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Abstract Leading-twist operators have a remarkable prop-
erty that their divergence vanishes in a free theory. Recently
it was suggested that this property can be used for an alterna-
tive technique to calculate anomalous dimensions of leading-
twist operators and allows one to gain one order in perturba-
tion theory so that, i.e., two-loop anomalous dimensions can
be calculated from one-loop Feynman diagrams, etc. In this
work we study the feasibility of this program by a toy-model
example of the ϕ3 theory in six dimensions. Our conclusion
is that this approach is valid, although it does not seem to
present considerable technical simplifications as compared
to the standard technique. It does provide one, however, with
a very nontrivial check of the calculation as the structure of
the contributions is very different.

1 Introduction

Calculation of anomalous dimensions of composite opera-
tors belongs to the standard tasks of any quantum field the-
ory calculation. For example, in quantum chromodynamics,
anomalous dimensions of leading-twist-two operators gov-
ern the scaling behavior of quark and gluon distributions in
hadrons and have to be known with high precision. Nowa-
days the anomalous dimensions are known at three loops;
see Refs. [1–3] and references therein. Beyond the two-loop
approximation such calculations are feasible only with the
help of the advanced methods of computer algebra. Since
the calculations are fully automated, finding errors becomes
highly nontrivial task and any approach which can provide a
check of the final results is very helpful.

Given that the theory depends not only on the coupling
constant but also some other parameters such as the dimen-
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sion of an internal symmetry group, one can organize an
expansion over these parameters. The best known example
of this kind is the 1/N expansion; see Ref. [4] for a review.
Agreement between the results obtained in the perturbative
and 1/N expansions serves as a powerful test for the validity
of calculations. However, the calculations in the 1/N expan-
sion are much harder than perturbative calculations: only two
RG functions—indices of the basic fields in the nonlinear σ -
model and Gross–Neveu model—are available at 1/N 3 order
[5–7]. In QCD the calculations rarely go beyond the leading
order in 1/Nf (where Nf is the number of flavors). At leading
order in 1/Nf the anomalous dimensions of twist-two opera-
tors were calculated in Refs. [8,9], but an extension of these
results to the next order is hardly possible.

A new approach for calculating the anomalous dimensions
of leading-twist operators was proposed in Refs. [10,11].
It is still a perturbative approach, however, the contributing
diagrams are completely different from those in the standard
technique. The approach is based on a remarkable property
of leading-twist operators: namely, a divergence of such an
operator, Oμ1,...μ j , vanishes in a free theory [12]

∂μ1Oμ1,...μ j (x) = 0. (1)

In the interacting theory the r.h.s. of Eq. (1) is non-zero but
proportional to the coupling constant. This identity allows
one to extract the �-loop contribution to the anomalous
dimension of the operator Oμ1,...μ j from � − 1 loop dia-
grams only. In particular, the one-loop anomalous dimen-
sions of leading-twist operators do not require calculation of
loop integrals at all [11,13].

The method developed in Ref. [11] is adjusted to local
operators and relies heavily upon the so-called “confor-
mal scheme” renormalization [14–16]. In our opinion it is
more convenient to stay within the standard MS scheme
and the formalism of non-local (light-ray) operators tech-
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nique. This technique proves to be more effective and flexi-
ble as we will demonstrate on the example of calculation of
two-loop anomalous dimensions in the su(n) symmetric ϕ3

model [17].
The paper is organized as follows. In Sect. 2 we introduce

the model and fix notations. In Sect. 3 we recall the light-ray
operator technique. Section 4 is devoted to the calculation of
the divergence of the conformal operator. The details of the
calculation of two-loop correlators are presented in Sect. 5.
Our conclusions are in Sect. 7. In the appendices we explain
some technical issues and details of the derivation.

2 Generalities

The su(n) symmetric ϕ3 model is a scalar field theory in
d = 6 − 2ε ≡ 2μ dimensions with an action

S(ϕ) =
∫

dd x

[
1

2
(∂ϕa)2 + 1

6
gMε dabcϕaϕbϕc

]
, (2)

where a = 1, . . . , n2 − 1,

dabc = 2 tr ta{tbtc}, (3)

ta are the generators of the su(n) algebra normalized in the
conventional way, tr tatb = 1/2. The theory is multiplica-
tively renormalizable,

SR(ϕ, g) = S(ϕ0, g0), (4)

where

ϕ0 = Zϕ ϕ and g0 = MεZgg.

Two-loop expressions for the renormalization constants
Z1 = Z2

ϕ and Z3 = ZgZ3
ϕ can be found in Refs. [17,18].

The β-function of the charge u = g2/(4π)3 and the field
anomalous dimension γϕ are

β(u) = −2εu − u2 n
2 − 20

2n
+ O(u3),

γϕ(u) = u
n2 − 4

12n

(
1 + u

n2 − 100

36n

)
+ O(u3). (5)

At the critical point u∗, β(u∗) = 0,

u∗ = 4nε/(20 − n2) + O(ε2); (6)

the theory enjoys the scale and conformal invariance.
It is well known that in a conformal theory the form of

the two-point correlation function of conformal operators is

fixed up to normalization. In particular, the correlator of the
conformal traceless symmetric operators has the form

〈O(n)
j (x)O(n̄)

j ′ (y)〉 = δ j j ′δ� j� j ′
C j I

j
n,n̄(x − y)

((x − y)2)� j
. (7)

Here j ( j ′) is the spin of the operator. The vectors n and n̄ are
two light-like vectors, n2 = n̄2 = 0, and O(n)

j (x) (O(n̄)

j ′ (y))
is a contraction of an operator with the vector n (n̄), for
instance,

O(n)
j (x) = nμ1 . . . nμ jOμ1...μ j (x). (8)

� j and � j ′ are the scaling dimensions of the operators, C j

is a normalization constant and

In,n̄(x) = (nn̄) − 2(nx)(n̄x)

x2 . (9)

The scaling dimension of the operator is given by the sum
of canonical and anomalous dimensions at a critical point,
� j = �

(0)
j + γ j , where γ j ≡ γ j (u∗). For the leading-twist

operators of spin j , �
(0)
j = 2μ − 2 + j .

The anomalous dimension of an operator in MS scheme,
γ j (u), is a function of a coupling constant only. It can be
restored from its critical value, γ j = γ j (u∗), provided that
the latter is known as a function of ε.

