
Eur. Phys. J. C (2015) 75:358
DOI 10.1140/epjc/s10052-015-3578-3

Regular Article - Theoretical Physics

Zc(4200)+ decay width as a charmonium-like tetraquark state

Wei Chen1, T. G. Steele1, Hua-Xing Chen2,a, Shi-Lin Zhu3,4,5,b

1 Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
2 School of Physics and Nuclear Energy Engineering and International Research Center for Nuclei and Particles in the Cosmos, Beihang University,

Beijing 100191, China
3 School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
4 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China
5 Center of High Energy Physics, Peking University, Beijing 100871, China

Received: 21 May 2015 / Accepted: 23 July 2015 / Published online: 5 August 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract To identify the nature of the newly observed
charged resonance Zc(4200)+, we study its hadronic decays
Zc(4200)+ → J/ψπ+, Zc(4200)+ → ηcρ

+ and
Zc(4200)+ → D+ D̄∗0 as a charmonium-like tetraquark
state. In the framework of the QCD sum rules, we calculate
the three-point functions and extract the coupling constants
and decay widths for these interaction vertices. Including all
these channels, the full decay width of the Zc(4200)+ state is
consistent with the experimental value reported by the Belle
Collaboration, supporting the tetraquark interpretation of this
state.

1 Introduction

Recently, a new charged charmonium-like resonance
Zc(4200)+ was observed by the Belle Collaboration [1]. It
was observed in the Zc(4200)+ → J/ψπ+ process with
the mass and decay width M = 4196+31+17

−29−13 MeV and

Γ = 370+70+70
−70−132 MeV, with a significance of 6.2σ . Its pre-

ferred assignment of the quantum numbers is J P = 1+. The
G-parity of Zc(4200)+ is positive. Thus, the quantum num-
bers of its neutral partner is I G J PC = 1+1+−.

The family of the charged charmonium-like states have
become more abundant after the discovery of Zc(4200)+ [1]
and Zc(4050) [2]. Before this, the first member Z(4430)+
was observed in the ψ(2S)π+ invariant mass spectrum in the
process B̄0 → ψ(2S)π+K− by the Belle Collaboration [3]
and confirmed recently by the LHCb Collaboration [4]. Later,
Belle also reported a broad doubly peaked structure in the
π+χc1 invariant mass distribution, of which the peaks are
called Z(4050)+ and Z(4250)+ [5]. Several other similar
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charged states were observed in last two years. In 2013, the
BESIII Collaboration reported Zc(3900)+ in J/ψπ+ final
states in the process Y (4260) → J/ψπ+π− [6]. Zc(3900)+
was also observed by Belle [7] and confirmed in CLEO
data [8]. The BESIII Collaboration also observed Zc(4025)±
in the π∓ recoil mass spectrum in the e+e− → (D∗ D̄∗)±π∓
process [9] and Zc(4020)± in the hcπ± mass spectrum in the
process e+e− → hcπ+π− [10]. Moreover, the Belle Collab-
oration also observed two charged bottomonium-like states
Zb(10610) and Zb(10650) in the π±Υ (nS) and hbπ± mass
spectra in the Υ (5S) decay [11].

These newly observed charged states have the exotic fla-
vor contents cc̄ud̄ for Zc states and bb̄ud̄ for Zb states.
It is natural to understand them as different manifestations
of four-quark states: hadron molecules [12–18], tetraquark
states [19–21], or many other configurations [22–24]. For
example, Z(4430)+ was described as a D∗ D̄1 molecular
state in Refs. [25–28] and a tetraquark state in Refs. [29–
31]; the Zc(3900)+ was speculated to be a molecular state
in Refs. [32–34]; the Zc(4025)+ was interpreted as a D∗ D̄∗
molecular state in Ref. [35]; the Zb(10610) and Zb(10650)

were studied as B̄ B∗ and B̄∗B∗ molecular states in Ref. [36].
One can consult Refs. [37–42] and references therein for
recent reviews of these charged resonances.

