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Abstract We study the radiative leptonic B, — y{v
decays in nonrelativistic QCD effective field theory, and we
explore the contribution from a fast-moving photon. As a
result, interactions between the photon and the heavy quarks
can be integrated out, resulting in the factorization formula
for the decay amplitude. We calculate not only the rele-
vant short-distance coefficients at leading order and next-to-
leading order in «y, but also the nonrelativistic corrections at
the order |v|? in our analysis. We find that the QCD correc-
tions can significantly decrease the branching ratio, and this is
of great importance in extracting the long-distance operator
matrix elements of B.. For phenomenological application,
we present our results for the photon energy, lepton energy
and lepton-neutrino invariant mass distribution.

1 Introduction

The search for new degrees of freedom may proceed in two
distinctive directions. At the high energy frontier, new parti-
cles have different signatures from the standard model (SM)
particles, and measurements of their production may provide
definitive evidence of their existence. On the other hand, it is
likely that low energy processes will be influenced through
loop effects. Rare decays of heavy mesons, with tiny decay
rates in the SM, are sensitive to the new degrees of free-
dom and thus can be exploited as indirect searches of these
unknown effects; for a recent review see Ref. [1].

The B, meson is the unique pseudo-scalar meson that
is long lived and composed of two different heavy flavors.
Since this hadron is stable against strong interactions, its
weak decays provide rich phenomena for the study of CKM
matrix elements and also a platform to study the effects of
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weak interactions in a heavy quarkonium system [2,3]. In
the past decades it has received growing attention since the
first observation by the CDF Collaboration [4]. This is par-
ticularly shown by the recent LHCb measurements of the
B, lifetime [5,6], the decay widths of B, — JA/m and
B, — JAyev [7,8], and various other decay modes [9—
12]. One may expect that more decay channels of B. can
be measured by the LHCb, ATLAS, and CMS experiments
[13-15].

On the theoretical side, various approaches have been
applied to calculation of the decay width of B, decays [16—
52], but most of them are phenomenological. Since both con-
stituents of the B, are heavy and can only be treated nonrel-
ativistically, an effective field theory can be established [53].
Taking the B, — J/AU£v as an example, one has the conjec-
tured factorization formula in nonrelativistic QCD (NRQCD)
for its decay amplitude [39,46,47]

A(B. — IR o Cij (01O [Be) x (JAF|O10), (1

where the Oijj { " are constructed by low energy operators.
The short-distance, or hard, contributions at the length scale
1/my . are encapsulated by the coefficients C;;, which can be
computed in perturbation theory. It is necessary to stress that
a proof of the above factorization in Eq. (1) is not available.

The long-distance, or soft, part of the matrix elements have
to be extracted in a non-perturbative approach, for instance
the lattice QCD simulation, or these have to be constrained by
much simpler processes, for instance the annihilation modes
B, — (v and B, — y{v. However, the usefulness of the
B, — £v is challenged in two respects. First, its decay rate
is given by

2
_ G2 m?2 m2
T(Be — €ig) = —L |Vl 5 my —- ( -—].®@
8 my m
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in which the suppression factor m% /m%c arises from the
helicity flip. As a result, B. — uv, and B, — eV, have
tiny branching fractions, which may be beyond the detec-
tor capability at the current experimental facilities. Second,
there is only one physical observable, namely the decay rate,
and thus B, — £V is not capable to uniquely determine all
long-distance matrix elements (LDMEs), there being typi-
cally more than one when relativistic corrections are taken
into account.

On the contrary, B, — y£v can provide a wealth of infor-
mation [54-58] in terms of a number of observables ranging
from the decay probabilities and polarizations, to an angular
analysis. It is interesting to notice that the counterpart in B
sector, B — y£v, has been widely discussed as regards the
understanding of the B meson light-cone distribution ampli-
tudes [59-63]. The small branching fraction of B, — y{v
can be compensated by the high luminosity at the ongoing
hadron colliders and the experimental facilities under design.
The main purpose of this paper is to explore B, — y{£v at
next-to-leading order (NLO) in o and in |v|?, which shall
catch up with the progress in B, — £v [55,64]. For the lep-
tonic decay constant, the two-loop calculation is also avail-
able in Refs. [65,60].

The rest of this paper is organized as follows. In Sect. 2, we
will derive the formulas for the various partial decay widths
of B, — y£v. Section 3 is devoted to an extensive next-to-
leading order calculation. We will discuss the phenomeno-
logical results in Sect. 4. We summarize our findings and
conclude in Sect. 5. We relegate the details of the calculation
to the appendix.

2 B, = yiv

In the SM, leading-order (LO) Feynman diagrams for the
B, — y{£v decay are shown in Fig. 1. The photon emission
from a virtual W-boson is suppressed by 1/ m%v compared
to other contributions, and thus the second diagram in Fig. 1
can be neglected. Integrating out the off-shell W-boson, we
arrive at the effective electro-weak Hamiltonian

GFr

Her = 7 Verlyu(l — y5)bly™ (1 — ys)v + he., 3)
b Y
w _
I
¢ Iz
(a) (b)

where V., is the CKM matrix element. The decay amplitude,
the matrix element of the above Hamiltonian between the B,
and the y £v state,

A= (yl”V|Hef| B.) “)

is responsible for the process B, — y£v.