The correlation function for the divergence of the confor-
mal operator

∂O(n)
j (x) ≡ j nμ2 . . . nμ j ∂μ1Oμ1μ2...μ j (x) (10)

can be obtained from Eq. (7). If x is chosen in the transverse
plane, (xn) = (xn̄) = 0, the ratio of the two correlation
functions

T j (u∗) = x2(nn̄)
〈∂O(n)

j (x)∂O(n̄)
j (0)〉

〈O(n)
j (x)O(n̄)

j (0)〉
(11)

is a function of the anomalous dimension γ j only,

T j = 2 jγ j

[
(2μ − 3 + j)(μ − 1 + j)

μ − 2 + j
+ 2γ j

]
. (12)

This ratio, in full agreement with the result of Ref. [12],
vanishes provided that γ j = 0.

The perturbation series for γ j and T j

γ j = u∗ γ
(1)
j + u2∗ γ

(2)
j + · · · ,

T j = � j (u∗ T (1)
j + u2∗ T

(2)
j + · · · ), (13)
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are related to each other. For later convenience we choose
the normalization factor � j as follows:

� j = 2 j ( j + 2)( j + 3)

j + 1
. (14)

Substituting the series (13) into Eq. (12) one finds the fol-
lowing relations between the expansion coefficients:

γ
(1)
j = T (1)

j ,

γ
(2)
j = T (2)

j − 2( j + 1)

( j + 2)( j + 3)
(T (1)

j )2

+ 2 j2 + 5 j + 1

( j + 1)( j + 2)( j + 3)
ε(1) T (1)

j , (15)

and so on. Here ε(1) = (n2 − 20)/4n.
Since the divergence of the conformal operator is propor-

tional to the coupling constant, ∂O(n)
j ∼ O(g), the ratio T j

contains a “kinematical” factor u ∼ g2. Thus, in order to
determine T j and, hence, the anomalous dimension γ j , with
O(u�) accuracy the corresponding correlation functions have
to be calculated at one order in u less. In Ref. [11] one-loop
anomalous dimensions were reproduced by this method in ϕ3

and N = 4 SUSY models. Going beyond the leading order
requires an effective technique for the calculation of the two-
point correlation functions; otherwise one gains nothing in
comparison with the standard approach.

3 Light-ray vs. local operators

The first task is to find a convenient description for local
operators. As we will argue, the light-ray operator technique
[19] is a more suitable one. The light-ray operator1

[O(x; z1, z2)] = [ϕa(x + z1n)ϕa(x + z2n)] (16)

is defined as the generating function for the renormalized
local operators

[O(x; z1, z2)] ≡
∑
k,m

zk1z
m
2 [Okm](x)

=
∑

k,m,k′,m′
zk1z

m
2 Zk′m′

km Ok′m′(x). (17)

Here [Okm] is the renormalized (in MS scheme) local mono-
mial Okm = ∂k+ϕa(x)∂m+ϕa(x)/k!m! and ∂+ = (n∂x ). The

1 In order to make presentation more transparent we will consider the
su(n) scalar operator. The operators of other symmetry properties can
easily be included into consideration; see Sect. 6.

sum in Eq. (17) can be replaced by the action of some integral
operator on the bare operator

[O(x; z)] = ZO(x; z). (18)

Here we introduced the shorthand notation z = {z1, z2}. The
integral operator Z can be written in the form [18]

Z f (z) =
∫

dα dβ Z(α, β) f (zα12, z
β
21), (19)

where zα12 = ᾱz1 +αz2 and ᾱ = 1 −α. The renormalization
kernel Z(α, β) is given by a series in 1/ε and the coupling
u. The light-ray operator (17) satisfies the RG equation

(M∂M + β(u)∂u + H(u))[O(x; z)] = 0, (20)

where the evolution kernel H is an integral operator,

H(u) = −
(
M

d

dM
Z

)
Z−1 + 2γϕ, (21)

which encodes all information on the anomalous dimension
matrices for local operators.

At the critical point u = u∗ local operators can be classi-
fied according to the representations of the conformal group.
An operator with the lowest scaling dimension in the repre-
sentation is called a conformal operator. The leading-twist
operator,2 O j , is uniquely determined by its scaling dimen-
sion � j . The expansion of the light-ray operator (17) over
conformal operators and their descendants reads [18]

[O(x; z)] =
∑
jk

� jk(z1, z2) ∂k+O j (x), (22)

where the coefficients � jk(z1, z2) are homogeneous poly-
nomials of degree j + k in z1, z2. These polynomials are
eigenfunctions of the evolution kernel H(u∗),

H(u∗)� jk(z) = γ j � jk(z), (23)

with the corresponding eigenvalues being the anomalous
dimensions, γ j = γ j (u∗). Since the theory enjoys conformal
invariance at the critical point u = u∗, the evolution kernel
commutes with three generators of the collinear subgroup of
conformal group,3

[S±,0,H(u∗)] = 0. (24)

2 Note that the operator O j vanishes identically for odd j .
3 The other generators act on the operators in question trivially.
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The generators, however, deviate from their canonical form
(see Appendix A),

S(0)
− = −∂z1 − ∂z2 ,

S(0)
0 = z1∂z1 + z2∂z2 + 2,

S(0)
+ = z2

1∂z1 + z2
2∂z2 + 2(z1 + z2) (25)

due to quantum corrections,

S±,0 = S(0)
±,0 + �S±,0. (26)

Two of the generators are known to all orders,

�S− = 0, �S0 = −ε + 1

2
H(u∗), (27)

while corrections to the generator of special conformal trans-
formations can be calculated order by order in perturbation
theory [18]. The leading correction is

�S+ = (z1 + z2)

(
−ε + 1

2
H(u∗)

)
+ O(ε2). (28)

It follows from Eqs. (23) and (24) that the operators S± act
as raising (lowering) operators on the set of eigenfunctions
� jk ,

S±� jk ∼ � jk±1. (29)

In turn S0 counts conformal spin of the operator O jk ,

S0� jk = j jk� jk = 1

2
(� jk + S jk)� jk, (30)

where � jk = � j + k and S jk are the scaling dimension and
spin of the operator, respectively. One derives immediately
from (29) that the polynomial � jk=0 accompanying the con-
formal operator O j in the expansion (22) is a simple power,
� jk=0(z1, z2) ∼ (z1−z2)

j and all other eigenfunctions have
the form � jk(z1, z2) ∼ Sk+(z1 − z2)

j .