Being composed of a diquark and antidiquark pair, a
hidden-charm tetraquark state can decay very easily into a
pair of open-charm D mesons or one charmonium state plus
a light meson through quark rearrangement, implying that
tetraquark states should be very broad resonances, while the
experimental XY Z states are usually quite narrow, such as
Zc(3900)+ [6–8] and Zc(4025)+ [9,10]. However, the exper-
imental width value of the Zc(4200)+ [1] is broad enough
to be a good tetraquark candidate. In Ref. [43], Zc(4200)+
was studied as a tetraquark state by considering the color-
magnetic interaction. In Ref. [44], the authors tried to search
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for Z+
c exotic states in lattice QCD. However, they found no

convincing signal for Z+
c state below 4.2 GeV.

The hidden-charm tetraquark states with J PC = 1+−
has been studied using the method of QCD sum rule in
Refs. [24,45–50]. We have also done similar QCD sum-rule
studies in Refs. [51,52], in which the extracted mass was
found to be consistent with the experimental value of the
Zc(4200)+ mass. In this work, we will study the hadronic
decays of the Zc(4200)+ as a tetraquark state in QCD sum
rules. The three-point functions for the Zc J/ψπ, Zcηcρ, and
ZcDD∗ vertices will be studied to calculate the correspond-
ing coupling constants needed to extract the decay widths.

This paper is organized as follows. In Sect. 2, we study the
three-point functions for the Zc J/ψπ , Zcηcρ and ZcDD∗
vertices. We will calculate the operator product expansion
(OPE) series up to dimension five condensates. Then we com-
pute the coupling constants and the decay widths for these
channels. Finally, we give a short summary and discuss the
possibility of searching for such exotic resonances decaying
into ηc charmonium.

2 QCD sum rules and three-point correlation function

In the past several decades, QCD sum rule has proven to be
a very powerful non-perturbative approach to study hadron
properties such as masses, magnetic moments and cou-
pling constants, associated with the low-lying baryons and
mesons [53–57]. Recently, this method was used to yield
predictions on the spectroscopy of the new hadron XY Z
states [24,39,45–52,58].

To calculate the decay width of the Zc(4200) meson into
two hadrons, one needs first to study the three-body coupling
vertices Zc(4200)AB, where A, B denote the decay products.
In QCD sum rules, we consider the three-point correlation
function

Πμν(p, p
′, q)

=
∫

d4xd4y eip
′·xeiq·y 〈0|T [J A(x)J B(y)J Zc†

ν (0)]|0〉,
(1)

where J Zc
ν is the interpolating current for the Zc(4200)+

meson while J A and J B are the currents for the final states A
and B, respectively. In this paper, we consider the Zc(4200)+
meson as a charmonium-like tetraquark state. The corre-
sponding tetraquark current is given by

J Zc
ν = uTa Cγ5cb(d̄aγνCc̄Tb + d̄bγνCc̄Ta )

− uTa Cγνcb(d̄aγ5Cc̄Tb + d̄bγ5Cc̄Ta ), (2)

in which the subscripts a, b are color indices, and u, d,
and c represent up, down, and charm quarks, respectively.

C is the charge-conjugation matrix. We have studied this
charmoniun-like tetraquark scenario and the extracted mass
is around 4.16 GeV [51] consistent with the observed mass
of the Zc(4200)+ meson [1]. This current can couple to the
Zc(4200)+ meson via

〈0|J Z
ν |Zc(p)〉 = fZεν(p), (3)

in which εν(p) is a polarization vector and fZ is the coupling
constant of the current to the physical state.

The Zc(4200) meson can decay into several different
channels such as hidden-charm decay modes J/ψπ+, ηcρ

+,
and open-charm decay modes D+ D̄∗0, D̄0D∗+. Such decay
properties are similar to those for the charmonium-like state
Zc(3900). Assuming Zc(3900) to be a tetraquark state with
the same quantum numbers as the Zc(4200), the hadronic
decay modes of Zc(3900) to J/ψπ+, ηcρ

+, D+ D̄∗0, and
D̄0D∗+ were studied in Ref. [47]. Building upon these meth-
ods, we will study the same decay channels for the Zc(4200)

tetraquark state to estimate its decay width.

