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Abstract The precise physical mechanism describing the
emergence of the seeds of cosmic structure from a per-
fect isotropic and homogeneous universe has not been fully
explained by the standard version of inflationary models. To
handle this shortcoming, D. Sudarsky and collaborators have
developed a proposal: the self-induced collapse hypothesis.
In this scheme, the objective collapse of the inflaton wave
function is responsible for the emergence of inhomogene-
ity and anisotropy at all scales. In previous papers, the pro-
posal was developed with an almost exact de Sitter space-
time approximation for the background that led to a perfect
scale-invariant power spectrum. In the present article, we
consider a full quasi-de Sitter expansion and calculate the
primordial power spectrum for three different choices of the
self-induced collapse. The consideration of a quasi-de Sitter
background allows us to distinguish departures from an exact
scale-invariant power spectrum that are due to the inclusion
of the collapse hypothesis. These deviations are also differ-
ent from the prediction of standard inflationary models with
a running spectral index. A comparison with the primordial
power spectrum and the CMB temperature fluctuation spec-
trum preferred by the latest observational data is also dis-
cussed. From the analysis performed in this work, it follows
that most of the collapse schemes analyzed in this paper are
viable candidates to explain the present observations of the
CMB fluctuation spectrum.

a e-mail: gleon@df.uba.ar
b e-mail: slandau@df.uba.ar
c e-mail: mpp@carina.fcaglp.unlp.edu.ar

1 Introduction

Recent observations of the Cosmic Microwave Background
(CMB) radiation are one of the most powerful tools to study
the early universe and also to provide a method to settle the
value of the cosmological parameters. In the last 20 years,
there have been a lot of improvements in the measurements
precision of the CMB radiation anisotropies. Furthermore,
the agreement between theory and observations has strength-
ened the theoretical status of inflationary scenarios among
cosmologists.

In the standard inflationary paradigm, the emergence of
all structures in our universe like galaxies and galaxy clus-
ters are described by a featureless stage represented by a
background Friedmann–Robertson–Walker (FRW) cosmol-
ogy with a nearly exponential expansion driven by the poten-
tial of a single scalar field and from its quantum fluctuations
characterized by a simple vacuum state. However, when this
scenario is considered more carefully, a conceptual prob-
lem emerges regarding a change in the initial symmetries
of the universe. That is, from a highly homogeneous and
isotropic initial state that characterizes the quantum pertur-
bations of both the classical background inflaton and the
space-time, the universe ends in a state with “real” inho-
mogeneities and anisotropies. In other words, if one consid-
ers quantum mechanics as a fundamental theory, then it is
appropriate to use it in order to describe the universe as a
whole; therefore, every classical description of the universe
shall be associated to an imprecise highly complex quantum-
mechanical state. Moreover, the observed universe, at cer-
tain scales, does exhibit inhomogeneous and anisotropic fea-
tures; consequently, its quantum description in terms of a
quantum state must encode these non-symmetrical aspects.
On the other hand, the dynamics of the standard inflationary
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paradigm does not contain any aspect that can be responsible
for breaking the initial symmetries of the early quantum state,
which happened to be perfectly homogeneous and isotropic.
In this sense we consider the standard inflationary paradigm
to be incomplete. Sudarsky and collaborators [1–10] have
developed one proposal to handle these shortcomings. The
way to deal with the problem is introducing a new ingredient
into the inflationary account of the origin of cosmic seeds:
the self-induced collapse hypothesis, i.e. a scheme in which
an internally induced collapse of the wave function of the
inflaton field is the mechanism by which inhomogeneities
and anisotropies arise at each particular length scale.

The collapse proposal was inspired by previous ideas of
Penrose and Diósi [11–14], which regarded the collapse of
the wave function as an actual physical process induced
by gravity (instead of just an artifact of the description of
physics). At this point of the discussion, we do not know
exactly what kind of physical mechanism would lie behind
what, at the semiclassical level we are working, looks like a
spontaneous collapse of the wave function. We assume that
the effect is caused by unknown quantum aspects of gravita-
tion. Essentially, the collapse hypothesis simply sustains that
something intrinsic to the system, i.e. independent of external
agents (e.g. observers), induces the collapse or reduction of
the quantum-mechanical state of the system. Various propos-
als of that sort have been developed [14–17] and might well
be compatible with the self-induced collapse of the inflaton’s
wave function that we are considering. The proposal is, at this
stage of the analysis, a purely phenomenological scheme. It
does not attempt to explain the process in terms of some spe-
cific new physical theory, but merely gives a rather general
parametrization of the quantum transition involved. We will
refer to this phenomenological model as the collapse scheme.

Here, it is worthwhile to mention that the previous con-
ceptual problem is sometimes known in the literature as the
quantum-to-classical transition of the primordial perturba-
tions. As a matter of fact, a partially understanding of such
issue has been gained by relying on the decoherence frame-
work and the fact that the initial vacuum state of the inflaton
evolves into a highly squeezed state [18,19]; in particular,
it is usually argued that the predictions from the quantum
theory, characterizing the inflaton fluctuations, are indistin-
guishable from those of a theory in which the random fluc-
tuations are the result of a classical stochastic process [20].
However, this argument alone cannot explain the fact that
a single (classical and random) outcome emerges from the
quantum theory [21]. In other words, decoherence (and the
squeezing of a quantum state) cannot solve the quantum mea-
surement problem [22,23], which in the cosmological setting
is amplified, i.e. there is no clear way to define entities such as
observers, measurement devices, environmental degrees of
freedom, etc. Other cosmologists seem to adopt the Everett
“many-worlds” interpretation of quantum mechanics when

confronted with the quantum-to-classical transition in the
inflationary universe (although a detailed and precise for-
mulation of such posture is still not well represented in the
literature). In the Everettian formulation, reality is made of a
connected weave of ever-splitting worlds, each one realizing
one of the alternatives that is opened by what we would call
a quantum-mechanical measurement. Regarding this point,
we want to mention that Everett’s interpretation has not com-
pletely solved the measurement problem yet. In fact, there is
a mapping between what in that approach would be called
the splittings of the worlds, and what would be called the
“measurements” in the Copenhagen interpretation. There-
fore, every question that can be asked in the orthodox inter-
pretation has a corresponding one in the Everettian one. That
is, the specific issues regarding the measurement problem
would be: When and why does a world splitting occur? Under
what circumstances does it occur? What constitutes a trigger?
Furthermore, even if one could bypass those conundrums, a
precise derivation of the Born rule (a crucial aspect to con-
nect the theory’s predictions with the experiments) and a clear
justification for the choice of a particular basis in which the
splitting takes place is unknown within Everett’s interpreta-
tion [24,25].