3.1 Scalar product

Equation (23) can be considered as a standard quantum
mechanical problem for the Hamiltonian H. In order to make
this analogy complete one needs to introduce a scalar prod-
uct on the space of the eigenfunctions. Clearly, such a scalar
product has to be adjusted to the symmetries of the problem.
At leading order the answer is given by the standard sl(2)

invariant scalar product [20,21]

(ψ, φ)0 = 1

π2

∫∫

|zk |<1

d2z1 d2z2 (ψ(z1, z2))
† φ(z1, z2). (31)

The integration goes over the unit disks |zk | < 1, k = 1, 2.
The generator S(0)

0 is a self-adjoint operator with respect to

this scalar product and (S(0)
+ )† = −S(0)

− . We want to find
a deformation of the scalar product (31) that keeps these
relations for the complete generators, S0 = S†

0 and S†
+ =

−S−. Let us look for the solution in the form

(ψ, φ)� = (ψ,�φ)0, � = 1 + u∗�(1) + · · · , (32)

where �(1) is a self-adjoint operator with respect to the scalar
product (31). The conjugation conditions for the generators
imply

�S(1)
0 − (�S(1)

0 )† = [S(0)
0 ,�(1)],

�S(1)
+ = [S(0)

+ ,�(1)]. (33)

The one-loop corrections to the generators involve the kernel
H(1)(H(u) = ∑

k u
kH(k)), which is given by the following

expression:

H(1) = 2(γ (1)
ϕ − λsH+). (34)

Here λs is a color factor, λs = (n2 − 4)/n and

H+ψ(z) =
∫ 1

0
dα

∫ ᾱ

0
dβ ψ(zα12, z

β
21). (35)

The explicit expression for �(1) and details of the derivation
can be found in Appendix B.4

Since the eigenfunctions � jk are mutually orthogonal
w.r.t. the scalar product (32), one can represent the conformal
operator as the scalar product of the coefficient function with
the light-ray operator

O j (x) = (z j12, [O(x, z)])� . (36)

This representation for the conformal operator is the most
convenient one for further analysis. We demonstrate it on
the following example. The conformal operator is usually
defined as an operator which vanishes under special con-
formal transformations, Kn̄ = K · n̄, δKn̄O j (0) = 0. This
property becomes transparent in the representation (36) if
one takes into account that

δKn̄ [O(z)] = 2(nn̄)S+[O(z)]
(we put here [O(z)] = [O(x = 0; z)]) and uses the fact that
the generators S+ and S− are conjugate to each other w.r.t.
the scalar product (32), S†

+ = −S−.

4 It turns out that the corrections due to �(1) cancel at O(ε2) order
in the ratio of the correlators (11). So that we do not need this explicit
expression for the present purposes.
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4 Divergence of conformal operator

In order to construct the divergence of the conformal operator
∂O(n)

j , Eq. (10), we calculate first the divergence of the light-
ray operator (18)

[∂O(x; z)] ≡ ∂

∂xμ

∂

∂nμ

[O(x; z)]. (37)

Taking the n-derivative one cannot, however, keep n2 = 0
any longer and has to take into account terms linear in n2

which account for the trace subtraction in [O(x; z)]. Tak-
ing the corresponding modification into account, see e.g.
Refs. [11,19,22], one gets for (37)

[∂O(x; z)] = ∂

∂xμ
∇μZϕa(x + z1n)ϕa(x + z2n) (38)

where ∇μ is a differential operator

∇μ = ∂

∂nμ
− 1

2
(μ − 1 + n · ∂n)

−1nμ ∂2

∂n2 , (39)

which commutes with the renormalization factor Z and acts
on the fields directly. After some simple algebra one gets

[∂O(x; z)] = 1

2
(S(ε)

0 − 1)−1Z{S(ε)
+ ∂2

x O(x; z)
− L(ε)

21 ∂2ϕa(x + z1n)ϕa(x + z2n)

− L(ε)
12 ϕa(x + z1n)∂2ϕa(x + z2n)}, (40)

where S(ε)
0 = S(0)

0 − ε, S(ε)
+ = S(0)

+ − ε(z1 + z2), and

L(ε)
21 = ∂z2 z

2
21 − εz21, L(ε)

12 = ∂z1 z
2
12 − εz12. (41)

Using the equations of motion (EOM) one can replace in this
expression

∂2ϕa(x) 	→ 1

2
gMεZ3Z

−1
1 dabcϕb(x)ϕc(x). (42)

We want to stress here that Eq. (40) holds for arbitrary cou-
pling u but not only at the critical value. Since the l.h.s.
of Eq. (40) is a finite (renormalized) operator the r.h.s. can
be expressed in terms of renormalized operators with finite
coefficients. These operators can be chosen as follows: the
two-particle operator O1 = ∂2O(x; z) and the three-particle
operator

O2 = O(d)(x;w)

= gdabcϕa(x + w1n)ϕb(x + w2n)ϕc(x + w3n), (43)

where w = {w1, w2, w3}. The operators O1 and O2 mix
under renormalization. The mixing matrix (integral operator
acting on fields variables) has a lower triangular form,

[Ok] = ZkmOm . (44)

Here Z11 = Z is the renormalization constant of the light-ray
operator, Eq. (18), Z12 = 0, Z21 = O(u2), and the element
Z22 is given, at the one-loop order, by the sum of two-particle
kernels

Z11 = 1 − u

ε
λs H+

12 + O(u2),

Z22 = 1 + u

2ε

∑
i<k

(λsHd
ik − λd H+

ik) + O(u2), (45)

where λs, λd are color factors

λs = (n2 − 4)/n, λd = (n2 − 12)/n. (46)

The kernel H+
ik is defined by Eq. (35) and Hd

ik has the form

Hd
12 f (z1, z2) =

∫ 1

0
dα αᾱ f (zα12, z

α
12). (47)

The subscripts ik show the arguments the kernel acts on.
Using these results we can rewrite (40) as follows:

[∂O(x; z)] = 1

2
(S(ε)

0 − 1)−1
∑
k=1,2

Ak[Ok(x; z)]. (48)

The operators Ak have the following form:

A1 = Z11S
(ε)
+ Z−1

11 − M−ε A2Z21Z
−1
11 ,

A2 = −1

2
MεZ3Z

−1
1 Z11(L

(ε)
12 S2 + L(ε)

21 S1)Z
−1
22 , (49)

where the operators S1, S2 map functions of three variables
to functions of two variables

[S1 f ](z1, z2) = f (z1, z1, z2),

[S2 f ](z1, z2) = f (z1, z2, z2). (50)

At one loop the operators Ak take the form

A1 = S+(u) + u(λsH+ − γ (1)
ϕ )(z1 + z2) + O(u2),

A2 = −1

2
Mε(L12S2 + L21S1 + (ε − uλsH+)z12S12

− uz12S12(λsHd
13 − λdH+

13) + O(u2)). (51)

Here S+(u) is given by Eqs. (26), (27) for arbitrary u, u∗ →
u,

S12 = S1 − S2, Lkm = L(ε 	→0)
km
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and deriving (51) we made use of the symmetry of the three-
particle operator Q(d)(x;w1, w2, w3) under permutation of
the w variables.