2.1 Differential decay widths

Since there is no strong interaction connection between the
leptonic and the hadronic part, the decay amplitude can be
decomposed into two individual sectors:

G _ — -
A = ZZVep {016y (1=5)b|Be) x (y1~Bly" (1—ys5)v|0)

V2
+ (y1¢yu (1 = y5)b|Be) x iiry™ (1 — ys)vy}, )

with the matrix elements encoding the hadronic effects:

(01¢yu (1 — y5)b|Be),  (vIeyu(l — ys)b|Be). (©6)

The first one defines the B, decay constant

(01¢y,vsb|Be(pB.)) = ifB.PBeys (7

while the B, — y transition is parametrized by two form
factors:

— V(L?)
(v (e, k)lcyub|Bc(pB.)) = _emeuvpaf*vpgckg, (8)

c

_ — ) pB, - €*
(y (e, k)IEy,ysb|Be(pg,)) = ieA(L?) <€Z —ky s K )

ie
DB, - k

fB.PBuPB,. - €, )

with the momentum transfer L = pp.—k. Here and through-
out this work we adopt the convention €°'?> = +1. The
above equations are similar to the parameterization of the
B — y form factors as given in Ref. [67]. The last term in
Eq. (9), which is proportional to the B, decay constant, has
been added in order to maintain the gauge invariance of the
full amplitude [68,69]; see Appendix A for a derivation.

Fig. 1 Leading-order Feynman diagrams for the radiative leptonic B, — y uv, decay in the SM. The lepton 1 can also be e or 7. The photon

2

emission from a virtual W-boson, shown in the second panel, is suppressed by 1/m7, compared to the other contributions

@ Springer



Eur. Phys. J. C (2015) 75:360

Page 3 of 14 360

Substituting Egs. (7)—(9) into Eq. (5), we obtain

G
A= —iZEVypefp iy (1 - ys)vv{[l +als)]

2

ee* iv(s
R

PB. -
(10)

where 5; = L? and terms due to lepton mass corrections
have been neglected. Apparently, this expression is gauge
invariant. For the sake of simplicity, we have defined two
abbreviations in the above'

A(sy) o(s) = V(s1)

atsn = B’ - fB

(11)

In terms of the decay constant and form factors, the dif-
ferential decay width for the B, — y £~ v is given as

aer 1 AP
dEdE,  64mp 73
Oleme |Vcb| GF B )
= —_xk
2
42 x;;

x [a*(x? 4+ 20 (g — 1) +2(x — 1)?)

+2a((v+ Dxf + 2w+ Dxp(x — 1) 4+ 2(x — 1)?)

4+ 2uxg (x4 2x1 — 2)

+ 022 4 2000 — 1) 420y — 1D?)

+ X7+ 20000 — 2x 4 2x7 — 4x; + 2], (12)

where x; = 2E;/mp, andy = 2E;/mp_, and Ey and E; are
the energy of the photon and of the charged lepton in the B,
rest frame, respectively. One can integrate out E; and obtain

dr _ Oleme |Vcb| GFmB xe(1

—x)((1 +a)? +v?)
dEk 1272 )

(13)

The differential distributions can also be converted to

r  omp -

dsidcos6  32mp,

2|Vcb| aeme G (1 — X)

1
x —la® (i + 2y — D + 20 — D?)
Xk

+2a((v + Dxg 4+ 2w + DG — 1) + 20 — 1)?)
4 20 (0 4220 —2) 4 02 (0 F2x (= 1) + 20— 1)?)
4+ x7 4 2xpx; — 2xp 4 2xF — 4 + 2], (14)

1" One should distinguish the form factor v from the relative velocity v
to be defined in the following.

using the relation

2

my — s
Ey = ———, (15)
ZmB(
__1 2 —mk —
E; = (myp +s;) — (mp —s;)cosb;|. (16)
4ch ¢ ¢

The 6, is the polar angle between the lepton ¢ flight direction
and the opposite direction of the B, meson in the rest frame
of the £v, pair. Likewise one can integrate out 6;,

dr Oleme |Vcb| G? (mB —S[)S[((1+a)2+v2)
dsl 2412m

- A7

2.2 NRQCD factorization

The factorization properties for B, — y£v depend on the
kinematics of the photon. In particular, the contribution from
a soft photon, Ex ~ Aqcp with Aqcp being the hadronic
scale, will introduce complexities as discussed for B decays
in [70], and we will leave such a contribution for future work.
Fortunately in the region where the photon is hadron, namely
Ey > Aqcp, its interaction with heavy quarks is highly vir-
tual and thus should be encoded in the short-distance coef-
ficients. In the NRQCD scheme, we only need retain those
color-singlet operator matrix elements that connect the B,
state to the vacuum. To the desired order, one expects the
following factorization formula:

[Co (Olx! Vol Be(p))

f 2
+ i <0 ——D) v Ec<p>>+o<v4>],
B
(18)
2
V= [ - (Olx Yol Be(p))
V —
+—§<o xS ——D) 12 Bc(p)>+0(v4)],
B
(19)
2
A=‘/ [ Py Ol 5| Be(p))
2 —
+ <0 x4 ——D) v Bc(p)>+0(v4)],
(20)

where v denotes half the relative velocity between the charm
: fV.A £V, A
and bottom quarks in the meson, ¢; and ¢, are

the dimensionless short-distance coefficients, which can be
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expanded in terms of the strong coupling constant.”> We
shall calculate the one-loop corrections to the cO’V’A, but
we give only the LO results for c{’V’A since the latter
ones are already power-suppressed. o and X; represent
Pauli spinor fields that annihilate the heavy quark Q and
anti-quark Q, respectively. Besides, one needs to note that
the state |H(p)) in QCD has the standard normalization:
(H(pH|H(p)) = 2E,(27)383(p — p’), while an additional
factor 2E, is abandoned in the nonrelativistic normalization
where (H(p))|H(p)) = 27)*8*(p — p)).

3 Next-to-leading order calculation
3.1 Kinematics

Let p1 and p; represent the momenta for the heavy quark Q
and anti-quark Q’. Without loss of generality, one may adopt
the decomposition:

p1=aPp —q, (21)
p2=pBPp +q, (22)

where Pp_ is the total momentum of the quark pair. g is
half of the relative momentum between the quark pair with
Pp.-g = 0.« and B are the energy fractions for Q and Q' in
the meson, respectively. The explicit expressions for all the
momentum in the rest frame of the B, meson are given by

Py = (Ey + E3.0), (23)
q" =0.9). (24)
Pl = (E1, —q), (25)
Py = (E2.q). (26)

In the rest frame, the meson momentum becomes purely time-
like while the relative momentum is spacelike. One obtains

the relations « = \/mlz) - qz/(\/ml% —q% +/m% — g% and
B = 1 — a with the on-shell conditions E; =

Ey = /m? — g2, and ¢> = —q°.