Given the previous discussion, an objective reduction of
the quantum state, characterizing the inflaton field, seems to
be a plausible option for addressing the problem at hand. The
detailed analysis of the original proposal at the conceptual
and technical level can be consulted in Refs. [1,2].

Furthermore, even though there are well-known models
characterizing the self-induced collapse of the wave func-
tion [16,17] in a generic (non-cosmological) context, the
relativistic framework for the objective collapse models is
still under development [26,27]. In this work, we will fol-
low a more pragmatical approach and characterize the post-
collapse quantum state by the expectation values of the field
and its momentum conjugate, without relying on some par-
ticular collapse mechanism. On the other hand, there are still
various possibilities regarding the description of the quantum
expectation values in the post-collapse state, we will refer to
these various prescriptions as collapse schemes. In a first
attempt [1,3], two different schemes were considered: one in
which, after the collapse, both expectation values of the field
and momentum variable are randomly distributed within their
respective ranges of uncertainties in the pre-collapsed state,
and another one in which it is only the conjugate momentum
that changes its expectation value from zero to a value in
its corresponding range, as a result of the collapse. In later
works [3,6], another scheme was considered, motivated by
the correlation between the field variable and its conjugated
momentum existing in the pre-collapse state; in this scheme
the collapse is characterized in terms of the Wigner function.

In previous papers [3,7] the collapse proposal was devel-
oped using an “almost” exact de Sitter expansion factor dur-
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ing the inflationary period [i.e., it was assumed that the (cos-
mic) time derivative of the Hubble factor Ḣ was exactly
a constant]. In consequence, the primordial power spec-
trum, modified by the collapse hypothesis, resulted in a form
P(k) = AsC(k), that is, a power spectrum with scalar spec-
tral index ns = 1, and with C(k) a function representing
the modification induced by the collapse hypothesis; in par-
ticular, the function C(k) depends on the time of collapse
of each mode of the inflaton field. Furthermore, the tem-
perature and polarization power spectrum of the CMB were
also modified; therefore, the proposals’ predictions could be
tested against current observational data [7]. In such a way, it
was possible to recover an exact scale-invariant power spec-
trum for some values of the collapse parameters that are
related to the time of collapse of each mode of the inflaton
field.

However, recent data reported by Planck [28] and WMAP
[29] constrain the value of the spectral scalar index to
ns = 0.9603 ± 0.0073. Therefore, in this paper, we go
one step beyond and calculate the primordial power spec-
trum for different collapse schemes in a full quasi-de Sitter
background, i.e. by considering small time variations of Ḣ .
In this manner, we will obtain an expression of the form
P(k) = Askns−1Q(k); naturally, with ns �= 1, and also
with Q(k) a function introduced by the collapse hypothesis,
which can be reduced to the conventional phenomenologi-
cal expression for some values of the collapse parameters.
We emphasize that this work is not only a matter of techni-
cal improvement, but also it helps to separate the features in
the power spectrum that can be attributed to the collapse of
the wave function and the aspects that are only due to con-
sidering a quasi-de Sitter background. That is, in previous
works the prediction of the form P(k) = AsC(k) does not
allow one to exactly identify the dependence on k attributed
to the collapse hypothesis and to the spectral index; mean-
while, in the prediction obtained in the present manuscript,
P(k) = Askns−1Q(k), one can plainly recognize and sepa-
rate the two kind of dependencies. We think that this feature
is important since, at the phenomenological level, one wishes
to learn more about the unknown collapse mechanism, so it
is of great significance to clearly identify its characteristics
within the theoretical predictions that will be confronted with
observational data.

Additionally, our prediction for the power spectrum allows
departures from the traditional inflationary approach that can
be tested observationally. Moreover, as we will show later in
the paper, since our model is conceptually different from
the standard one, we cannot follow the traditional method of
simply evaluate the power spectrum, obtained from pure de
Sitter inflation, at the so-called “horizon crossing” and, in this
way, achieve a power spectrum that is equivalent in shape to
the corresponding one calculated in a quasi-de Sitter stage.

In order for our model to yield a conceptually consistent
prediction, we must perform the full calculation in a quasi-
de Sitter background.

On the other hand, in a recent work [9] we have analyzed
the collapse hypothesis in the case that the collapse occurs
during the radiation epoch; and we have shown that if one
considers an almost exact de Sitter expansion for the infla-
tionary era, then the model cannot account for the present
observational CMB temperature fluctuation spectrum. This
last statement also applies to the case where the collapse
happens during inflation (which is the case of the present
paper). In fact, a simple calculation of the χ2 value for the
models presented in Ref. [7], where an almost exact de Sitter
background was considered using the CMB temperature data
released by Planck [28], the CMB polarization data reported
by WMAP [29], the CMB temperature data for high values
of l reported by the Atacama Cosmology Project (ACT) [30]
and the South Pole Telescope (SPT) [31], yields a value that
is several orders of magnitude above the expected reason-
able value. The difference between the analysis performed
in the former paper and this simple calculation is that the
data obtained by the Planck, ACT, and SPT collaborations
are much more accurate for small angular scales than the
7-years release of WMAP.

