller
than Ll , crucially depend on whether the phases α̃i , i �= l,
are zero or not. For

∑
i �=l α̃

2
i �= 0 one has ω0l �= 0 and the

corresponding asymptotic expression is given by (3.23). In
this case the plate-induced contribution is exponentially sup-
pressed. For α̃i = 0, i �= l, the leading term in the asymptotic
expansion, multiplied by Vq/Ll , coincides with the corre-
sponding current density for (p+2)-dimensional space with
topology Rp+1 × S1. In the limit when the length of the
lth dimension is much larger than the other length scales
of the model, the behavior of the plate-induced contribution
to the current density is essentially different for the cases
ω0l �= 0 and ω0l = 0. In the former case the leading term
is given by (3.26) and the current density is suppressed by
the factor e−Llω0l . In the second case, for the leading term
one has Eq. (3.27) and its behavior, as a function of Ll , is
a power law. In both cases and for non-Neumann bound-
ary conditions, the leading terms in the boundary-induced
and boundary-free parts of the current density cancel each
other.

For the current density in the region between the plates we
have provided various decompositions ((4.1), (4.2), (4.4) for
general Robin boundary conditions and (4.5), (4.7), (4.12)
for special cases of Dirichlet and Neumann conditions). In
the case of Dirichlet boundary condition the total current
vanishes on the plates. The normal derivative vanishes on
the plates for both Dirichlet and Neumann cases. In the limit
when the separation between the plates is smaller than all
the length scales in the problem, the behavior of the current
density is essentially different for non-Neumann and Neu-
mann boundary conditions. In the former case, the total cur-
rent density in the region between the plates tends to zero.
For Neumann boundary condition on both plates, for small
separations the total current density is dominated by the inter-
ference part and it diverges inversely proportional to the sep-
aration [see (4.21)]. The results of the present paper may
be applied to Kaluza–Klein-type models in the presence of
branes (for D > 3) and to planar condensed matter systems
(for D = 2), described within the framework of an effec-
tive field theory. In particular, in the former case, the vacuum
currents along compact dimensions generate magnetic fields
in the non-compactified subspace. The boundaries discussed
above can serve as a simple model for the edges of planar
systems.
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Appendix: Alternative representation of the Hadamard
function

In this section we derive an alternative representation for the
Hadamard function which is well suited for the investiga-
tion of the near-plate asymptotic of the current density. The
starting point is the representation (2.21). We apply to the
corresponding series over nl the summation formula [50,95]

2π

Ll

∞∑
nl=−∞

g(kl) f (|kl |) =
∫ ∞

0
du[g(u) + g(−u)] f (u)

+ i
∫ ∞

0
du [ f (iu) − f (−iu)]

∑
λ=±1

g(iλu)

euLl+iλα̃l − 1
, (A.1)

where kl is given by (2.12). The part in the Hadamard
function coming from the first term in the right-hand
side of (A.1) coincides with the Hadamard function for
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the geometry of two plates in D-dimensional space with
topology Rp+2 × T q−1 and with the lengths of the com-
pact dimensions (L p+2, . . . , Ll−1, Ll+1, . . . , LD) (the lth
dimension is non-compactified). We will denote this func-
tion by GRp+2×T q−1(x, x ′). As a result, under the assumption
β j � 0, the Hadamard function is decomposed as

G(x, x ′) = GRp+2×T q−1(x, x ′) + Ll

πaVq

∫
dkp

(2π)p

∑
nq−1

×
∞∑
n=1

λng(z, z′, λn/a)eikp ·�xp+iklq−1·�xlq−1

λn + cos
[
λn + 2γ̃ j (λn)

]
sin λn

×
∫ ∞

ω
(l)
k

du
cos h

(
�t

√
u2 − ω

(l)2
k

)

√
u2 − ω

(l)2
k

∑
λ=±1

e−λu�xl

euLl+iλα̃l − 1
,

(A.2)

where xlq−1 = (x p+2, . . . , xl−1, xl+1, . . . xD), kq−1 =
(kp+2, . . . , kl−1, kl+1, . . . , kD), and ω

(l)
k =

√
ω2
k − k2

l .
Here, the second term in the right-hand side vanishes in the
limit Ll → ∞ and is induced by the compactification of the
l th dimension from R1 to S1 with the length Ll .

By making use of the relation

∑
λ=±1

e−λu�xl

euLl+iλα̃l − 1
= 2u

∞∑
r=1

hr (u,�xl), (A.3)

with

hr (�xl , u) = e−ruLl

u
cos h

(
u�xl + ir α̃l

)
, (A.4)

we rewrite the formula (A.2) in the form

G(x, x ′) = GRp+2×T q−1(x, x ′) + 2Ll

πaVq

∞∑
r=1

∫
dkp

(2π)p

×
∑
nq−1

∫ ∞

0
dy cos h(y�t)eikp ·�xp+iklq−1·�xlq−1

×
∞∑
n=1

λng(z, z′, λn/a)hr
(
�xl ,

√
λ2
n/a

2 + y2 + ω2
p,nq−1

)

λn + cos
[
λn + 2γ̃ j (λn)

]
sin λn

,

(A.5)

with ωp,nq−1 =
√
k2
p + ω2

nq−1
. Now, by using the summation

formula (2.25) for the series over n we get the final represen-
tation

G(x, x ′) = GRp+2×T q−1(x, x ′) + 2Ll

π2Vq

∞∑
r=1

∫
dkp

(2π)p

×
∑
nq−1

eikp ·�xp+iklq−1·�xlq−1

×
∫ ∞

0
dy cos h(�t y)

{∫ ∞

0
dug j (z, z

′, u)hr
(
�xl ,

√
u2 + y2 + ω2

p,nq−1

)

+
∫ ∞
√
y2+ω2

p,nq−1

du
g j (z, z′, iu)

c1(au)c2(au)e2au − 1

×
∑
s=±1

ihsr
(
�xl , i

√
u2 − y2 − ω2

p,nq−1

)}
. (A.6)

In this expression, the part with the first term in the figure
braces is the contribution to the Hadamard function induced
by the compactification of the lth dimension for the geometry
of a single plate at x p+1 = a j and the part with the second
term in the figure braces is induced by the second plate. Note
that the contribution of the first term in the right-hand side
of (A.6) to current density along the lth dimension vanishes.

In deriving the representation (A.6) we have assumed that
β j � 0. For this case, in the region between the plates, all
the eigenvalues for the momentum kp+1 are real and in the
geometry of a single plate there are no bound states. For
β j > 0, in the application of the summation formula (2.25)
to the series over n in (A.5) the contribution from the poles
±i/b j should be added to the right-hand side of (2.25). This
contribution comes from the bound state in the geometry of
a single plate at x p+1 = a j . For this bound state the mode

function has the form ϕ
(±)
k (x) ∼ e−z j /β j eik‖·x‖∓iω(b)

k t with

ω
(b)
k =

√
k2
p + ω2

nq − 1/β2
j . Assuming that ω0l > 1/β j , the

contribution from the bound state to the Hadamard function
in the geometry of a single plate is given by the expression

G(1)
bj (x, x ′) = 4θ(β j )Ll

πVqβ j
e−|z+z′−2a j |/β j

∞∑
r=1

∫
dkp

(2π)p

×
∑

nlq−1

∫ ∞

0
dx eikp ·�xp+iklq−1·�xlq−1

× cos h(x�t)hr
(
�xl ,

√
x2 + k2

p + ω2
nq−1

− 1/β2
j

)
,

(A.7)

where θ(x) is the Heaviside unit step function. In the case
ω0l < 1/β j < ω0 the corresponding expression is more
complicated.
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