2
mj, —qz,

3.2 Covariant projection method
In the following calculation, we will adopt the covariant spin-

projector method, which can be applied to all orders in v.

2 Throughout this paper, we shall use the superscripts (0) and (1) to
indicate the LO and NLO contributions in ¢ and the subscripts 0 and
2 to denote the LO and NLO contributions in the velocity.

@ Springer

The Dirac spinors for the B, system may be written as

E1 + my (5}\_ R ) 07
2k Effljlhé)‘

E G-p>
ve(p2 i) = | %Ez’” ( S 5*) , (28)
A

where &, is the two-component Pauli spinors and A is the
polarization parameters. It is straightforward to derive the
covariant form of the spin-singlet combinations of the spinor
bilinears:

up(pr, A) =

o(q) iy up(pr. h)ie( x)<1/\1x|00>
olq M’)\szl 1)Vc(pP2, A2 2122
Ie
NI
i Y. +E1+ E2

= —(u — +m - -¢c =
2 —ZElEzw( PB. — 4 b) E 1L Y5

X(ﬂléBc'Fg_mc)@

®

I,
— (29)
N,

with the auxiliary parameter = +/E| + mp~/Ez + me.
Here 1. is the unit matrix in the fundamental representation
of the color SU(3) group.

3.3 Perturbative matching

Due to the simplicity of the final state, one can directly
match the QCD currents onto the NRQCD ones. To deter-
mine the values of ¢y and ¢, we work in the spirit of tak-
ing those short-distance coefficients to be insensitive to the
long-distance hadronic dynamics. As a convenient choice,
one can replace the physical B, meson by a free ¢b pair of
the quantum number 1S([)I], so that both the full amplitude,
Aleb(! S([)l]) — y4£v], and the NRQCD operator matrix ele-
ments can be directly accessed in perturbation theory. The
short-distance coefficients ¢; can then be solved by equat-
ing the QCD amplitude A and the corresponding NRQCD
amplitude, order by order in «;. For this purpose, we intro-
duce a decay constant and two form factors at the free quark
level:

(01¢y,ysbleb('Sih) = iGguo, (30)
— - 1 oll] 1 *xV P 1.0
(v (e, k)|cyublchb(" Sy ) = —emVewme chk R
31)
_ _ . . €F
(y (€. K)|Ey,ysbleb (' Sy 1)) = ieh (e; — ke, e . )
PB. *
1 .
—lepB .kUchﬂch.E .

(32)
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Analogous to (18-20), one can write down the matching for-
mula:

f
L0t = Ll &)
U=cl b('s . S
g Ol wnleb( sy + o2
. 2
1l <> _
x <o X! (—5 D) b cb(lS([)l])>, (33)

Ve [cov (Olxwsleb( s + ﬁ

x <o X (—%(B))ngb 51;(15(')“))}, (34)
A=—— [cs‘ Ol wuleb('si™h) + Lz

mp + me (mp +mc)

x <o X! (-%%’)2% Eb(IS([)”))] (35)

where we have adopted the nonrelativistic normalization.

One can organize the full amplitudes defined in Eqgs. (30)—
(32) in powers of the relative momentum between ¢ and b,
denoted by q. To the desired accuracy, one can truncate the
series at O(qz), with the first two Taylor coefficients. We will
compute both amplitudes at LO in oy in Sect. 3.4, and the
calculation at NLO in «; will be conducted in Sect. 3.5.

The NRQCD matrix elements encountered in the above
equations are particularly simple at LO in «j:

Ol Tyleb s © = 2N,

. 2
<0 )(Jr <—%(B)) v

where the factor /2N, is due to the spin and color factors
of the normalized ¢b (! S([)l]) state. The computation of these
matrix elements to O(wy) will be addressed in Sect. 3.6.

0)
Eb(‘S([)”)> = 2N, %2, (36)

3.4 Tree-level amplitude

Adopting the above notation, one can easily obtain the tree-
level amplitude for the decay constant,

(01¢yysbleb (s )@ = Tr [Mo(q)yuys]

E E : 2
=ip§,\/m (E1 +mp)(Ey +me) +q
¢ 2 E1E2(Ev +mp)(Ey +me)(E1 + E2)

2
= igu0v/2N. (1 - ) : (37)

Mied

where the g/ terms have been omitted and
mpm,
Mred = — (38)
mp + me

is defined as the reduced mass of the cb system.

The vector current is similarly evaluated as
(v léyubleb (55 ©

=Tr |:1'Io(61)ieec¢* Hk = pr & me) i|

k— p)? —m2™"
i(pr—k+mp) .
+Tr | Ho(@yy———75—>ieepf
[ “(p1 — k)2 —m}
B e+/2N, < ec
" 4wE E; \Exk-pp, + Ek-q

€h
"Bk pa - Ek-q)
X {Epc€pvpo€™ 'k’ pp + E(E1 + Ea +mp — mc)
X €pvpo€ kP g%} (39)

We have introduced the abbreviations E = E; + E> and
Epe = (E1 + mp)(E2 + m¢) + g*. Here e = 2/3 and
ep = —1/3 are the electric charges of the ¢ and b quark,
respectively.