The paper is organized as follows: In Sect. 2, we review
the semiclassical gravity approach, in which only the per-
turbations of the inflaton field are quantized, and we obtain
the corresponding linearized Einstein equations. In Sect. 3,
we perform the quantization of the inflaton field in a quasi-
de Sitter background. Furthermore, we relate the initial cur-
vature perturbation with the parameters characterizing each
collapse scheme; we consider three different choices for the
quantum collapse. In Sect. 4, we relate the CMB observa-
tional quantities with the primordial spectrum modified with
the collapse hypothesis in a quasi-de Sitter background. In
Sect. 5, we compare the primordial power spectrum obtained
in Sect. 4 with the phenomenological expression in stan-
dard inflationary models. In Sect. 6, we plot the primordial
power spectrum obtained in this paper for some particular
values of the collapse parameters and compare it with the
primordial spectrum preferred by the data. In Sect. 7 we
present the prediction for the CMB temperature fluctuation
spectrum and show that there are different predictions corre-
sponding to the three collapse schemes proposed along with
distinct values for the time of collapse. Finally, in Sect. 8,
we summarize the main results of the paper and present the
conclusions.

Regarding notation and conventions, we will work with
signature (−,+,+,+) for the metric; primes over functions
will denote derivatives with respect to the conformal time
η, and we will use units where c = h̄ = 1 but keep the
gravitational constant G.
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2 Semiclassical gravity and linearized Einstein’s
equations

The purpose of this section is to present our view regarding
the relation between the space-time description in terms of
the metric and the quantum degrees of freedom (DOF) of
the matter fields, represented by the inflaton. First, we will
introduce the physical point of view of such relation and then
derive the corresponding equations.

We have proposed that the mechanism by which pri-
mordial anisotropies and inhomogeneities arise is a self-
induced collapse of the inflaton wave function. As a con-
sequence, the post-collapse quantum state must not be a
homogeneous and isotropic state, that is, it is not an eigen-
state of the linear and angular momentum operators. One
could then assume that the post-collapse state was obtained
from a particular collapse mechanism, and then compute the
corresponding observables in that state. The question now
would be: In the context of the inflationary scenario, what
are the appropriate observables that result from the quantum
theory?

One possible approach would be to assume that both met-
ric and matter perturbations are described by a quantum
field theory constructed on a classical unperturbed back-
ground; in the inflationary universe, this approach corre-
sponds to the quantization of the so-called Mukhanov–
Sasaki variable. Henceforth, if one assumes a particular col-
lapse mechanism, which somehow modifies the standard
unitary evolution given by Schrödinger equation, then the
dynamics of the Mukhanov–Sasaki variable would induce
non-standard predictions for the observational quantities
(e.g. the spectrum of the temperature anisotropies). This
scheme was developed in Refs. [32–35] for the inflationary
universe.

Another potential prescription to relate the quantum DOF
with the observational quantities, is to rely on the semiclassi-
cal gravity approximation represented by Einstein semiclas-
sical equations Gab = 8πG

〈
T̂ab
〉
; within this framework,

the metric is described in a classical way, while the mat-
ter DOF are modeled by a quantum field theory in a curved
classical background. Then, during inflation, the semiclas-
sical equations enable one to relate the inflaton quantum
perturbations with the corresponding ones from the classi-
cal metric. However, assuming a particular collapse mech-
anism, which again can be envisioned as a modification
of the Schrödinger equation, would not alter the evolu-
tion of the metric perturbation; indeed, the dynamics of
the modes characterizing the quantum field, representing
the inflaton, would be modified, but the metric perturba-
tion is always a classical object, and, thus, its evolution is
not dictated by the modified Schrödinger equation. Assum-
ing a particular collapse mechanism would only modify the
initial conditions of the equation of motion for the metric

perturbation, which again is always described at the clas-
sical level; in the context of inflation, this was analyzed
in Ref. [10] (by assuming pure de Sitter inflation). Never-
theless, the initial condition for the equation of motion of
the metric perturbation, will contain the information regard-
ing that a collapse of the wave function of the inflaton has
occurred.

One main advantage of using the semiclassical picture is
that the description and treatment of the metric (both the
background and its perturbations) remains “classical” at all
times. As a consequence, there is no issue with the “quantum-
to-classical transition” in the sense that one needs to justify
going from “metric operators” (e.g. �̂) to classical metric
variables (such as �). The fact that the space-time remains
classical is particularly important in the context of models
involving dynamical reduction of the wave function, as such
collapse or reduction is regarded as a physical process taking
place in time and, therefore, it is clear that a setting allowing
consideration of full space-time notions is preferred over,
say, the timeless settings usually encountered in canonical
approaches to quantum gravity (see Ref. [36] for a complete
review on the problem of time in quantum gravity).

Another aspect of the semiclassical approximation, is that
it is not valid during the collapse. The reason is that, as is
well known, introducing a dynamical collapse generically
violates the conservation of energy, so the divergence of the
energy-momentum tensor does not vanish, ∇a

〈
T̂ ab

〉 �= 0. If
the divergence of the energy-momentum tensor does not van-
ish, and it is equated to the Einstein tensor, then of course
the latter’s divergence does not vanish either, ∇aGab �= 0,
which evidently is a problem since we know that the diver-
gence of the Einstein tensor must be zero. Therefore, dur-
ing the collapse, we cannot say how the modified dynamics
of the quantum fields, provided by a collapse mechanism,
affects the classical metric perturbations that are directly
related to the observables. However, the semiclassical grav-
ity approximation is valid before and after the collapse,
which correspond to the cases of interest for the present
work.

More specifically, before the collapse, the initial state
of the universe, characterized by a few e-folds after infla-
tion has begun, is described by both the homogeneous and
the isotropic (H&I) Bunch–Davies vacuum and the H&I
Friedmann–Robertson–Walker space-time. Afterwards, at
some point during the inflationary epoch, the quantum state
of the matter fields spontaneously changes to a new quantum
state (i.e. the post-collapse state); this change is induced by
some physical (but unknown) mechanism. However, the state
resulting from the collapse needs not to share the same sym-
metries as the initial state. After the collapse, the gravitational
DOF are assumed to be, once more, accurately described by
Einstein’s semiclassical equations. Nevertheless,

〈
T̂ab
〉

eval-
uated in the new state does not generically posses the sym-
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metries of the pre-collapse state; hence, we are led to a new
geometry that is no longer H&I. We have presented just a
very brief summary of the semiclassical picture and its rela-
tion with the collapse hypothesis during inflation. The full
formalism has been developed in Ref. [5] and we invite the
reader to consult such a reference. We also should mention
that we are not advocating that semiclassical gravity must be
regarded as a fundamental theory; we are using it as an appro-
priate approximation given the energy scales of the inflation-
ary universe (∼1016 GeV), i.e. we are treating it as a quantum
field theory in a curved space-time.