2.1 Decay mode Z+
c (4200) → J/ψπ+

In this subsection, we study the hidden-charm decay
Z+
c (4200) → J/ψπ+, in which mode the Z+

c (4200) meson
was observed. To calculate the three-point function in Eq. (1)
for the vertex Z+

c (4200)J/ψπ+, we need the interpolating
currents for J/ψ and π mesons

Jψ
μ = c̄aγμca, (4)

Jπ = d̄aγ5ua, (5)

which can couple to the J/ψ and π mesons, respectively, via
the following relations:

〈0|Jψ
μ |J/ψ(p′)〉 = fψεμ(p′), (6)

〈0|Jπ |π(q)〉 = f ′
π = 2i〈q̄q〉

fπ
, (7)

where fψ and f ′
π are coupling constants. Using these rela-

tions and Eq. (3), we can write down the three-point function
in the phenomenological side

Πψπ
μν (p, p′, q)

=
∫

d4xd4y eip
′·xeiq·y 〈0|T [Jψ

μ (x)Jπ (y)J Z†
ν (0)]|0〉

= gZψπgμ′ν′

(
gμμ′− p′

μ p
′
μ′

m2
ψ

) (
gνν′ − pν pν′

m2
Z

)

× fψ(−i f ′
π ) fZ

(p2 − m2
Z+iε)(p′2−m2

ψ+iε)(q2 − m2
π + iε)

+ · · ·

= gZψπ(q2) fψ(−i f ′
π ) fZ

(p2 − m2
Z + iε)(p′2 − m2

ψ + iε)(q2 − m2
π + iε)
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×
(
gμν − qμ p′

ν + qμqν

m2
Z

− p′
μ p

′
ν

m2
ψ

+ p′ · q(p′
μ p

′
ν + qν p′

μ)

m2
Zm

2
ψ

)
+ · · · , (8)

in which “...” represents the contributions of all higher
excited states. We have used the relation p = p′ + q in
the last step. The coupling constant (form factor) gZψπ(q2)

is defined via

L = gZψπg
μν Z+

cνπ
−ψμ + h.c.. (9)

In Eq. (8), the three-point function Π
ψπ
μν (p, p′, q) is diver-

gent at q2 = 0 when we take the limit mπ = 0. To simplify
the calculation in OPE side, we establish a sum rule at the
massless pion-pole, which was first suggested in Ref. [54]
for the pion nucleon coupling constant.

At the quark–gluon level, the three-point function in
Eq. (1) can be evaluated via the OPE method. We insert the
three currents, Eqs. (2), (4) and (5), into the three-point func-
tion, Eq. (8), and do the Wick contraction:

〈0|T [Jψ
μ (x)Jπ (y)J Z†

ν (0)]|0〉
= −Tr[Scab′(x)γ5S

′u
ba′(y)γ5S

′d
a′b(−y)γνS

c
b′a(−x)γμ]

− Tr[Scab′(x)γ5S
′u
ba′(y)γ5S

′d
b′b(−y)γνS

c
a′a(−x)γμ]

− Tr[Scab′(x)γνS
′u
ba′(y)γ5S

′d
a′b(−y)γ5S

c
b′a(−x)γμ]

− Tr[Scab′(x)γνS
′u
ba′(y)γ5S

′d
b′b(−y)γ5S

c
a′a(−x)γμ],

(10)

where the subscripts a, b, a′, and b′ are color indices, and
the superscripts u, d, and c denote the quark propagators for
up, down, and charm quark, respectively. Throughout our
evaluation, we use the coordinate-space expression for the
light quark propagator and momentum-space expression for
the heavy quark propagator [54,59]:

i Sqab(x) = iδab
2π2x4 x̂ + i

32π2

λnab

2
gGn

μν

1

x2 (σμν x̂ + x̂σμν)

− δab

12
〈q̄q〉 + δabx2

192
〈gsq̄σGq〉, (11)

i Scab(p) = iδab(p/ + mc)

p2 − m2
c

+ i

4
g
λnab

2
Gn

μν

1

(p2 − m2
c)