Let us stress again that the operators Ak do not contain
singular terms for arbitrary u. Using one-loop expressions
for Z factors, Eq. (45), it can be checked that all pole terms
cancel at order O(u). In particular,

Z3Z
−1
1 Z11(L12S2 + L21S1)Z

−1
22

= L12S2 + L21S1 + O(u2). (52)

Starting from the representation (36) for the conformal oper-
ator, we get for its divergence

∂O j (x) = (z j12, [∂O(x; z)])� . (53)

Making use of Eqs. (48)–(51) one finds that the divergence
∂O j (x) is given by the sum of two-particle and three-particle
(renormalized) operators

∂O j (x) = 1

2( j + 1 − ε)
(R(2)

j (x) + R(3)
j (x)). (54)

The prefactor on the r.h.s. of Eq. (54) is the eigenvalue of the
operator (S(ε)

0 − 1)−1 on the function z j12. The two-particle

term R(2)
j has the form

R(2)
j (x) = γ j (z

j
12, (z1 + z2)[O1(x; z)]) + O(u2∗). (55)

We recall that γ j = γ j (u∗) and O1(x; z) = ∂2O(x; z). Let
us note that the term ∼ S+ in the expression for A1, Eq. (51),
vanishes inside the scalar product since (z j12, S+ · · · ) =
−(S−z j12, · · · ) = 0. In turn, the expression for the three-
particle contribution can be written as follows:

R(3)
j (x) = R(3,0)

j (x) + R(3,1)
j (x) + O(ε2), (56)

where

R(3,0)
j (x) = −Mε(z j12, L21S1[O2(x; z)])� ,

R(3,1)
j (x) = −Mε(z j12, z12S1X j [O2(x; z)])� (57)

and the operator X j has the form

X j = ε − γϕ + γ j/2 − u∗(λsHd
13 − λdH+

13). (58)

This expression follows immediately from (51) if one takes
into account that spin j is even and A2 is symmetric under
interchange z1 ↔ z2.

It is clear from (55) that the expansion of the two-particle
termR(2)

j over conformal operators does not contain the oper-
ator of spin j ,

R(2)
j ∼ ∂2

⎛
⎝

j−2∑
m=0

cm∂
j−m−2
+ Om(x)

⎞
⎠ . (59)

Taking into account that 〈O j (x)Ok(0)〉 = 0 for k < j

one derives that 〈R(2)
j (x) ∂O j (0)〉 = 0. This, in virtue of

Eq. (54), results in the following relation for the correlators:

〈R(2)
j (x)R(2)

j (0)〉 = −〈R(2)
j (x)R(3)

j (0)〉. (60)

It can be shown that in the correlator 〈∂O j (x)∂O j (0)〉 one
can replace (54) by a simpler expression

∂O j (x) = 1

2( j + 1)
(R(2)

j (x) + R(3,0)
j (x)). (61)

The omitted terms

�X = 1

2( j + 1)

(
R(3,1)

j (x) + ε

j + 1
R(3,0)

j (x)

)
+ O(ε2)

give rise to the correction of order O(ε3). In order to verify
this it is sufficient to notice that �X can be rewritten in the
form (z j12, F S−z12[O2(x; z)])� , where F is some operator
whose explicit expression is not relevant. Inside the correlator
the generator S− acts, finally, on the function z j12, nullifying
it.

Thus in order to find the anomalous dimension γ j at order
O(ε2) one has to calculate the three correlators

〈O jO j 〉, 〈R(2)
j R(3,0)

j 〉, 〈R(3,0)
j R(3,0)

j 〉
at one-loop order. We will do it in the next section.

Finally, we note that for j = 2 the r.h.s. of Eq. (54)
has to vanish identically since the operator Oμν is, up to
EOM terms, the energy-momentum tensor. The two-particle
term R(2)

j is proportional to the anomalous dimension γ j and

therefore vanishes for j = 2. In order to check it for R(3)
j , it

is sufficient to take into account that only the linear term in
the expansion of three-particle operator

O2(x;w) ∼ (w1 + w2 + w3) · dabc∂+ϕa(x)ϕb(x)ϕc(x)

= (S(1,1,1)
+ · 1) dabc∂+ϕa(x)ϕb(x)ϕc(x)

contributes to (56) for j = 2. After simple algebra one finds
that R(3)

j=2 = O(ε2).

5 Correlators

5.1 LO correlators

In order to give a glimpse of the technique we start with cal-
culation of the necessary correlators at leading order. The
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z2

z1

w2

w1

z2

z1

w2

w1

Fig. 1 The leading order diagrams for the correlator of two conformal
operators, 〈O(n)

j (x)O(n̄)
j (0)〉

correlator 〈O(n)
j (x)O(n̄)

j (0)〉 is given by the sum of two dia-
grams, shown schematically in Fig. 1. They are given by the
product of the propagators and give rise to identical contribu-
tions to the correlation function. Assuming that x is chosen
in a transverse plane, (x, n) = (x, n̄) = 0, one represents the
propagator as

D(x + z1n − w̄1n̄) = D(x)(1 − z1w̄1r)
−(μ−1), (62)

where r = 2(nn̄)/x2 and

D(x) = �(μ − 1) /(4πμ(x2)μ−1). (63)

At leading order one replaces μ − 1 	→ 2 so that the sec-
ond factor in (62) is nothing else than the reproducing ker-
nel, Ks=1(z1, w1r), corresponding to the spin s = 1; see
Eq. (A.5). Therefore starting from Eq. (36) one gets for the
correlator

〈O(n)
j (x)O(n̄)

j (0)〉 = 2ξD2(x)

(
z j12

∣∣∣∣∣
2∏

k=1

K1(zk, wkr)

∣∣∣∣∣w
j
12

)

= 2ξD2(x)r j ||w j
12||211, (64)

where ξ = n2 − 1 is the isotopic factor, the scalar products
correspond to the conformal spin s = 1, and we take into
account the property of the reproducing kernel (A.6). The
norm of w

j
12 is given by the following expression:

||w j
12||2s1s2

= j !
2∏

k=1

�(2sk)

�( j + 2sk)

�(2 j + 2(s1 + s2) − 1)

�( j + 2(s1 + s2) − 1)
.