It is also worthwhile to make a few remarks regarding
the tensor modes and the semiclassical gravity approach.
Last year, the BICEP2 collaboration reported the detection
of the primordial B-mode polarization consistent with the
prediction of standard inflationary models [37]. However,
other authors pointed out that without an accurate dust map,
it is not possible to tell dust polarization from polarization
due to primordial gravity waves [38–40]. More recently, the
Planck collaboration analysis of the angular power spectrum
of polarized dust emission at intermediate and high Galac-
tic latitudes [41] showed that the dust extrapolated power
spectrum (obtained by extrapolating Planck 353 GHz data to
150 GHz) is of the same magnitude as the B-mode polar-
ization power spectrum reported by the BICEP collabora-
tion. Finally, a recent joint analysis of the BICEP2/Keck and
Planck collaborations shows no evidence for primordial B-
mode polarization at low l, meanwhile for high l, they have
found evidence for B-modes that originate by gravitational
lensing [42].

On the other hand, in our approach, the source of the cur-
vature perturbations lies in the quantum inhomogeneities of
the inflaton field (after the collapse). Once the collapse has
taken place, the inhomogeneities of the inflaton feed into
the gravitational DOF leading to perturbations in the met-
ric components, in particular is a direct source of the scalar
perturbations. However, the metric itself is not a source of
the self-induced collapse. Therefore, as the scalar field does
not act as a source for the metric tensor modes, at least not
at first order considered here, the analysis concerning the
amplitude of the primordial gravitational waves should be
done at the second order in the perturbations; such anal-
ysis is beyond the scope of this paper and would be the
subject of future research. Furthermore, in Ref. [43], the
semiclassical gravity approximation plus a collapse of the
inflaton’s wave function results in an undetectable ampli-
tude for the primordial gravitational waves; however, those
authors consider the state to collapse on a spacelike hypersur-
face for all wavelengths modes, and this contrasts with our
view, in which the time of collapse depends on the mode’s
wavelength.

Now that we have established the conceptual relation
between the matter and geometry fields, we will proceed to

find the main equation which will illustrate this connection
under the collapse hypothesis.

In the inflationary regime, the dominant type of matter is
modeled by a scalar field φ called the inflaton with a potential
V responsible for the accelerating expansion of the universe.
At the end of the inflationary epoch, the universe follows
the standard Big Bang evolution, the transition mechanism
is provided by the reheating period.

The inflationary universe is modeled by the action of a
scalar field minimally coupled to gravity:

S[φ, gab] =
∫

d4x
√−g

[
1

16πG
R[g]

−1

2
∇aφ∇bφg

ab − V [φ]
]
. (1)

Varying Eq. (1) with respect to the metric yields the field
equations Gab = 8πGTab.

We proceed the analysis, in the standard fashion, separat-
ing the metric and the scalar field into a background (which is
perfectly homogeneous and isotropic) plus a small perturba-
tion, i.e. gab = g(0)

ab +δgab and, using conformal coordinates,
φ = φ0(η) + δφ(x, η).

Focusing first on the background, the space-time is charac-
terized by a flat FRW space-time. The Einstein equations for
the background G(0)

00 = 8πGT (0)
00 = 8πGa2ρ yield Fried-

mann equations: 3H2 = 8πGa2ρ, where H ≡ a′(η)/a(η).
The major contribution to the energy density ρ comes from
the inflaton potential V .

In the slow-roll inflationary model, the conformal Hubble
factor is characterized by H � −1/[η(1 − εH )], with εH ≡
1 − H′/H2 the Hubble slow-roll parameter, which during
inflation 1 	 εH � constant. Note that in Ref. [1], H =
−1/η, that is, the background space-time is strictly de Sitter
and leads to a final spectrum with ns = 1; this is different
from the present paper where we will be considering a quasi-
de Sitter background and that will lead us to a value for the
scalar spectral index ns �= 1.

Furthermore, since we will work with the slow-roll
approximation, then the equation of motion for the back-
ground field can be approximated by 3Hφ′

0 = −a2∂φV .
Additionally, it is convenient to introduce the potential slow-
roll (PSR) parameters

εV ≡ M2
P

2

(
∂φV

V

)2

, δV ≡ M2
P

(
∂2
φφV

V

)

. (2)

Thus, by assuming εV , δV 
 1, one identifies the region
in the potential where the slow-roll approximation is valid.
Furthermore, during slow-roll inflation εH � εV .

The normalization of the scale factor will be set to a = 1
at the present cosmological time. The inflationary era would
come to an end at η = ηr ≈ −10−22 Mpc, that is, the
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conformal time during the inflationary era is in the range
−∞ < η < ηr .

Next we focus on the perturbations. It is usual to decom-
pose the metric fluctuations in terms of its scalar, vector and
tensor components. In the case of interest for this article,
we concern ourselves only with the scalar perturbations. The
scalar metric perturbations in a FRW background space-time
are generically described by the line element:

ds2 = a2(η)
{
−(1 − 2ϕ)dη2 + 2(∂i B)dxidη

+[(1 − 2ψ)δi j + 2∂i∂ j E]dxidx j
}

. (3)

Since we will work in the semiclassical framework it is con-
venient to work with the gauge-invariant quantities known as
the Bardeen potentials, defined as  ≡ ϕ + 1

a [a(B − E ′)]′
and � ≡ ψ +H(E ′ − B). In a similar way, the perturbations
of the inflaton can be modeled by the gauge-invariant fluctu-
ation of the scalar field δφ(GI)(η, x) = δφ + φ′

0(B − E ′).
In Appendix A is shown that combining the perturbed

Einstein equations (in the absence of anisotropic stress) and
the slow-roll equation of motion, one obtains