2

× {σμν(p/ + mc) + (p/ + mc)σμν}, (12)

where mc is the mass of the charm quark. We neglect the chi-
rally suppressed contributions from the current quark masses
(mq = 0 in the chiral limit) because they are numerically
insignificant. In Eq. (10), the light quark propagator is defined

as i S
′q
ab(x) = C(i Sqab)

TC in which T represents only the
transpose operation to the Dirac indices. As indicated above,

we will pick out the 1/q2 terms in the OPE series and work
at the limit q2 → 0. We note that this is the assumption used
in Ref. [54], and then we can establish a sum rule by com-
paring with the three-point function expression of Eq. (8) at
the hadron level.

On the phenomenological side in Eq. (8), there are five dif-
ferent tensor structures gμν, qμqν, qμ p′

ν, qν p′
μ, and p′

μ p
′
ν .

On the QCD side, we evaluate the three-point function and
spectral density up to the dimension five terms. In addition
to the perturbative term, we calculate the quark condensate,
the gluon condensate and the quark–gluon mixed condensate
for the power corrections. The Feynman diagrams for these
terms are shown in Fig. 1. In our result for the OPE series, the
gμν structure contributes to all expansion terms including the
perturbative part, quark condensate, gluon condensate and
quark–gluon mixed condensate. Other tensor structures con-
tribute just some of these terms in the OPE at leading order.
For example, the qμqν and qν p′

μ structures appear only in
the gluon condensate while p′

μ p
′
ν appears in the perturbative

term and the gluon condensate. The structure qμ p′
ν gives no

contributions to the perturbative term.
To obtain the greatest number of terms in the OPE series,

we therefore study the gμν structure in the following analysis.
Finally, we obtain the spectral density proportional to 1/q2

in the gμν structure

ρ(s) = −〈g2
s GG〉(s + 2m2

c)

192π4

√
1 − 4m2

c

s
, (13)

where we find that only the gluon condensate gives con-
tributions to the spectral density at order 1/q2. There are
three kinds Feynman diagrams for the gluon condensate in
Fig. 1, in which the third one is color connected and the
former two are color disconnected [47]. In our caculation,
the spectral density in Eq. (13) comes from only the first
color-disconnected diagram in Fig. 1. The second color-
disconnected diagram and the color-connected diagrams give
no contribution to ρ(s).

To establish a sum rule for the coupling constant gZψπ ,
we assume p2 = p′2 = P2 in Eq. (8) and then perform
the Borel transform (P2 → M2

B) to suppress the higher state
contributions. For the gμν structure, we arrive at the sum rule

gZψπ(s0, M
2
B)|Q2→0

= 1

fψ(−i f ′
π ) fZ

m2
Z − m2

ψ

e−m2
ψ/M2

B − e−m2
Z /M2

B

×
∫ s0

4m2
c

ρ(s)e−s/M2
B ds, (14)

in which Q2 = −q2 and s0 is the continuum threshold param-
eter for the Zc(4200) meson.

123
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Fig. 1 Feynman diagrams for the leading order contributions of the three-point function. Wave lines depict vector and axial-vector mesons, dashed
lines pion, solid lines quarks and curly lines gluons. Graphs related by symmetry are not shown

To perform the QCD sum-rule numerical analysis, we use
the following values of quark masses and various conden-
sates [37,54,60,61]:

mc(μ = mc) = mc = (1.275 ± 0.025) GeV,

〈q̄q〉 = −(0.23 ± 0.03)3 GeV3,

〈q̄gsσ · Gq〉 = −M2
0 〈q̄q〉,

M2
0 = (0.8 ± 0.2) GeV2,

〈g2
s GG〉 = (0.48 ± 0.14) GeV4,

(15)

in which the charm quark mass is the running mass in the MS
scheme. Note that there is a minus sign implicitly included in
the definition of the coupling constant gs in this work. We use
the following values of the hadron parameters [1,37,51,54]:

mψ = (3.097 ± 0.011) GeV,

fψ = (1.288 ± 0.037) GeV2,

mπ = 139.6 MeV, fπ = 133 MeV,

mZc = (4.196+0.048
−0.042) GeV,

fZc = (6.9 ± 0.4) × 10−3 GeV5,

(16)

in which the coupling parameter fZc is determined by the
mass sum rules in Ref. [51].