One can perform the Taylor expansion of the amplitudes
in powers of g*:

3.A(0) o 1 22A4(0) .
agh 4=0 2! dghoq” 4=0

Alg) = A0)+

MqU +
(40)

Those terms linear in g should be dropped, since they do not
contribute to the short-distance coefficient. In this paper, the
O(|q|?) contributions will be retained. In order to simplify
the calculation in the covariant derivation, one should use the
following replacement:

2 PU« PV
¢'q" — (—g"” + B”) : (41)

D—1 P}

The result for the axial-vector current is a bit lengthy:
(v Ieyuysbleb( sy ©
1
= N B T
» {E*e k-pp.Epct+k-qE(Er — Ex+mp —m)
e Exk - pp, + Ek - g
_G*ehk - PB.Epc +k-qE(Ey — E2 +mp —m¢)
® Eik-pp. — Ek-q
2(E) — Ex +mp —m.)(Exe™ - pp, + E€* - q)
Esxk - pp, + Ek - q
2(Ey — Ex +mp —me)(E€¥ - pp, — E€* - q)
E\k - pp. — Ek -q
2Epc(Exe™ - pp, + E€* - q)
E(E2k - pp. + Ek - q)
2(E1Epce” - pp, + E€* - q(Epe + q°)
E(Er\k - pp. — Ek - q)

+quec

—4queéb

+ PB.u€c

— PB.ju€bh
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Epc€e* - pp, + E€* - q(E1 — Ex +mp —m,)
Exk - pp. + Ek - q

Epce* - pp. + E€* - q(E1 — Ey +mp — m¢)
Eik-pp. —Ek-q }

—kyec

+k web
(42)

In order to extract the A form factor, we only need to keep the
€, term which corresponds to Feynman gauge € - pp. = 0,
but we have explicitly checked the gauge invariance up to v2
order.

The tree-level NRQCD matrix elements for cb are given
in Eq. (36), and thus the above results in Egs. (37), (39), and
(42) lead to the tree-level Wilson coefficients,

C({’O = 1, (43)
=4
£.0 2
- 44
o] - (44)
V0 ¢ %
=% _ % 45
¢ 52 (45)
o _ o (6B 4224 1D) N ep(112> + 27 4 3)
2 =% 4873 4822 ’
(46)
A0 e
_ % _ & 47
ch > 3 47)
A0 _ o €lB2 4224 11) +82(1 — ymy/ Ey]
@ =7z 4873
ep[ (1122 427 + 3) — 8z(1 — 2)myp/ Ex]
_ . 48)
4872

In the above results, we have defined z = m./mj and 7 =
1+z. cl.f % means the LO of the Wilson coefficient cl-f Ctis
interesting to notice that the Wilson coefficient c? 0 depends
on the energy of the emitted photon, which will induce a
nontrivial behavior, as will be demonstrated later.

3.5 NLO amplitudes in QCD

Typical one-loop diagrams for the QCD corrections to the
B, — y{v, decay are shown in Fig. 2. In calculating the
one-loop amplitudes, we use the dimensional regularization
to regulate the ultraviolet (UV) and infrared (IR) divergence.

The diagram (a) in Fig. 2 contributes to the NLO decay
constant:

Crag[ 1 2 Mz
0 = /2N,
0,a c 4 |:éUV + = EIR mb
42— 6lnzi| 49)
1 Z+1 5

@ Springer
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(b)
(d) (e)
Fig. 2 Typical NLO Feynman diagrams for the radiative leptonic

B. — yuv, decay in the SM. The other four diagrams can easily
be obtained by interchanging the bottom and anti-charm quarks lines

with
1 1 16m> |v|*

tH=— [n2—in ——ILSH ,

2|v| €IR 7
v = ) (50)

2Mired
We have introduced the abbreviation

1 1

_ = — yE + Indm. (51)
€UV,IR  €UV,IR

The heavy quark field renormalization and mass term are
given as

C 1 2 2
Z9S=1-—= [— + = +31n—“2+4},
€ m

4w UV €IR
3mCras[ 1 2 4
Sy = — PO BT (52)
4 éuv m2 3

For the vector current form factor, the sub-diagram in
Fig. 2 gives out the corresponding contribution

y, = V2NeenCros [ 1 42 24y
b= dmmy, e yE-2 yE—7
1 2(y?—z(z+1 2y?
LN (v ( i ) 3 y by
z (2 -2 (32 -2)
y? =2 2
—€C4—(1—Z)C3—(z —y)di |,
V2NeenCras [ 1 1 y2+4+224+4z+3
VC e — A - -~ A
4 my, 2 eyv 72— y?
N Z+y2b _z(3y2—z2+1)b
72 _ 27! 2 (22— y2) 4
(2z2 + 3z — 1) —y2Qz + 3)
3
2z (y? - 22)
+(Z+ y2 — Z2)C4i| ,
V2NeepCrag [ 1 1 y2—z2 44745
R bt R SR e
4 my, 2 eyv 2 —y?
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2 2 2 2
y-—z"4+z4+2 y-—2z-4+4z+5
b b ,
B Yot ) B A
- _ V2NeeyCray —y2+12+82+7+ 72—y
¢ drmy, 2(z22 - y?) 2(y*—z2)
(-2 +1)

- D)

(2 +62+1)22+ y* — 2y (2 + 4z +3)
~ = b3 |,
2002 -2 (v - 22)

(53)

where the auxiliary functions b;, c;, and d; are defined in
Appendix B.

The mass counter-terms and wave function renormaliza-
tion corrections give

V2N.epCra 3z 1 2 4
VCTfm = b P |: D) <A—+II‘IM—2+§>:|,

dmmy y —z= \€euv  my
V2NeepCrog | 1 11 3 2
Ver-r = NI A—+—A—+—lnﬂ—2+2 .
47Tmb €IR 2€UV 2 zmb

For the axial-vector current form factor, the sub-diagram has
gauge-dependent contributions; however, the summed result
is gauge invariant. We will show the details in Appendix C.