∇2� + μ� = 4πGφ′
0δφ

′(GI), (4)

where μ ≡ H2 − H′. In Fourier space, Eq. (4) reads

�k(η) =
√

εV

2

H

MP (k2 − μ)
aδφ′

k(η)(GI), (5)

with H the Hubble factor and M2
P ≡ 1/8πG the reduced

Planck mass; also, we have used the definition of εV , Fried-
mann equation and the slow-roll approximation for φ′

0. Addi-
tionally, from the definition of μ, one can check that μ =
εHH2. During most of the inflationary regime, the inequal-
ity k2 	 μ is satisfied (both when |kη| 	 1 and |kη| 
 1),
it gets violated when εH starts departing from being a con-
stant an approaching unity; in other words when inflation is
coming to an end. However, since modes of observational
interest are bigger than the Hubble radius (|kη| 
 1) while
the inflationary phase is still going on, the approximation
k2 	 μ remains valid. Thus, Eq. (5) is approximated by

�k(η) �
√

εH

2

H

MPk2 aδφ′
k(η)(GI). (6)

Finally, since we mentioned that we will rely on the semi-
classical gravity framework, Eq. (6) can be generalized to

�k(η) �
√

εH

2

H

MPk2 a
〈 ˆδφ′

k(η)(GI)〉. (7)

Equation (7) is the main result of this section; the difference
with respect to the perfect de Sitter case will be reflected in
the equation of motion for ˆδφ′

k(η)(GI) and also in the fact
that H and εH are strictly not constant.

Let us note that Eq. (7) is expressed in terms of gauge-
invariant quantities �k and ˆδφ′

k(η)(GI). Nevertheless, in the

longitudinal gauge, � represents the curvature perturbation
and is related to δφ in the exact same way as in Eq. (7) [44].
Thus, Eq. (7) serves to illustrate what we mentioned at the
beginning of the section, namely, that the quantum treatment
is all in the matter fields, which during inflation is dominated
by the inflaton, while the curvature perturbation is always a
classical quantity.

3 Quantum theory of fluctuations, collapse schemes
and the primordial curvature perturbation

In this section, we will present the quantum theory of the
field variables and characterize the collapse proposal. As
mentioned in the introduction, we will focus on the prag-
matical approach first exposed in [1]; for more on this prag-
matical approach one may consult Refs. [3,4,32]. Next, we
will introduce the collapse schemes and finally we will find
the expression for the curvature perturbation for the three
schemes considered.

3.1 Quantum theory of perturbations

Given that we are working within the semiclassical gravity
framework, in which only the matter fields are quantized,
and that the self-induced collapse generates the curvature
perturbation, our fundamental quantum variable will be the
fluctuation of the inflaton field δφ(x, η); thus, we will con-
sider the quantum theory of δφ(x, η) in a curved background
described by a quasi-de Sitter space-time. Furthermore, it will
be easier to work with the rescaled field variable y = aδφ;
consequently, we can expand the action (1) up to second order
in the rescaled variable (i.e. up to second order in the scalar
field fluctuations)

δS(2) =
∫

d4x
1

2

[
y′2 − (∇ y)2 +

(
a′

a

)2

y2

−2

(
a′

a

)
yy′ − y2a2∂2

φφV

]
. (8)

The canonical momentum conjugated to y is π ≡
∂δL(2)/∂y′ = y′ − (a′/a)y = aδφ′. The field and momen-
tum variables are promoted to operators satisfying the equal
time commutator relations [ŷ(x, η), π̂(x′, η)] = iδ(x − x′)
and [ŷ(x, η), ŷ(x′, η)] = [π̂(x, η), π̂(x′, η)] = 0. Expand-
ing the field operator in Fourier modes yields

ŷ(η, x) = 1

L3

∑

k

ŷk(η)eik·x (9)

and an analogous expression for π̂(η, x); note that the sum
is over the wave vectors k satisfying ki L = 2πni for i =
1, 2, 3 with ni integer and ŷk(η) ≡ yk(η)âk + y∗

k (η)â†
−k and

π̂k(η) ≡ gk(η)âk+g∗
k (η)â†

−k, with gk(η) = y′
k(η)−Hyk(η).
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From the previous expression it is clear that we are taking the
quantization on a finite cubic box of length L , at the end of
the calculations we will go to the continuum limit (L → ∞,
k → cont.). The equation of motion for yk(η) derived from
the action (8) is

y′′
k (η) +

(
k2 − a′′

a
+ a2∂2

φφV

)
yk(η) = 0. (10)

Since H = −1/[η(1 − εH )], one finds that a′′/a �
(2 + 3εH )/η2; additionally, using the definition of δV ,
Friedmann’s equation, and the explicit form of H, one has
a2∂2

φφV � 3δV /η2. Therefore, the motion equation Eq. (10)
is rewritten as

y′′
k (η) +

(
k2 − 2 + 3(εH − δV )

η2

)
yk(η) = 0. (11)

The solution of Eq. (11) is fixed by the canonical com-
mutation relations between ŷ and π̂ , which give [âk, â†

k′ ] =
L3δk,k′ ; thus yk(η) must satisfy ykg∗

k − y∗
k gk = i for all k at

some time η. The choice of yk(η) corresponds to the choice
of a vacuum state for the field, which in the present case
would be the so-called Bunch–Davies vacuum characterized
by

yk(η) =
(−πη

4

)1/2

ei[ν+1/2](π/2)H (1)
ν (−kη), (12)

where ν ≡ 3/2 + εH − δV and H (1)
ν (−kη) is the Hankel

function of the first kind of order ν.1 The solution involves a
phase ei[ν+1/2](π/2), which we will drop from the calculations
as it has no observational consequence.

We note that in the case of an exact de Sitter universe, the
motion equation would correspond to setting εH = δV = 0
in Eq. (11), and indeed that was the case studied in Refs.
[1,3]. The fact that the equation of motion (11) now involves
the slow-roll parameters will lead, as we will show in the rest
of this article, to a prediction for the scalar spectral index,
that is, generically ns �= 1.