In Eq. (14), the coupling constant gZψπ(q2) depends on
the continuum threshold value s0 and the Borel mass MB in
the limit q2 → 0. We use the continuum threshold value s0 =
21 GeV2, which is the same value as used in the mass sum rule
in Ref. [51]. Using this value of s0 and the parameters given
in Eqs. (15) and (16), we show the variation of the coupling

1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

3.0

6.0

9.0

12

15

18

MB
2 GeV2

Fig. 2 Coupling constant gZψπ dependence on the Borel parameter
M2

B

constant gZψπ with the Borel parameter M2
B in Fig. 2. We

find that the sum rule gives a minimum (stable) value of the
coupling constant gZψπ = (6.27 ± 1.93) GeV with M2

B ∼
1.9 GeV2. The errors come from the uncertainties of the
charm quark mass, the gluon condensate, hadron masses and
hadron couplings.

To calculate the decay width of a process A → BC , we
use the following relation, given by Refs. [47,62]:

Γ (A → BC) = p∗(mA,mB,mC )

8πm2
A

× g2
ABC

3

(
3 + p∗(mA,mB,mC )2

m2
B

)
, (17)

where gABC is the coupling of the three-point vertex ABC
and p∗(mA,mB,mC ) is defined as

123
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p∗(a, b, c) =
√
a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2

2a
.

(18)

For the decay mode Z+
c (4200) → J/ψπ+, we then can

calculate its decay width using Eq. (17)

Γ (Z+
c (4200) → J/ψπ+) = (87.3 ± 47.1) MeV, (19)

in which the dominate error source is the uncertainty of the
gluon condensate.

2.2 Decay mode Z+
c (4200) → ηcρ

+

We study the decay mode Z+
c (4200) → ηcρ

+ in this sub-
section. To calculate the corresponding three-point function,
we consider the following interpolating currents for ηc and
ρ mesons:

J ηc = c̄aγ5ca, (20)

Jρ
μ = d̄aγμua, (21)

with the current-meson coupling relation

〈0|J ηc |ηc(p′)〉 = f ′
ηc

= −i
fηcm

2
ηc

2mc
, (22)

〈0|Jρ
μ |ρ(q)〉 = fρεμ(q), (23)

where fηc and fρ are coupling constants for ηc and ρ, respec-
tively. Then we can obtain the three-point function at the
hadron level

Πηcρ
μν (p, p′, q)

=
∫

d4xd4y eip
′·xeiq·y 〈0|T [J ηc (x)Jρ

μ (y)J Z†
ν (0)]|0〉

= gZηcρ(q2) fρ(−i f ′
ηc

) fZ

(p2 − m2
Z + iε)(p′2 − m2

ηc
+ iε)(q2 − m2

ρ + iε)

×
(
gμν − qν p′

μ + p′
μ p

′
ν

m2
Z

− qμqν

m2
ρ

+ p′ · q(qμqν + qμ p′
ν)

m2
Zm

2
ρ

)
+ · · · , (24)

where the coupling constant gZηcρ(q2) is defined via

L = gZηcρg
μν Z+

cνηcρ
−
μ + h.c.. (25)

At the quark–gluon level, we calculate the three-point
correlation function Π

ηcρ
μν (p, p′, q) by considering diagrams

similar to Fig. 1. As outlined in Ref. [47], the coupling con-
stant varies slowly with the Euclidean momentum Q2 =

−q2, and hence for sufficiently large Q2 it is only neces-
sary to extract the 1/Q2 term in Eq. (24) for the three-point
correlation function Π

ηcρ
μν (p, p′, q).