3.6 NLO amplitudes in NRQCD

The NRQCD Lagrangian can be derived by integrating out
the degrees of freedom of order heavy quark mass [53]:

D4
Lxroep = ¥ <1Dt+—)lﬂ+1//T 24

+—w*o gYBw+ w

><(D gE — gE- D)w

lCS +
32V @ D xgE —gExD)y

+ (1/[ — io? X ,AM — —Aﬂ) “l‘[:light' (55)

The replacement in the last line implies that the correspond-
ing heavy anti-quark bilinear sector can be obtained through
the charge conjugation transformation. Ljjen represents the
Lagrangian for the light quarks and gluons. The coefficients
¢p, CF, and cg have perturbative expansions in powers of o,
which can be written as ¢; = 1 + O(ay).

The matrix element of the ¢b to vacuum at NLO can be
written as

Ol wleb sty

- 2 ([ L)

27 2|v| €IR w?
(56)

This is in agreement with the results in Ref. [71].
3.7 Determination of ¢;: matching QCD to NRQCD

Up to o and v2, one can expand the decay constant and form
factors as

B=c <0|x Ypleb (PSS © 1 Lol x i leb( sET) ©
+ 0l wplebt s ®

1.0 I <> 2 ©
2 T _° -7 1 ol1]
+(mb+mc)2<o xc( 2D) vl b(' Sy )> ,
(57)
V= [ Q01x S wpleb( sy ©
mp +me
+ey o wpleb (U SSN©@ + e 001 xt wplent sy ™
Vo o\ 2 ©
2 T r ~1 1 ¢ll]
* (mp+me)? <O Xe ( 2 D) Vo b C o )> :| ’
(58)
A= !

[C'Q’O(OIXZ vy léb( sph) @

mp + me
F0) 5 1

+co 01wy 1eb( 5 1)@
A F.00), 5 1

+co 01y leb( sph)

A0 . 2
+ Czi 0 XT _L(B) wb
(mp + mc)2 ¢ 2

Matching the QCD results onto the NRQCD, one can obtain
the UV and IR finite short-distance coefficient,

1 3Cras ) l—zl

e (+1+znz’

vi  Crag u? o (=322 414+ 2y%) +y*

¢ = 1 ep ln—Q— 3 ~7 5
n zm? 2(y2—22) (> - 22)

2 4+3y2@z -1 N y2 =222

= = b3
4(23 - y%) 2z (y2 - 22)
222+ 43y -y

1( 2z n 2 n 2 4 3>b
a\y?=zz iy "Ity Z ?
2

2Z(y2—22)
—Z—yz+3 427 yz—22+2z+1

+ = c1+ (&)
22 b4

0)
Eb(lS([)”)> } :

(39)

(60)

by

@ Springer
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+(z—De3+ (- 22)d1i|

1
+<€b—>ec,z—>,y—>y)},
z z z

CFOlA- —1n 72 + 1
O T T |? zmi 2 (yZ _ ZZ) (yz _ 22)2

x (v (z + 117 — y2(2(52 + 34) + 53

(61)

by
420,2 _ 22)2
x (=22 (z =32 — X+ 14z =37 +y* 3z — 1))

ME (2 - zlg (-2 ORG24
—(2z+3)3z— DI + Bz — Dz —2)7)
b3
C 22(z2 - yH(yE - 22
—2032 + 22 +y*(y* — 822 — 6z +2))
@ DP Gzt -2y? (213+5z2+21—1)b
2z (y2—§,2)2
y? (y?(—2)+22(z+5)—3) — (z— D (z(z+4) — 1)Z?
2z (2—-y?)

(z=z@+H+ D +y? (z (y* —22(z+2)+3) +3)

+(zzBz+23)+5) + D +y%) +

(1322 = 2z + D72

4

+

C1

— ~ = ©
2(y—=2) (E+y)
—1) (=2 +22-1
N (z )(yzigzz )C,3+(_y2+12+4z—1)d1}
_<eb—>e€,z—>1,y—>y>}. (62)
z z z

Note that the scale-dependent terms in the braces of Egs. (61)
and (62) will cancel each other; the residual dependence only
lies in the strong coupling constant. The result for the short-
distance coefficient c({’l is in agreement with the previous
calculation in Ref. [72].

4 Phenomenological results

The input parameters are adopted as [73]: m g, = 6.2756 GeV;
Gr = 1.16637 x 107°GeV~2; a = 1/128; for the CKM
parameters, we adopt | V.| = 0.041. For the heavy quark
mass, we adopt mp = 4.8 GeV and m. = 1.5 GeV [46]. The
B.-meson lifetime is taken using the latest measurement by
the LHCb Collaboration, i.e. 7p, = 0.50 ps [5,6].

We first present the numerical results for the decay con-
stant fp :

4

10740 = - = = -3,
822
(63)
AR S S N TR
0 T T 4y T+ )T e

@ Springer

The strong coupling constant at the Z-boson peak is [73]

as(mz) = 0.1185 4+ 0.0006, (64)
which corresponds to
ag(mp) = 0.218, ay(m.) = 0.368. (65)

With these values, one can see that the o corrections can
reduce the decay constant by approximately 9.5-16.2 %.
To estimate the size of O(|v|?) effects, one requires
the size of non-perturbative LDMESs, for which we use a
Buchmiiller-Tye (B-T) potential model [74]:

_ N, _
Olx Vb |Bc(p)) :x,/z—;m? T(0)| ~ 0.884 Gev*/2,
. 2
T 1 <—
X <—§ D) ¥y

(66)
<0
For an estimate of q2, one may make use of the relative
velocity. Using the heavy quarks kinetic and potential energy
approximation [53], we have

Ec(p>> ~ q*(0x] ¥ Be(p)). (67)

V] = otg (2mped |V]). (63)

Choosing mp = 4.8 GeV and m, = 1.5 GeV, and using the
two-loop strong coupling constant, we get

VI, ~ 0267, |v3 ~0.108, |v[} ~0.186. (69
For a value (VZ)BC ~ (0.186, we have
q’> >~ 0.9718 GeV?2. (70)

As a result, the decay constant will be further reduced by
about 9 %.
For the short-distance coefficients for the B, — y transi-

tion form factors V and A, our results are shown in Fig. 3.