The diagrams for the correlator 〈∂O(n)
j (x)∂O(n̄)

j (0)〉 are
shown in Fig. 2. On the leftmost diagram the points z1n and

z2

z1

w2

w1

z2

z1

w1

w2

Fig. 2 The LO diagrams for the correlator of the divergence of the
conformal operators, 〈∂O(n)

j (x)∂O(n̄)
j (0)〉

w̄1n̄ are connected by two propagators,

D2(x + z1n − w̄1n̄) = D2(x)(1 − z1w̄1r)
−2(μ−1)

= D2(x)Ks=2(z1, w1r). (65)

Since ∂O(n)
j ∼ (z j12, L21[O(x, z1, z1, z2)])11, see Eq. (57),

the z-scalar product has the form

(z j12, L21K2(z1, w1r)K1(z2, w2r))11. (66)

The spins of the reproducing kernels and spins of the scalar
product are in discord with each other. However, the oper-
ator L21 = ∂2z2

21 removes this mismatch. It intertwines the
representations,

L21D
+
2 ⊗ D+

1 = D+
1 ⊗ D+

1 L21

and it can easily be shown, see e.g. Ref. [13], that

(z j12, L21�(z1, z2))11 = −a j (z
j−1
12 ,�(z1, z2))21, (67)

where

a j = ( j + 1)||z j12||211/||z j−1
12 ||221 = j ( j + 2)( j + 3)

6
. (68)

Thus the scalar product (66) takes the form

−a j (z
j−1
12 ,K2(z1, w1r)K1(z2, w2r))21 = −a j (rw̄12)

j−1.

(69)

Restoring all color and symmetry factors one gets for the first
diagram

−1

2
ξλsg

2D3(x)a j/( j + 1)2r j−1(L21w̄
j−1
12 , w

j
12)11

= 1

2
ξλsg

2D3(x)a j/( j + 1)r j−1||w j
12||211. (70)

The calculation of the second diagram goes along the same
line. One can combine the propagators attached to the point
z1 using Feynman’s trick to get

(z j12, L21K2(z1, w1r)K2(z1, w2r)K1(z2, w1r))11

= 6(−1) j a j (rw̄12)
j−1

( j + 1)( j + 2)
. (71)

Finally, taking into account that second diagram enters with
symmetry factor 2 one gets, in full agreement with (11),

T j (u∗) = u∗� jγ
(1)
j + O(u2∗), (72)

where the one-loop anomalous dimension is, see Eq. (34),

γ
(1)
j = λs

1

6

( j − 2)( j + 5)

( j + 1)( j + 2)
. (73)
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Thus the diagrams are easily calculated provided that the
spins of the reproducing kernels match that of the scalar prod-
uct. We will show that this scheme can be extended to loop
diagrams as well.

5.2 NLO correlators

First, it is easy to see that the corrections due to modification
of the scalar product cancel out in the ratio of correlators.
Indeed, these corrections only influence the norm

||w j
12||211 	→ ||w j

12||2� = (w
j
12, (1 + �(1))w

j
12)11,

entering the tree-level expressions, Eqs. (64), (70), etc.,
which cancel out in the ratio of correlators, T j , irrespec-
tively of the explicit form of � . This cancelation is expected.
Indeed, the problem can be reformulated as a standard quan-
tum mechanical problem for a certain Hamiltonian. A mod-
ification of the scalar product produces corrections to the
eigenstates (conformal operator). However, the energy shift
at the leading order, δE (1)

ψ = 〈ψ(0)|V |ψ(0)〉, is not sensitive
to such corrections.

The calculation of 〈R(2)
j R(3,0)

j 〉 is a bit more involved

but straightforward. The corresponding contribution to T (2)
j

reads

T (2→3)
j = −1

2
(γ

(1)
j )2 ( j − 1)( j2 + 4 j + 9)

( j + 1)( j + 2)( j + 3)( j + 5)
. (74)

It is convenient to split one-loop corrections to the correlators
〈O jO j 〉 and 〈R(3,0)

j R(3,0)
j 〉 into two groups

– Self-energy insertions to the propagators.
– All other loop diagrams.

Taking into account the self-energy correction to the prop-
agators is equivalent to the calculation of the tree-level dia-
grams with the exact (critical) propagator

Dc(x) = A(u∗)/(x2)�ϕ , (75)

where �ϕ = μ−1+γϕ is the critical dimension of the basic
field and the residue A(u∗) is

A(u∗) = �(μ − 1)

4πμM
2γϕ

(
1 − u∗λs

5

36
+ O(u2∗)

)
, (76)

where M
2 = πM2eγE . For the first diagram in Fig. 1 one

gets

D2
c (x) r

j (z j12|Ks(z1, w1)Ks(z2, w2)|w j
12)(11),(11), (77)

where s = �ϕ/2 = 1−(ε−γϕ)/2, the subscripts indicate the
conformal spins of the z and w scalar products, respectively.

The reproducing kernels in (77) correspond to spin s, which
does not match the spins of the scalar product. However, it
is easy to see that, due to symmetry, the scalar product with
modified spins,

(z j12|Ks(z1, w1)Ks(z2, w2)|w j
12)(sδ+,sδ+),(sδ−,sδ−), (78)

where sδ± = 1 ± δ is equal to that in (77) up to terms of
order δ2. Therefore, choosing sδ− = s, (δ = (ε −γϕ)/2), and
evaluating the w-product in (78) one gets for (77)

D2
c (x) r

j ||z j12||2sδ+,sδ+
+ O(u2∗). (79)

The calculation of the diagrams in Fig. 2 goes along the same
lines. Finally, the contribution to the ratio of correlators T j

from the leading order diagrams and self-energy diagrams
can be written in the form (up to O(ε2) terms)

T SE
j = 2u∗λs

� j

(
1 + u∗

2

(
λd − 7

9
λs

)) ||z j−1
12 ||2

2sδ+,sδ+

||z j12||2sδ+,sδ+

×
(

1 − 2�(4sδ−)(�( j − 1 + 2sδ−)

�(2sδ−)�( j − 1 + 4sδ−)

)
. (80)

Expanding (80) we find for the corresponding contribution
to the coefficient T (2)

j

T SE
j = γ

(1)
j

{
1

2

(
λd − 7

9
λs

)

+ 2δ

[
S2 j+2 − S j+3 − S j + 2

3

4 j2 + 14 j + 9

( j + 2)( j + 3)

]}

− 4λs δ

( j + 1)( j + 2)

[
S j+2 − (2 j + 1)(4 j + 7)

3( j + 1)( j + 2)

]
,

(81)

where S j = ∑ j
k=1 1/k and

δ = 1

4

(
−λd + 1

3
λs

)
. (82)

We recall that γ
(1)
j is the one-loop anomalous dimension,

Eq. (73).