Thus, for an appropriate range of Q2 we keep the invariant
function proportional to 1/Q2 in the gμν structure. In this
assumption [47], we obtain the spectral density on the OPE
side

ρ(s) = −
(
mc〈q̄gsσ · Gq〉

6π2 + 〈g2
s GG〉s

192π4

) √
1 − 4m2

c

s
,

(26)

in which only the gluon condensate and quark–gluon mixed
condensate give contributions to the spectral density in this
order. Similarly to the spectral density in Eq. (13), the
color-connected diagrams in Fig. 1 give no contributions
to this spectral density in Eq. (26). Then the sum rule for
the coupling constant gZηcρ can be established by assum-
ing p2 = p′2 = P2 and performing the Borel transform
(P2 → M2

B)

gZηcρ(s0, M
2
B, Q2) = 1

fρ(−i f ′
ηc

) fZ

m2
Z − m2

ηc

e−m2
ηc /M

2
B − e−m2

Z /M2
B

×
(
Q2 + m2

ρ

Q2

) ∫ s0

4m2
c

ρ(s)e−s/M2
B ds,

(27)

in which Q2 = −q2.
To perform the numerical analysis, we use the following

parameters for the ηc and ρ mesons [37,47]:

mηc = (2.980 ± 0.001) GeV, fηc = 0.35 GeV,

mρ = (775.26 ± 0.25) MeV, fρ = 157 MeV. (28)

In Fig. 3, we show the variation of gZηcρ(Q2) with the
Borel parameter for Q2 = 8 GeV2. We choose m2

ρ 
 Q2 ∼

0.8 1.1 1.4 1.7 2.0 2.3 2.6 2.9 3.2
1.0

5.0

9.0

13

17

21

25

MB
2 GeV2

Fig. 3 Variation of the coupling constant gZηcρ(Q2) with the Borel
parameter M2

B for Q2 = 8 GeV2
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Q   [GeV  ]2 2

g 
   

   
  [

G
eV

]
c

Fig. 4 Variation of the coupling constant gZηcρ(Q2) with Q2. Data
points shows the QCD sum-rule result with s0 = 21 GeV2 and M2

B =
1.6 GeV2. Solid line gives the fit of the QCD sum-rule result through
Eq. (29) and the extrapolation of the coupling constant gZηcρ(Q2) to
the physical pole Q2 = −m2

ρ

m2
ηc

so that the mρ can be ignored and the OPE is valid.
It shows that the minimum value of gZηcρ appears around
M2

B = 1.6 GeV2. However, the coupling constant is required
at the pole Q2 = −m2

ρ , where the QCD sum rule is not
valid. To obtain the coupling constant gZηcρ(Q2 = −m2

ρ),
we need to extrapolate the coupling constant gZηcρ(Q2) from
the QCD sum-rule region to the physical pole Q2 = −m2

ρ .
Following Ref. [47], we use the exponential model to achieve
this extrapolation

gZηcρ(Q2) = g1e
−g2Q2

, (29)

where g1 and g2 can be determined by fitting the QCD sum-
rule result of gZηcρ(Q2), using Eq. (29). In Fig. 4, we show
the QCD sum-rule result of the coupling constant gZηcρ(Q2)

with s0 = 21 GeV2 and M2
B = 1.6 GeV2 (dotted line). We fit

this result by using the model Eq. (29) with the parameters
g1 = 11.65 GeV and g2 = 9.93 × 10−3 GeV2. Then we
extrapolate the coupling constant gZηcρ(Q2) to the physical
pole Q2 = −m2

ρ to obtain the coupling constant

gZηcρ(Q2 = −m2
ρ) = (11.72 ± 2.10) GeV, (30)

in which the uncertainties of the charm quark mass, the QCD
condensates, the hadron masses and the hadron couplings are
considered to give the error of this prediction. Inserting this
value into Eq. (17), we can calculate the decay width of the
process Z+

c (4200) → ηcρ
+

Γ (Z+
c (4200) → ηcρ

+) = (334.4 ± 119.8) MeV. (31)

2.3 Decay mode Z+
c (4200) → D+ D̄∗0

In this subsection, we study the open-charm decay mode
Z+
c (4200) → D+ D̄∗0 with the interpolating currents for the

D+ and D̄∗0 mesons

J D+ = d̄aγ5ca, (32)