The self-induced collapse hypothesis is based on con-
sidering that the collapse acts similar to a “measurement”
(clearly, there is no external observer or detector involved).
This leads us to consider Hermitian operators, which in ordi-
nary quantum mechanics are the ones susceptible to direct
measurement. Therefore, we separate ŷk(η) and π̂k(η) into
their real and imaginary parts ŷk(η) = ŷkR(η)+ i ŷk I (η) and
π̂k(η) = π̂k

R(η)+i π̂k
I (η) in this way the operators ŷ R,I

k (η)

and π̂
R,I
k (η) are Hermitian operators. Thus,

ŷ R,I
k (η) = √

2Re[yk(η)â R,I
k ], (13a)

1 The Hankel functions of the first kind are defined as H (1)
ν (x) ≡

Jν(x) + iYν(x) with Jν and Yν the Bessel functions of the first and
second kind respectively.

π̂
R,I
k (η) = √

2Re[gk(η)â R,I
k ], (13b)

where â R
k ≡ (âk + â−k)/

√
2, â I

k ≡ −i(âk − â−k)/
√

2.

The commutation relations for the â R,I
k are non-standard

[â R,I
k , â R,I†

k′ ] = L3(δk,k′ ± δk,−k′), (14)

where the + and the − sign correspond to the commutator
with the R and I labels, respectively; all other commutators
vanish.

Up to this point, we have proceeded in a similar way to
the traditional one, except that we are treating at the quantum
level only the scalar field and not the metric fluctuation. It is
also worthwhile to emphasize that the vacuum state defined
by âkR,I |0〉 = 0 is 100 % translational and rotationally invari-
ant (the formal proof was presented in Appendix A of Ref.
[8]).

Our next task is to connect the quantum theory of the infla-
ton perturbations with the primordial curvature perturbation.
We proceed by choosing to work in the longitudinal gauge,
and express Eq. (7), in terms of the expectation value of the
conjugated momentum, that is,

�k(η) �
√

εH

2

H

MPk2

〈
π̂k(η)

〉
. (15)

It is clear that, in the vacuum state,
〈
π̂k(η)

〉 = 0, which
implies �k = 0, i.e. there are no perturbations of the sym-
metric background space-time. It is only after the collapse
has taken place (|�〉 �= |0〉) that

〈
π̂k(η)

〉
�

�= 0 generi-
cally and �k �= 0; thus, the primordial inhomogeneities and
anisotropies are born from the quantum collapse.

It is also important to note that the quantum collapse
affects all modes k of the inflaton, that is, the collapse takes
the original vacuum state |0〉 to a new quantum state:

|�〉 = · · · |�−k2

〉⊗ |�−k1

〉⊗ |�k0

〉⊗ |�k1

〉⊗ |�k2

〉 · · ·
(16)

Given Eq. (15), which was provided by the semiclassical
framework, and also that all modes of the inflaton field are
now in a post-collapse state |�〉, we can clearly see that the
expectation value

〈
π̂k(η)

〉
serves as a source for �k for all k.

Once the collapse has created all modes �k, we can divide
them in two types:

1. Modes with an associated proper wavelength bigger than
the Hubble radius at the time of collapse, we will call
these the super-horizon modes; i.e. their corresponding
Fourier (comoving) modes satisfy k 
 H(ηck).

2. Modes with an associated proper wavelength smaller than
the Hubble radius at the time of collapse, we will call
these the sub-horizon modes; i.e. their corresponding
Fourier (comoving) modes satisfy k 	 H(ηck).
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In order to continue with the model, we will consider that
the collapse is somehow analogous to an imprecise measure-
ment2 of the operators ŷ R,I

k (η) and π̂
R,I
k (η). That is, we need

to specify the dynamics of the expectation values
〈
ŷ R,I
k (η)

〉

and
〈
π̂

R,I
k (η)

〉
, evaluated in the post-collapse state. Further-

more, the analytical expression for
〈
ŷ R,I
k (η)

〉
and

〈
π̂

R,I
k (η)

〉

should depend on
〈
ŷ R,I
k (ηck)

〉
and

〈
π̂

R,I
k (ηck)

〉
, i.e. the expecta-

tion values evaluated at the time of collapse. In the next sub-
section we will show the precise manner to specify

〈
ŷ R,I
k (ηck)

〉

and
〈
π̂

R,I
k (ηck)

〉
.

3.2 Collapse schemes

At this point in the analysis we need to characterize in a more
precise manner the collapse of the wave function. Evidently,
it would be desirable to provide a physical mechanism for the
collapse. Nevertheless, there are some aspects that need to be
addressed first. A full workable relativistic collapse mecha-
nism is still unknown; however, some relativistic models have
been recently proposed [26,27] and are still under develop-
ment.

On the other hand, some non-relativistic objective col-
lapse models have been analyzed previously in the literature
[14–17]. In particular, the Continuous Spontaneous Local-
ization (CSL) model [15] is based on a non-linear stochastic
modification of the standard Schrödinger equation. In this
way, spontaneous and random collapses of the wave function
occur all the time, to all particles, regardless they are isolated
or interacting. The idea behind the CSL model, sometimes
referred to as the “amplification mechanism,” is that the col-
lapses must be rare for microscopic systems, in order to not
alter their quantum behavior as described by the Schrödinger
equation, but at the same time, their effect must increase when
several particles are hold together forming a macroscopic
system.

The CSL model has been applied to the inflationary uni-
verse in previous works [10,33–35,45]; nevertheless, the
results obtained in those works are different among each other
(e.g. in Ref. [10] the amplitude of primordial gravitational
waves is zero at first order in the perturbations, meanwhile
in Refs. [35,45] this amplitude is similar to the predicted by
the traditional inflationary model). The reason is the con-
ceptual approach taken to address the subject, specifically,
the treatment of the metric perturbations (in [10] the met-

2 An imprecise measurement of an observable is one in which one does
not end with an exact eigenstate of that observable but rather with a state
Footnote 2 continued
that is only peaked around the eigenvalue. Thus, we could consider
measuring a certain particle’s position and momentum so as to end
up with a state that is a wave packet with both position and momentum
defined to a limited extent and, which certainly, does not entail a conflict
with Heisenberg’s uncertainty bound.

ric is always classical, while in [35,45] metric perturbations
are quantized). Furthermore, there are still a few limitations
on the CSL inflationary model that need to be investigated in
detail, for instance: (i) CSL model is actually non-relativistic,
but [10,33–35,45] assume a field theoretic CSL-like version,
mode by mode, in momentum space, without a physical jus-
tification; (ii) the CSL amplification mechanism is absent or
introduced as an ad hoc assumption. It is clear that further
research is needed in order to consider a complete collapse
mechanism and its successful implementation to the infla-
tionary universe.