5.3 Loop diagrams

All loop diagrams can be calculated quite easily with the help
of several simple tricks. Several examples are given below.
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z2

z1

w2

w1

=⇒

z2

z1

w2

w1

=⇒

zα
12

z1

wβ
12

w1

μ − 1 − δ μ − 1 − δ

A

μ − 1 + δ μ − 1 + δ

μ − 1

2 − 3δ 2 − 3δ

B

1

1−
δ 1− δ

1

3 − 3ε

C

Fig. 3 NLO correction to the correlator of the conformal operators 〈O(n)
j (x)O(n̄)

j (0)〉. The parameter δ = ε/2

Let us start with a correction to the correlator of two confor-
mal operators. The corresponding contribution has the form

C(ε) = 2 (z j12|H(x; z, w)|w j
12)(11),(11), (83)

where the kernel H(x; z;w) is given by the left diagram
shown in Fig. 3 with the parameter δ → 0. We need to find
C(ε) up to terms O(ε0), C(ε) = 1

ε
(c0 + εc1 + · · · ). To this

end we proceed as follows. We modify the indices as shown
in Fig. 3. This modification does not change the pole structure
(see the discussion in Ref. [23]) and, due to the symmetry
C(ε, δ) = C(ε,−δ), one concludes that

C(ε, δ) = 1

ε
(c0 + εc1 + c2δ

2 + · · · ). (84)

The choice δ = ε/2 results in the uniqueness of the upper
integration vertex and at the same time does not affect first
two terms in (84). Using the star–triangle relation for the
upper vertex one gets the diagram B in Fig. 3. Using the
Feynman formula for the left (right) propagators attached to
the integration vertex one can perform the last integral that
results in the diagram C in Fig. 3.

This diagram, up to a x-dependent factor, has the form

K 1
2
(z1, w1)

∫ 1

0
dα dβ(ᾱβ̄)−δ(αβ)1−3δK 3

2 −3δ(z
α
12, w

β
12).

(85)

In the next step we want to get rid of the parametric integrals.
To this end we use the properties of the reproducing kernel
(A.6) and represent

Ks−δ(z
α
12, w

β
12)

=
∫

d2ξ ′ μs(ξ
′)Ks(z

α
12, ξ

′)

×
∫

d2ξ μs(ξ)Ks−δ(ξ
′, ξ)Ks(ξ, w

β
12)

=
∫

d2ξ μs+δ(ξ)Ks(z
α
12, ξ)Ks(ξ, w

β
12) + O(δ2), (86)

where s = 3/2 − 2δ and we used Eq. (A.7). Using this
expression one can carry out the integrals over α, β in (85).

z2

z1

w2

w1

α α

β β

γ

Fig. 4 The “sl(2)” diagram: an arrow line from w to z with index α

stands for the propagator (1 − zw̄)−α . The indices have the following
values: α = 2−3ε/2, β = 1−ε/2, and γ = 1. The black circle denotes
an integration vertex with the sl(2) invariant measure μs+δ, s + δ =
3/2 − ε/4

The resulting expression for H(x; z, w) (up to a prefactor)
takes the form of the “sl(2)” diagram shown in Fig. 4.

Now we need to calculate the scalar product (83) with
the kernel H(x; z, w) given by the diagram on Fig. 4.
The scalar product is a function of indices of left (right)
propagators and conformal spins of z (w) scalar products,
S(a, b, s1, s2|a′, b′, s′

1, s
′
2). We need this function up to O(ε)

terms for a = a′ = α, b = b′ = β, and si = s′
i = 1. As

was explained in the previous section the integral with mea-
sure μs can be evaluated easily provided that the sum of the
indices of the propagators coming from this vertex is equal to
2s. Taking this into account one finds that the scalar product
with shifted indices,

S(α+δ, β+δ, 1+2δ, 1+4δ|α − δ, β − δ, 1 − 2δ, 1 − 4δ),

can be straightforwardly calculated to be

S(ε) = j !�(3 − ε)

�( j + 3 − ε)
||z j12||21+ 1

2 ε,1+ε
(87)

and at the same time it differs from the scalar product in
question by terms of order O(ε2) only.

Restoring all factors one gets for C(ε)

C(ε) = u∗ λs(n
2 − 1)D2(x)(x2M

2
)ε r j 2 + ε

ε
S(ε). (88)
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z2

z1

w2

w1

z2

z1

w2

w1

z2

z1

w1

w2

z2

z1

w1

w2

DCBA

Fig. 5 One-loop correction to the correlator of the divergence of conformal operators 〈∂O(n)
j (x)∂O(n̄)

j (0)〉

Since the ratio (11) does not depend on x , it is convenient to

put x2M
2 = 1. Finally, subtracting the counterterms,

�C(ε) = −1

ε
4u∗ λs(n

2 − 1)D2(x) r j
||z j12||21+ 1

2 ε,1+ 1
2 ε

( j + 1)( j + 2)
,

one obtains

C(ε) + �C(ε)

〈O j (x)O j (0)〉0
= u∗λs

2(S2 j+2 − S j+1)

( j + 1)( j + 2)
+ · · · (89)

where the ellipsis stands for higher order terms. The corre-
sponding contribution from (89) to the coefficient T (2)

j in the
ratio of the correlators, see Eq. (11), reads

T (o)
j = −γ

(1)
j λs

2(S2 j+2 − S j+1)

( j + 1)( j + 2)
. (90)

The NLO diagrams contributing to the correlator
〈∂O j (x)∂O j (0)〉 are shown in Fig. 5 (type A) and Fig. 6
(type B). These diagrams have different color factors: λsλd
for the A-diagrams, and λ2

s for the B-diagrams.
All diagrams of the A-type have the diagram we have just

now discussed as a subgraph. The only difference is that in
order to kill terms linear in δ one has to consider an average
of the diagrams, (D(δ) + D(−δ))/2. For δ = ε/2 each of
the diagrams, D(±δ), can be simplified with the help of the
star–triangle relation and rewritten in the form of “sl(2)”
diagrams. These diagrams in turn can be calculated up to
O(ε2) terms in a manner described above. So we skip all
details and present the result for each diagram in Appendix
C.

All diagrams of B-type shown schematically in Fig. 6 con-
tain two 2 → 1 subgraphs. The diagrams depicted on the
right panel are finite, while those on the left panel are diver-
gent. The calculation of these diagrams does not present any
problem so that we give only the final results in Appendix C.

Finally, it follows from Eq. (52) that the sum of countert-
erm diagrams to the diagrams in Figs. 5 and 6 can be written
in the form

2(Z3Z
−1
1 Z j − 1) 〈∂O(n)

j (x)∂O(n̄)
j (0)〉(ε)0 . (91)

BA

Fig. 6 NLO diagrams for the correlator of the divergence of conformal
operators 〈∂O(n)

j (x)∂O(n̄)
j (0)〉

Here Z j is the one-loop renormalization constant for the
operator O j ,

Z j = 1 − u

ε

λs

( j + 1)( j + 2)
(92)

and

Z1 = 1 − uλs

12ε
+ O(u2), Z3 = 1 − uλd

4ε
+ O(u2). (93)

We have put the superscript (ε) to the correlator in order to
stress that even the tree-level correlator depends on ε through
a space-time dimension d = 6 − 2ε.