J D̄∗0

μ = c̄aγμua, (33)

with the current-meson coupling relations

〈0|J D+|D+(p′)〉 = fD, (34)

〈0|J D̄∗0

μ |D∗0(q)〉 = fD∗εμ(q), (35)

where fD and fD∗ are the current-meson coupling constants
for D and D∗, respectively. The three-point function can be
written at the hadron level

ΠDD∗
μν (p, p′, q)

=
∫

d4xd4y eip
′·xeiq·y 〈0|T [J D(x)J D̄∗

μ (y)J Z†
ν (0)]|0〉

= gZDD∗(q2) fD∗(−i fD) fZ
(p2 − m2

Z + iε)(p′2 − m2
D + iε)(q2 − m2

D∗ + iε)

×
(
gμν − qν p′

μ + p′
μ p

′
ν

m2
Z

− qμqν

m2
D∗

+ p′ · q(qμqν + qμ p′
ν)

m2
Zm

2
D∗

)
+ · · · , (36)

where the coupling constant gZDD∗(q2) is defined via

L = gZDD∗gμν Z+
cνD

− D̄∗0
μ + h.c.. (37)

However, the evaluation of the three-point correlation
function ΠDD∗

μν (p, p′, q) is a bit different from the other two
decay modes discussed previously. Considering diagrams
similar to Fig. 1, we calculate the OPE series in the momen-
tum spaces. As discussed above, we keep the invariant func-
tion proportional to 1/Q2 in the gμν structure at the OPE
side

ρ〈q̄Gq〉(s) = mc〈q̄gsσ · Gq〉
192π2

(
6 − 5m2

c

s
+ m4

c

s2 − 19m2
c

s − m2
c

)

+ 〈g2
s GG〉

6144π4s2

[
(4s3 + 19m2

cs
2 − 34m4

cs − 5m6
c)

− (15m2
cs

2 − 34m4
cs − m6

c) log

(
1 + m2

c

Q2

) ]
,

(38)

in which Q2 = −q2. Here the quark–gluon mixed conden-
sated 〈q̄gsσ ·Gq〉 gives dominant contribution to the spectral
density shown above. We find that for 〈q̄gsσ · Gq〉, only the
color-connected diagrams contribute to the spectral density
shown above, which is different from the situations in J/ψπ

andηcρ channels. For the gluon condensate 〈g2
s GG〉, both the

color-connected and the color-disconnected diagrams give
contributions. Assuming p2 = p′2 = P2 and performing
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Fig. 5 Variation of the coupling constant gZDD∗ (Q2) with the Borel
parameter M2

B for Q2 = 20 GeV2

the Borel transform (P2 → M2
B) of the three-point function,

the sum rule for the coupling constant gZDD∗ can be obtained
as

gZDD∗(s0, M
2
B, Q2)

= 1

fD∗(−i fD) fZ

m2
Z − m2

D

e−m2
D/M2

B − e−m2
Z /M2

B

×
(
Q2 + m2

D∗
Q2

) ∫ s0

4m2
c

ρ(s)e−s/M2
B ds. (39)

We adopt the hadron parameters of D+ and D∗0 from
Refs. [37,47]

mD+ = (1869.61 ± 0.10) MeV, fD = (0.18±0.02) GeV,

mD∗0 = (2006.96 ± 0.10) MeV, fD∗ = (0.24±0.02) GeV.

(40)

In Fig. 5, we show the variation of gZDD∗(Q2) with the
Borel parameter while Q2 = 20 GeV2. In this situation, the
coupling constant increases monotonically with the momen-
tum Q2, and hence the result obtained below should be con-
sidered as an upper bound on the comparatively small decay
width in this channel. To perform the QCD sum-rule anal-
ysis, we adopt the Borel window 3.0 ≤ M2

B ≤ 3.4 GeV2

used in Ref. [51] for the mass sum rules of the same cur-
rent. We do the fitting at M2

B = 3.4 GeV2 and s0 = 21
GeV2 in Fig. 6 using Eq. (29) with g1 = −1.73 GeV and
g2 = 1.77 × 10−2 GeV2. With these parameters, the model
Eq. (29) can fit the QCD sum-rule result very well. To obtain
the coupling constant, we extrapolate the coupling constant
gZDD∗(Q2) to the physical pole Q2 = −m2