In the present manuscript, we are interested in analyzing
the characteristics of the observational predictions when con-
sidering a generic self-induced collapse. Thus, we will not
consider a particular collapse mechanism and instead pro-
ceed in a pragmatical way. We will assume that whatever
the collapse mechanism is behind, at the end of the collapse
process, which can be associated to the time of collapse, we
can characterize the expectation values of the field and the
momentum, evaluated at the post-collapse state. More pre-
cisely, we assume that the effect of the collapse on a state
is analogous to some sort of approximate measurement; in
other words, after the collapse, the expectation values of the
field and momentum operators in each mode will be related
to the uncertainties of the initial state. In the vacuum state,
ŷk and π̂k individually are distributed according to Gaussian
wave functions centered at 0 with spread (�ŷk)2

0 and (�π̂k)
2
0,

respectively. We could consider various possibilities for such
relations; we will refer as “collapse schemes” to the differ-
ent ways of characterizing the expectation values. In past
works [1,3] three different schemes were considered. These
schemes were called independent, Newtonian and Wigner
collapse schemes. In the following, we wi/ll describe them
briefly.

3.2.1 Independent scheme

In this scheme one assumes that the expectation values of
the field’s mode ŷ R,I

k , and their conjugate momentum π̂
R,I
k ,

acquire independent values randomly. The expectation at the
time of collapse is assumed to be of the form

〈
ŷ R,I
k (ηck)

〉 = x R,I
k,1

√(
�ŷ R,I

k (ηck)
)2

0
, (17a)

〈
π̂

R,I
k (ηck)

〉 = x R,I
k,2

√(
�π̂

R,I
k (ηck)

)2

0
. (17b)

In this scheme the expectation value jumps to a ran-
dom value x (R,I )

k multiplied by the uncertainty of the vac-

uum state of the field. The random variables x (R,I )
k,1 , x (R,I )

k,2
are selected from a Gaussian distribution centered at zero,
with unity spread, and are statistically uncorrelated, which is
the rationale of the name. This means that we are ignoring
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the natural correlation that exists in the conjugate fields in
the pre-collapse state. In Appendix B.1, the explicit form

of
(
�ŷ R,I

k (ηck)
)2

0
and

(
�π̂

R,I
k (ηck)

)2

0
within this collapse

scheme is shown.

3.2.2 Newtonian collapse scheme

This scheme is motivated by the fact that in the equation for
the Newtonian potential, Eq. (15), only the expectation value
of π̂k appears. Thus, one is led to consider a scheme where
the collapse affects only the conjugated momentum variable,
that is,

〈
ŷ R,I
k (ηck)

〉 = 0,
〈
π̂

R,I
k (ηck)

〉 = x R,I
k,2

√(
�π̂

R,I
k (ηck)

)2

0
. (18)

As in the previous case, x (R,I )
k,2 represents a random Gaus-

sian variable normalized and centered at zero. The quantity(
�π̂

R,I
k (ηck)

)2

0
within this collapse scheme is the same as in

the independent scheme (see Appendix B.1).

3.2.3 Wigner collapse scheme

The last collapse scheme, analyzed in detail in Refs. [3,6], is
motivated by considering the correlation between ŷ R,I and
π̂ R,I existing in the pre-collapse state and characterize it in
terms of the Wigner function (one knows from Heisenberg’s
uncertainty principle that the field and momentum variables
should be correlated).

The Wigner function of the vacuum state is a bi-
dimensional Gaussian function. The assumption is that, at
a certain (conformal) time ηck , the part of the state character-
izing the mode k will collapse, leading to a new state in which
the expectation value of the fields will be characterized by
〈
ŷ R,I
k (ηck)

〉 = x R,I
k �k(η

c
k) cos �k(η

c
k), (19a)

〈
π̂

R,I
k (ηck)

〉 = x R,I
k k�k(η

c
k) sin �k(η

c
k), (19b)

where x R,I
k is a random variable, characterized by a Gaussian

probability distribution function centered at zero with spread
one. The parameter �k(η

c
k) represents the major semi-axis

of the ellipse characterizing the bi-dimensional Wigner func-
tion that can be considered a Gaussian in two dimensions;
this is, the ellipse corresponds to the boundary of the region
in “phase space” where the Wigner function has a magnitude
larger than 1/2 its maximum value. The other parameter, rep-
resented by �k(η

c
k), is the angle between that axis and the

ŷ R,I
k axis. The details involving the Wigner function and the

collapse scheme can be consulted in Ref. [3]. The parameters
�k and �k depend on the time of collapse, one can follow the
analysis presented in Ref. [3] in order to find an expression
for �k and �k in terms of the time of collapse, but bearing
in mind that, for the present manuscript, we are considering

a quasi-de Sitter universe [see Appendix B.1 for an explicit
expression of �k(η

c
k) and �k(η

c
k)].

3.3 The curvature perturbation for the three collapse
schemes

So far, we have established the relation between the curvature
perturbation and the quantum matter fields [see Eq. (15)] and
characterized the collapse by means of the expectation values
of the field and its momentum, i.e. by introducing the collapse
schemes. The next aim is to present an explicit expression for
the curvature perturbation in terms of the parameters charac-
terizing each collapse scheme. In order to attain that goal, we
must first find an expression for the evolution of the expec-
tation values of the fields. In fact, as can be seen from Eq.
(15), we will only be concerned with the expectation value
of the conjugated momentum

〈
π̂k(η)

〉
. In Appendix B.2, we

show that
〈
π̂

R,I
k (η)

〉
�

= F(kη, zk)
〈
ŷ R,I
k (ηck)

〉
�

+G(kη, zk)
〈
π̂

R,I
k (ηck)

〉
�
, (20)

with the definitions of F(kη, zk) and G(kη, zk) also in
Appendix B.2. The parameter zk is defined as zk ≡ kηck ;
thus, zk is directly associated to the time of collapse ηck .