6 Results

The coefficient T (2)
j in the ratio of the correlators is given by

the sum of terms in Eqs. (74), (81), (89), (C.13), and (C.14).
In the case of operators with another isotopic symmetry these
expressions have to be modified. One can distinguish seven
different isotopic projections,

Oab
f (x; z1, z2) = (Pf )

ab
a′b′ϕa′

(x + z1n)ϕb′
(x + z2n), (94)

where f = 1, . . . , 7. The projectors Pf can be found in
Ref. [18]. The one-loop anomalous dimension for the oper-
ator O( f )

j is given by

γ
f (1)
j = 1

6

(
λ1 − 12λ f

( j + 1)( j + 2)

)
, (95)
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where λ f are the eigenvalues of the operator R
ab
a′b′ =

daa
′c dbb

′c on the invariant subspaces, RPf = λ f P f . The
explicit expressions for λ f can be found in [18]. We note
also that λs = λ1 and λd = 2λ3.

The modifications of Eqs. (74), (81), (89), (C.13), and
(C.14) for the case of arbitrary projections, Pf , are the fol-
lowing:

– Replace γ
(1)
j → γ

(1, f )
j in all expressions.

– Replace λs → λ f in the expressions for T (o)
j , T (5,B)

j ,

T (5,C)
j , T (6,A)

j and in the last line of T SE
j , Eq. (81).

– Replace λsλd → 2ν f in the expression for T (5,D)
j .

Here ν f are the eigenvalues of the invariant operator Tab
a′b′ =

(R2)
a,b′
a′b ; see Ref. [18].

Representing the ratio of the correlators in the form

T f
j (u∗) = � j (u∗ T f (1)

j + u2∗ T
f (2)
j + · · · ) (96)

one obtains for the coefficient T f (2)
j

T f (2)
j =

∑
ab

λa λb T
(2)
j,ab + ν f T

(2)
j, f (97)

where

T (2)
j,ss = − 1

72

(
11

3
+ 2 j2 + 7 j − 1

( j + 1)( j + 2)( j + 3)

)
,

T (2)
j,sd = 1

12

(
2

3
+ 2 j2 + 5 j + 1

( j + 1)( j + 2)( j + 3)

)
,

T (2)
j, f f = 2

j3 + 8 j2 + 10 j + 1

( j + 1)3( j + 2)3( j + 3)
,

T (2)
j, f d = 1

( j + 1)( j + 2)

(
S j+1 − 3 + 4

( j + 1)( j + 3)

)
,

T (2)
j, f s = − 1

3( j + 1)( j + 2)

(
S j+3 − 4

+ j2 + 2 j + 5

( j + 1)( j + 2)( j + 3)

)
, (98)

and

T (2)
j, f = − 2

( j + 1)2( j + 2)2 . (99)

Finally, comparing (96) with the r.h.s. of Eq. (11) we get for
the anomalous dimension

γ
f
j (u∗) = u∗γ f,(1)

j + u2∗γ
f,(2)
j + · · · , (100)

where γ
f (1)
j is given by Eq. (95) and γ

f (2)
j has the form

γ
f (2)
j = 2γ (2)

ϕ + 2ν f

( j + 1)2( j + 2)2 + 2λ2
f

j2 + j − 1

( j + 1)3( j + 2)3

− λ f λs

3( j + 1)( j + 2)

[
S j+2 − 4 + 2 j + 3

2( j + 1)( j + 2)

]

+ λ f λd

( j + 1)( j + 2)

[
S j+2 − 3 + 1

j + 1

]
. (101)

This expression completely agrees with the anomalous
dimensions reconstructed from the two-loop evolution ker-
nels [18]. We have also checked that the large j expansion of
the anomalous dimensions γ

f
j (u∗) in terms of the quadratic

Casimir

J 2 =
(
j + 2 − ε + 1

2
γ

f
j (u∗)

) (
j + 1 − ε + 1

2
γ

f
j (u∗)

)

contains only even powers of 1/J [24,25].

7 Summary

We have calculated two-loop anomalous dimensions of the
leading-twist operators in the ϕ3 model using the approach
proposed in Refs. [10,11]. Formally this method allows one
to gain one order in the perturbation theory. However, this
advantage is illusory since one has to calculate diagrams
including finite parts instead of the pole terms in the stan-
dard approach. There is also no essential gain as regards the
complexity of the calculations.

Nevertheless, both the contributing diagrams and the
methods of calculation are quite different in the two approac-
hes. Therefore the calculation of the anomalous dimensions
performed in this approach could provide an additional check
of the results obtained within the standard approach. Of
course, going to the next order is only possible with the
advanced methods of computer algebra.
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AppendixA:Discrete series representationsof the su(1,1)
group

At the leading order the light-ray operatorO(x; z1, z2) trans-
forms according to the tensor product of discrete series rep-
resentations of the group su(1, 1). In this appendix we recall
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their basis properties. The discrete series representation of
the su(1, 1) group, D+

s in the standard notations [20], is
defined on the space of functions analytic inside the unit
circle, |z| < 1,

D+
s (g−1) f (z) = (b̄z + ā)−2s f (z′), (A.1)

where z′ = (az + b)/(b̄z + ā), and g =
(
a b
b̄ ā

)
∈ su(1, 1)

and s is an integer or half-integer. The generators of the group
have the form

S− = −∂z, S0 = z∂z + s, S+ = z2∂z + 2sz. (A.2)

The invariant scalar product [20,21]

(D+
s (g) f, D+

s (g)ψ)s = ( f, ψ)s

is uniquely defined (up to unitary equivalence)

( f, ψ)s =
∫

d2z μs(z) f (z) ψ(z), (A.3)

where

μs(z) = 2s − 1

π
(1 − |z|2)2s−2θ(1 − |z|).

The space of analytic functions on the unit disk with the scalar
product (A.3) is called a holomorphic Hilbert space, D+

s , see
for a review Ref. [26]. The powers of z form an orthogonal
basis, {ek(z) = zk, k = 0, 1, . . .}, in this space,

(em, ek)s = δkm ||ek ||2s = δmk
�(2s)k!

�(k + 2s)
. (A.4)

The unit operator (the reproducing kernel) has the form

Ks(z, w) =
∞∑
k=0

ek(z)ek(w)/||ek ||2s = (1 − zw̄)−2s (A.5)

and for an arbitrary function f ∈ D+
s the following identity

holds:

f (z) =
∫

d2w μs(w)Ks(z, w) f (w). (A.6)

We note here that Eqs. (A.3)–(A.5) all make perfect sense
for any s ≥ 1/2.