D∗ . Consider-
ing the uncertainties of the input parameters, the coupling
constant gZDD∗(Q2 = −m2

D∗) is

gZDD∗(Q2 = −m2
D∗) = −(1.86 ± 1.09) GeV. (41)

mD
2 0.0 3.0 6.0 9.0 12 15 18 21

1.0

1.2

1.4

1.6

1.8

2.0

Q2 GeV2

g Z
D

D
G

eV

Fig. 6 Variation of the coupling constant gZDD∗ (Q2) with Q2. Data
points shows the QCD sum-rule result with s0 = 21 GeV2 and M2

B =
3.4 GeV2. Solid line gives the fit of the QCD sum-rule result through
Eq. (29) and the extrapolation of the coupling constant gZDD∗ (Q2) to
the physical pole Q2 = −m2

D∗

Finally, the decay width of this decay mode can be evaluated
via Eq. (17)

Γ (Z+
c (4200) → D+ D̄∗0) = (6.6 ± 6.4) MeV. (42)

In addition, the open-charm decay mode Z+
c (4200) →

D̄0D∗+ should also be studied. Considering the SU(2) sym-
metry, the three-point function for the vertex Z+

c (4200)

D̄0D∗+ is exactly the same as that for the vertex Z+
c (4200)

D+ D̄∗0. Using the hadron parameters of D0 and D∗+ [37],

mD0 = (1864.84 ± 0.07) MeV,

mD∗+ = (2010.26 ± 0.07) MeV,

we obtain the same values of the coupling constant and
the decay width for Z+

c (4200) → D̄0D∗+ as those for
Z+
c (4200) → D̄+D∗0.

3 Summary

In summary, we have studied the three-point functions of the
processes Zc(4200)+ → J/ψπ+, Zc(4200)+ → ηcρ

+ and
Zc(4200)+ → D+ D̄∗0, considering Zc(4200)+ as a hidden-
charm tetraquark state. We calculate the three-point functions
by including the perturbative term, quark condensate, gluon
condensate and quark–gluon mixed condensate.

To perform the QCD sum-rule analysis, we expand the
three-point functions in QCD side with respect to Q2 and
isolate the terms proportional to 1/Q2 from the gμν tensor
structure. Only the gluon condensate and the mixed conden-
sate give contributions to the three-point functions after this
procedure. This approach is a modification of the QCD sum-
rule analysis of the Zc(3900)+ decay width in Ref. [47],
where the three-point functions were evaluated by consider-
ing the color-connected diagrams associated with a different
tensor structure resulting in only mixed condensate contri-
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butions. Our predictions of the decay widths are

Γ (Zc(4200)+ → J/ψπ+) = (87.3 ± 47.1) MeV,

Γ (Zc(4200)+ → ηcρ
+) = (334.4 ± 119.8) MeV,

Γ (Zc(4200)+ → D+ D̄∗0) = (6.6 ± 6.4) MeV,

Γ (Zc(4200)+ → D̄0D∗+) = (6.6 ± 6.4) MeV.

Thus, the full decay width for Zc(4200)+ is predicted as

ΓZc(4200)+ = (435 ± 180) MeV, (43)

which is in agreement with the experimental value of
Zc(4200)+ width from the Belle Collaboration [1]. It is
found that the branching fraction into J/ψπ channel is
about 24.7 %, which is slightly suppressed compared to
71.6 % for the ηcρ channel. The study of Zc → ηcρ

decay may provide useful insights on the nature of the newly
observed charged Zc states, helping us to discriminate the
molecule and tetraquark interpretations of the charged state
family [63].

The study of the three-point function sum rules gives sup-
port to the tetraquark interpretation of the newly observed
Zc(4200)+ state. This conclusion is consistent with the result
obtained from the mass sum rules in Ref. [51]. The branching
ratio predictions of J/ψπ, ηcρ, D+ D̄∗0, and D̄0D∗+ chan-
nels will be helpful for future experimental studies.
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