The solid line denotes the leading-order coefficient c(‘)/ (A)’O,

the dotted line correspond to the coefficient c; A0 from rel-
ativistic corrections, and the thick curve is the coefficient
c(‘)/ A2 from ay corrections. From these figures, one can see
that the relativistic corrections give constructive contribu-
tions, but the O(a;) QCD corrections are destructive and
thus have important consequences.

With the estimated long-distance matrix elements, the
results for differential distributions are given in Figs. 4 and
5, where the QCD and relativistic corrections are shown,
respectively. The integrated branching ratios of B, — y£v
and B, — {v are presented in Tables 1, 2, and 3. Note that the
factorization in Egs. (18)—(20) is valid only for a hard photon,
while the soft-photon contribution requires special treatment
[70]. Thus a cut-off on the photon energy should be intro-
duced, and we adopt three cases for the estimate of errors,
i.e. Ex > 0.25 GeV for Cut-1, E; > 0.5 GeV for Cut-II, and

Er > 1 GeV for Cut-III, where the corresponding results
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V.0
Vi1

1.0} o

0 10 20 30 40
5/(GeV?)

Fig. 3 Dependence of short-distance coefficients ¢V on the ;.
'V(A)’O, the dotted line is

The solid line denotes the coefficient ¢
VA0 from relativistic corrections, and the thick

the coefficient c,

Sr

0‘.0 0.5 1.0 1.5 2.0 2.5 3.0
Ex(GeV)

Fig. 4 The dependence of the branching ratio B(B. — y uv,,) on the
photon and lepton energy. The dotted line denotes the leading-order
result, the dashed line is the result with relativistic corrections, the blue
line is the result with QCD corrections, and the thick curve denotes

0 10 20 30 40
sl(GeVZ)

Fig. 5 Similar to Fig. 4 but for the s5; dependence. The results are not

valid for a soft photon, which corresponds to the region where s; ~ m%{

are given in Table 2. Ignoring the lepton mass, the branch-
ing ratio of B, — yev, is identical to that of B, — yuv,,.
The LO results are in agreement with Refs. [54-58] with
the same input parameters. From the calculation, one can
see that both the QCD and the relativistic corrections give

0
1
i "
0 10 20 30 40
s(GeV?)
V(A),2

curve is the coefficient ¢ from o corrections. The results

are not valid for a soft photon, which corresponds to s; ~

2
my

(x107%)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
E(GeV)

the total results with both the QCD and the relativistic corrections. The
results are not valid for a soft photon, namely when Ej becomes small,
and E; becomes large

destructive contributions to the process B, — £v. However,
relativistic corrections produce a constructive contribution to
the B, — y£v. Our results demonstrate that the QCD and
relativistic corrections are mandatory toward a more accurate
extraction of the value of LDMEs for B, system.

5 Summary

In this work, we have analyzed the radiative leptonic B, —
y£v decays in the NRQCD effective field theory. NRQCD
factorization ensures the separation of short-distance and
long-distance effects of B, — y£v to all orders of «;. Treat-
ing the photon as a hard object whose interactions with the
heavy quarks can be integrated out, we arrive at a factoriza-
tion formula for the decay amplitude.

We have calculated not only the short-distance coefficients
at leading order and next-to-leading order in «, but also
the nonrelativistic corrections at the order |v|? in our anal-
ysis. We found that the QCD corrections can significantly

@ Springer
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Table 1 Branchingratios of B. — £v.Here and in the following table tp, = 0.50 ps, and we vary the heavy quark masses withm; = 4.8 0.1 GeV

and m. = 1.5 F 0.1 GeV. For the relativistic corrections, we adopt (v2) B, = 0.186

Channels Tree-level |v|2-corrections QCD corrections NLO

Be — i, 2.90 x 1072 —0.54 x 1072 —0.561003 x 1072 1.80700% x 1072
Be — uiy 12.10 x 1073 225 % 1073 —2.327 014 x 1073 7.53101¢ x 1073
Be — e, 2.82 % 107° —0.53 x 107° —0.54700% x 107 1754003 x 107°

Table 2 Branching ratios of B, — y{v. Here we adopt three cut conditions for photon energy, i.e. Ex > 0.25 GeV in Cut-I, E; > 0.5 GeV in

Cut-II, and Ex > 1 GeV in Cut-III

Channels Tree-level |v|2-corrections QCD corrections NLO

+2.23 -5 +1.30 -5 +1.96 — +1.57 -5
Cut-I 10.307733 x 10 5241129 x 10 ~7.791125 x 107 7757151 x 10
Cut-II 9.77 145 x 107 4.86%32 x 107 ~7.57138 x 107 7.06717% x 1073
Cut-1II 7.97F 108 x 1073 3.831093 x 1073 —6.441137 % 1073 5367040 x 1073

Table 3 Branching ratios of B, — y£v and B, — v compared with other theories or models, including Lattice QCD (LQCD), Light front model

(LFM), Constituent quark model (CQM). Here 75,

= 0.50 ps is adopted and we use the cut-I result for comparison

This work LQCD [75] LFM [56] CQM [58] NRQCD [66] Ref. [55]
10>B(B, — t;) 1.801003 2.12 1.52 1.44 1.8 1.6
10°B(B, — ui,) 7.53%014 8.86 6.09 6.2 7.6 5.7
10°B(B, — eb,) 175750 2.06 1.41 1.47 1.7 15
10°B(B; — yuiy,) 7.75%13% - 2.2 (5) 471 - 478

decrease the branching ratio, which has a very important
impact on extracting the long-distance operator matrix ele-
ments of B.. For phenomenological applications, we have
estimated the long-distance matrix elements, which are fur-
ther used to explore the photon energy, lepton energy, and
lepton-neutrino invariant mass distribution. These results can
be examined at the LHCb experiment.
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Appendix A: Ward identities for matrix elements

In this section, following Ref. [69] we will explicitly derive
the constraints on the B, — y form factors arising from

@ Springer

a Ward identity for the conservation of the electromagnetic
current. To be more specific, let us consider the following
matrix element:

(y (k, ©)(Ervysb)(0)|Bc)

= iee™ / d*xe™ (0ITj™ (x) (€ y5b)(0)[Be). (A
In this case, the electromagnetic current includes contribu-
tions from heavy quarks j; ™ = eccyuc + epby,b.