Finally, we give a relation that turned out to be very useful
in the calculations:∫

d2w μs+ε(w)Ks(z, w) f (w)

=
∫

d2w μs(w)Ks−ε(z, w) f (w) + O(ε2). (A.7)

It follows immediately from (A.6) if one replaces s → s + ε

and expands it in ε.

Appendix B: One-loop scalar product

The one-loop correction �(1) to the scalar product (32) is
determined by Eq. (33). To find the solution we note that
the operator H+ which enters one-loop kernel (34) can be
represented in the factorized form5

H+ = F12F12 = F21F21, (B.1)

where

F12 = (∂2z21)
−1, F12 = (z−1

12 ∂1z
2
12)

−1,

F21 = (∂1z12)
−1, F21 = (z−1

21 ∂2z
2
21)

−1. (B.2)

In order to obtain (B.1) it is sufficient to notice that H+ is
nothing else than the inverse Casimir operator,

(H+)−1 = −∂1∂2z
2
12 = F−1

12 F−1
12 = F−1

21 F−1
21 .

While the operatorH(1) : D(1)
+ ⊗D(1)

+ 	→ D(1)
+ ⊗D(1)

+ , theF
operators intertwine the representations with different spins.
Namely,

F12 D(1)
+ ⊗ D(1)

+ = D
( 3

2 )

+ ⊗ D
( 1

2 )

+ F12,

F12 D
( 3

2 )

+ ⊗ D
( 1

2 )

+ = D(1)
+ ⊗ D(1)

+ F12, (B.3)

and similar for F21. It results in the intertwining relations for
two-particle generators, S(s1,s2)

α = S(s1)
α + S(s2)

α ,

F12S
(1,1)
α = S

( 3
2 , 1

2 )
α F12,F21S

(1,1)
α = S

( 1
2 , 3

2 )
α F21, (B.4)

and so on. Next, we introduce the one-particle operator

W (s) f (z) =
∫ 1

0
dα

ᾱ2s−1

α
( f (z) − f (ᾱz)), (B.5)

such that W (s)zn = (ψ(n + 2s) − ψ(2s))zn . This operator
commutes with the generator S(s)

0 , while

[S(s)
+ ,W (s)] = −z. (B.6)

Now let us check that

�(1) = (ε − u∗γ (1)
ϕ )(W (1)

1 + W (1)
2 )

+ λsu∗(F12W
( 1

2 )

2 F12 + F21W
( 1

2 )

1 F21) (B.7)

5 Let us remark that the evolution kernel H+ can be identified with
the sl(2)-invariant R-operator for a special value of spectral parameter,
H+ = Rs1=1,s2=1(u = −i). The factorization of H+ is a consequence
of a factorization property of the R-operator [27]; see also Ref. [28].
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gives the solution to Eq. (33). The first equation is obviously
satisfied, [S(0)

0 ,�(1)] = 0. Next, making use of Eqs. (B.4)
and (B.6) one gets for the commutator

[S(0)
+ ,�(1)] = −(ε − u∗γ (1)

ϕ )(z1 + z2)

− λsu∗(F12z2F12 + F21z1F21). (B.8)

Finally, one casts the r.h.s. into the necessary form taking
into account that [F12, z2] = [F21, z1] = 0.

The scalar product can also be written in the form

( f, ψ)� = ( f, ψ)s∗,s∗ + λsu∗[(F12 f,W
( 1

2 )

2 F12ψ) 3
2 , 1

2

+ (F21 f,W
( 1

2 )

1 F21ψ) 1
2 , 3

2
] + O(ε2), (B.9)

where s∗ = 2 − ε + γ ∗
ϕ is the conformal spin of the basic

field at the critical point and ( f, ψ)s1,s2 stays for the two-
particle scalar product. We have to mention here that the
solution of Eq. (33) is not unique. For instance, at one-loop
order � ′ = �(1) + Z , where Z is an invariant operator,
[Z , S(0)

α ] = 0, also satisfies Eq. (33).
Closing this section we give the standard representation

for the conformal operator,

O j (x) = Pj (∂z1 , ∂z2)[O(x; z1, z2)]|z1=z2=0. (B.10)

The operator O j is completely determined by a polynomial
Pj (z1, z2). It was known a long ago [29] that at the leading
order

Pj (z1, z2) ∼ (z1 + z2)
jC (3/2)

j

(
z1 − z2

z1 + z2

)
,

whereC (3/2)
j is the Gegenbauer polynomial. Beyond the lead-

ing order one derives from Eqs. (36) and (B.9)

Pj (z1, z2) = (z1 + z2)
j
{
p(λ)
j (z1, z2)

− 4 u∗λs
j∑

k=0,2...

b j
k p(λ)

k (z1, z2)

}
, (B.11)

where λ = 2s∗ − 1/2,

p(λ)
j (z1, z2) = j !�(2λ)�(λ + 1

2 )

�( j + 2λ)�( j + λ + 1
2 )
C (λ)

j

(
z1 − z2

z1 + z2

)
,

and the expansion coefficients have the form

b j
j = 1

( j+1)( j+2)

[
S2 j+2−2S j+1− 1

( j + 1)( j + 2)

]
,

b j
k< j = (2k + 3)

( j − k)( j + k + 3)

(k + 1)!
( j + 2)!( j + 1)

. (B.12)

Equation (B.11) agrees with the expression for the conformal
operator obtained in [11,14].

Appendix C: Loop diagrams

We will present an answer for a diagram D(a) minus the
counterterm �D(a) in the form

x2(nn̄) (D(a) − �D(a)) = u2∗ · � j T
(a)
j 〈O(n)

j (x)O(n̄)
j 〉0.

Here 〈O(n)
j (x)O(n̄)

j 〉0 is the tree-level correlator. For the dia-
grams in Figs. 5 and 6 we obtain

T (5,A)
j = λsλd

12

[
S2 j+2 − S j+3 − S j+2 + 7

3

]
,

T (5,B)
j = λsλd

( j + 1)( j + 2)

[
S2 j+2 − S j+3 + 1

j + 1

]
,

T (5,C)
j = − 2λsλd

( j + 1)( j + 2)

[
S2 j+2 − S j+3 − 1

2
S j + 1

]
,

T (5,D)
j = − λsλd

( j + 1)2( j + 2)2 , (C.13)

and

T (6,A)
j = −γ

(1)
j

{
γ

(1)
j

[
S2 j+2 − S j+3 − S j+2 + 5

3

]

− 2λs

( j + 1)( j + 2)

[
S j+2 − (2 j + 1)(4 j + 7)

3( j + 1)( j + 2)

]}
,

T (6,B)
j = −1

2
(γ

(1)
j )2 j2 + 3 j + 4

( j + 1)( j + 5)
. (C.14)
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