The conservation of the electromagnetic current implies

a Ward identity for the matrix element of the time-ordered
product in (A1),

ik / dxe® T (O j™ (x) @y ysb) (0)Be)

/ xe™® (0] j&™ (x) Eyvysb) (0)[B)0 (x%)

X—)OO

+(0 |(cyvysb>(0>18m<x>|3 YO (—x")[T0 7
f d*xe T ((01j§™ (¥) (@ ysb) 0)|Be)

— (01(@vysb)(0) j§™ (¥)[Bc))
/ Exe FE(FILE™ @), @nysh) O)11Be).

(A2)
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The commutator on the right-hand side is non-vanishing,
since the operator ¢y, ysb carries an electric charge. It can be
evaluated as

/ e ETOILE™ @), @rrsh) OB (ps)
- / Bre kT (Ol[ecc) (X)em (X)
+8hb (X)bm (x),c 0) ¥y ¥5)nsbs (O)1/B(ps,))
= (e, — eb)<0|(c)/v)/5b)(0)|BC(PBC)>
=i(ec —ep) fB.DPB. v-

(A3)

The most general parametrization of the matrix element on
the left-hand side without £ can be written in terms of five
form factors f; (k*, pg, - k),

i [t O 0 @psh) OB

= ilf18uv + f2PB..uPB.v + f3kuky

+f4kMch,u + fSPBC,;,Lkvl (A4)

The Ward identity (A3) implies two constraints on these form
factors,

(P, k) fa + K fa = (ec — ev) fB,
fi + K2 f3+ (pp. - k) fs = 0.
For a real photon, k? = 0, these constraints fix uniquely

the form factor f>(0, pp, - k), and relate f1(0, pp, - k) and
f5(0, pp, - k), which leads to

(A5)

_ - . PB. - €"
{v(e,)leynysb|Be(pp,)) = iepp, - kfs <6,’i—ku Z .k>

ie
DB, - k

fB.PBuPB, - €
(A6)

This is the same as the result in Eq. (9) as presented in the
text, with the identification pp, - kf5s = A.

Appendix B: Passarino—Veltman integrals

The coefficients b;, c¢;, and d; are related to the scalar
Passarino—Veltman integrals defined in Refs. [76,77], and
we have split the finite pieces b; = Biﬁ"“e, ¢ = Cf‘“”e / m%,
and d; = DM /m3:

B = By(0, * mb, *m )

By = By(0, mb’mb)’

B3 = Bo(mj(y* — 22)/2,0, mp),

By = Bo(y*mjy, my, 22m}),

C1 = Co(mj, 0, my(y* — 23)/Z,0, mp, mp).

Cy = Co(Z*m3, y*m3, 0, m3, 2% m3, m3),

C3 = Co(m3, 2°m3, 7*m3, m2, 0, z°m3),

Cy = Co(m3(y* — 22)/2, m3y*, m3z%,0, m2, m3z%),

Dy = Do(mj, 2°my, y*m}, 0, Z2mp, my(y* — 22)/
z,m2,0,22m3, m3). (B1)

Here we give the results of the divergence integrals:

1 2
Bj=—+4+Ih—— o -3
€uv 22mj,
1 2
Bz=—+ln'u—2,
€uv 3
2
1 2 (P -PHE - %)
By=—+mis 2 TEETE
€UV mj; v —zZ
1 w? vi(y) —1
By=—+1In +24 ()/(y)ln(—)
€uv y2m2 IZ; l vi(y)
—In(y;(y) — 1)),
1 1 2 21
=g —+n+mS 2222
2zmy; \ €R mb 14z
. | 2 22
Di=———[—+n+nE —2m =2
2myz (22 — y2) \ er m3 Z
1
+——————Q2EF*-2y’Iny—(* + 22— 1Inz
O-2(+2)
—y2(1+2In2) 4 (—gs + y* + 2> — D)g
+(gs+y* =2+ Dga+ (—gs +y> — 27 + g3
+ (g5 +y +27 — 1)g4)>, (B2)
where
:I:\/(xz—z2+l)2—4x2+x2—zz+l
yi2(x) = 32 .
gl:1n<\/(y2—12+1)2—4y2—y2—12+1),
g2=ln<\/(y2—z2+1)2—4y2+y2—z2+1>,
( \/y -2 +1 —4y2+y2—z2+1>,
1n< \/y —22+1) —4y2—y2—12+1>,
g5 =\ =22 (2 + 1) + (2 - 1) (B3)

Appendix C: One-loop corrections to the axial-vector
form factor A

The most general structure of the matrix element of the axial-
vector current is parametrized by

@ Springer



360 Page 12 of 14

Eur. Phys. J. C (2015) 75:360

*
. PB. "€
—je———

pB. - k 5" pbeu-

(ChH

This section will be devoted to a demonstration of the gauge
invariance at the one-loop level in o, namely

A€ = A = A,
U4 = 0.

(C2)
(C3)

The contributions from individual diagrams to A€ are given
by

pe — @CrVINCT 1 4z — D22
b 47mlb R (y*—72)?
¥222 =2z — D — y* y2 )
(2 — 22)%% (P —)% 7
2927y (2 -1? —2y% i+ (- DFE 4yt
2(y?—22)? ’ z(y2—72)? 4
2(3z—1)z +y* =22 +4z+3)
2 C4
(2 —y)z
2 2
z7—1 —z2+1
- )2(y Y N 1>d1]
=—2%)z
(C4
A€ — epCrag/2N. [1 1 E—I—y by
¢ 4rmy ZGUV y _Zz
—v2Q2z+3)+223 +52+2z -1
+ =2 2 bs
27(z% — y*)
Vi 44743 Z(=3y*+22-1)
2_32 7y s
y-—-z 2z(y= —7%)
+ (=2 4+ 42— 1)c4], (C5)
pe — Crasy2Ne |1 1y =22 41 yz—zib
4= drmy, 2 éyy y2-72 yI_z2 2
2 2
—z74+1 -
+ - y—2b3 -z |, (C6)
2(y2-2%)
A€ — epCrog/2N, . 1 yz_Z2+1 Z b
T dmmy 2epy | 2(y2—zZ) 22222 0
2 2
— 1
SRtk (C7)
2(y* - 22)

The mass counter-term and wave function renormalization
give the contributions:

€ —
ACT—m - 0’

Acr_p = —Ver-r. (C8)

@ Springer

The contributions from individual diagrams to AX are
given as

epCrog/2N,

dmmy,

y [_ 2 (7 (<722 4102 +1) 224 (z— D2 +y* (3y*+322 -8z —11))
(=23) (*-»2)’°

N 2y2(3 — 22)%

k
Al =

T+t @+2),
(7 =)’
Z+y? 27 (—y? 422 +3)
e R Fp) ca
222 (422 =4z +5)+ (2 =322+ 52+ 1)23+y6b
(=2 + 242 (2 -22) ’
N Y2Bz-52 — - DZ+y (¥ +2 - 1)
2 (y? —y22)’
esCrasy/2Ne
¢ 4rmy,
5 [z (32 (=72 4+102+1) 224 (z— DB +y* (32 +32 8z 11))
(32 =23) (¥ —»2)’
+2y Qz -3 -zt +y (z+2)
(7 —y22)’

Z4y? 22 (=y*+22+3)
V322 2= (> - 2)
=22 (P42 44 5) + (2 =32+ 5+ 1) +)°

— b
2(E-y?) (2 -2)°

m] +aL (C9)

AX =

C4

3

23_5~3_ _1~5 4 (2 2_1
Yy B9 - (-2 +£v (¥ +z )b4}+A§, (C10)
z(y3 —»y2?)
Crag/2N. | Z (Sy2 —522—6z— 1)
Ak —pc 4 &2
o dmmy, (02 -2) (- 3)
Z(3y2—312—4z—1)b
(?-2)(07-)
Z(=3y2 +32+4z+1)
Cl1
CEICEEI 1y
b ne, @Crasy/2N. 31 Z
Ao = A+ 4rmyp |:y2—22@UV -+ +z
z2 (352 -322 -4z 1)
+ by + b3 |. C12
y2=22) (2 - 22 V-2 (-2
2 _22) (v2 — 22) 2 222 (2 — 23 (C12)

Similar, the mass counter-terms and wave function renormal-
ization corrections give

epCras/2N, [ 3z <L+1n“—2+‘-‘>}

Ak = 5
CT—m 4nmb Z2_y2

k
ACT F_ACT F-

Adding the above contributions, one may derive the relation
A€ = A*, which is guaranteed by gauge invariance. One
can obtain the one-loop results for A by adding up the anti-
symmetrical part with e, — e, and mp, < m..
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The contributions from individual diagrams to U4 are
given as

U,b4 _ ehCFas\/TNc |:_ A2

4 €IR

V2B2 =6z — D2 — (=D + (=32 + 2 +82+7)
Y22 =) - 22)

—3y2(z — D2 4 77* — y*

yZ(y? =72

R S ) e el Ve o et i

y22(y? —22)

n 4y27 + (2 —4z — D72 —y*

22 =) —22)
z( (z— DZ +y* +2y%(? 7272))
y2z(y? —22)

by

by

3

— 27Zc4 + 4ZC3:| S (C14)

GA — epCrog+/2N, 1
¢ b4 guv
N Y252 447+ D2+ z— DB + 942 +32 =27 -5)
Y= - 2)
S052 4 2 )
2(zz27+y°(2-32 Z
- ( 4 - (2~2 ))b + 3 2.5
yr =y y —y 2z
—4y%7 + +4z+ 1)Z7 +
i VZ 4 (— z? _ 4 )22 y b
232 = 2)(y? - 22)

by

3

L DE oA 2 _2z_4))b4+22c4], (C15)
yz(ys —2z9)
BA — e, Crag/2N, |:_ 1
d 4 EUV
(22 + 10z 4+ DZ2 + y* — 2y*(* + 624 5)
(2 -2 —z22)
Z(=5y* + 522+ 62+ 1)
(2= —22)
(z + 6z + 1DZ% 4 y* — 2y2(z? +4z+3) ] (C16)
(»? —zz)(y —22)
" ebCFas\/ZWc[y —72—-8:-7 1 72 y
vl = —+Z
¢ 4 y2 -7z éuv - y?
Z(—yr+22-1)
=D —2)
(22 + 62+ )22 + y* —2y2(z? +4z+3) ]’ C17)
(2 -2 (? —z22)
2
UéT—m = _ZACT —m>
A 2 €
Ocr—r = _Z CT—F* (C18)
The sum of them is
A _ _3ehCFon/m((z — 1) In(z) — 22 +2/31)
b—e+CT — 47_[2 .
(C19)

We can get the one-loop result in Eq. 60 after adding up
the symmetrical part with e, — e, and mj, <> m..
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