Finally, substituting Eq. (20) in Eq. (15), we can find an
expression for the curvature perturbation (in the longitudinal
gauge).

�k(η) =
√

εV

2

H

MPk2

×
[
F(kη, zk)

(〈
ŷ Rk (ηck)

〉
�

+ i
〈
ŷ Ik(ηck)

〉
�

)

+G(kη, zk)
(〈

π̂ R
k (ηck)

〉
�

+ i
〈
π̂ I
k (ηck)

〉
�

)]
. (21)

We can see from Eq. (21) how the curvature perturbation
depends on the three collapse schemes through the quantities〈
ŷ Ik(ηck)

〉
�

and
〈
π̂ I
k (ηck)

〉
�

. Henceforth, we have three different
expressions for �k(η) corresponding to the three previously
introduced collapse schemes characterized in Eqs. (17)–(19)
(explicit expressions of �k in the three schemes are given in
Appendix B.2).

One useful gauge-invariant quantity often encountered
in the literature is the variable R(x). The field R(x) is a
field representing the curvature perturbation in the comov-
ing gauge. Its Fourier transform, represented by Rk, is con-
stant for modes “outside the horizon” (irrespectively of the
cosmological epoch), i.e. for modes with k 
 H = aH
(and assuming adiabatic perturbations). That is, the value
of Rk during inflation (in the limit k 
 H) would remain
unchanged at all times, until the mode “re-enters the hori-
zon,” namely when k � H.

On the other hand, the curvature perturbation � in the
longitudinal gauge, is also constant for modes outside the
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horizon during any given cosmological epoch but not during
the transition between epochs. In fact, during the transition
from the inflationary stage to the radiation dominated stage,
� is amplified by a factor of 1/εV [44,46]. This behavior
differs from the one of R, which remains constant in spite of
the epoch transition.

The curvature perturbation in the comoving gauge R and
the curvature perturbation in the longitudinal gauge � are
related as R ≡ � + (2/3)(H−1� ′ + �)/(1 + ω), with ω ≡
p/ρ. Therefore, for modes such that k 
 H, during the
inflationary epoch ω + 1 � 2εV /3, one has

lim
k
H

Rk � lim
k
H

�k(η)

εV
, (22)

with �k(η), calculated during inflation, in the limit such that
the modes are well outside the “horizon” (i.e. in the regime
where |kη| 
 1).

Therefore by expanding the expressions �k, within the
three collapse schemes, to the lowest order in |kη|, and by
making use of Eq. (22), we can find Rk. Thus, after perform-
ing such expansion, the comoving curvature perturbation is

Rind
k � Rk

[
M(|zk |)Xk,1 + N (|zk |)Xk,2

]
|kη|3/2−ν, (23a)

Rnewt
k � RkN (|zk |)Xk,2|kη|3/2−ν, (23b)

Rwig
k � RkW (|zk |)Xk|kη|3/2−ν. (23c)

The functions M(|zk |), N (|zk |), and W (|zk |) are defined
in Appendix B.3 and the amplitude

Rk ≡
√
L3π/εV H2ν−11/2�(ν − 1)/MPk

3/2;
also we have introduced the definitions zk ≡ kηck and Xk ≡
x Rk + i x Ik .

Equations (23) are the main result of this section. They
relate the initial curvature perturbation, which is associ-
ated with the temperature anisotropies in the CMB, with the
parameters characterizing each collapse scheme, i.e. the time
of collapse and the random variables. There is no analogous
expression in the traditional inflationary paradigm, in which
by relying on some “quantum-to-classical” arguments (see
Refs. [1,2] for a detailed discussion on the conceptual prob-
lems regarding such arguments), one is able to go from R̂k

to Rk but without a clear identification of the physical (and
probably random) process that originated the classical cur-
vature perturbation.

We strongly remark that the random variables correspond-
ing to each collapse scheme are fixed after the collapse of the
wave function has occurred. In other words, if we somehow
knew their exact value, we would be able to predict the exact
value forRk; notice that we have not even mentioned notions
such as average over an ensemble of universes or some related
concepts. Nevertheless, we will do make use of the statistical

properties of the random variables to be able to make theo-
retical predictions for the observational quantities, e.g. the
power spectrum and the spectral index; this will be the focus
of the next section.

4 An equivalent power spectrum for the curvature
perturbation

The focus of this section is to find an equivalent expression for
what it is commonly referred to as the primordial power spec-
trum for the scalar perturbations. In the standard inflationary
paradigm, such expression is given by3 P(k) = Askns−1,
where As is the amplitude and ns is known as the spectral
index of the scalar perturbations. Thus, in this section we
will find a similar expression in which we will identify the
amplitude and the scalar index within the collapse model.

We begin by showing how the observational quantities
can be related with the parameters characterizing the col-
lapse. The temperature anisotropies δT/T0 of the CMB are
clearly the most direct observational quantity available, with
T0 the mean temperature. Expanding δT/T0 using spherical
harmonics, the coefficients alm are

alm =
∫

�(n̂)Y �
lm(θ, ϕ) d�, (24)

with n̂ = (sin θ sin ϕ, sin θ cos ϕ, cos θ) and θ, ϕ the coor-
dinates on the celestial two-sphere; we have also defined
�(n̂) ≡ δT (n̂)/T0. Assuming instantaneous recombination,
the relation between the primordial perturbations and the
observed CMB temperature anisotropies is

�(n̂)=
[
� + 1

4
δγ

]
(ηD) + n̂ · vγ (ηD) + 2

∫ η0

ηD

� ′(η) dη,

(25)

where ηD is the time of decoupling; δγ and vγ are the density
perturbations and velocity of the radiation fluid.

It is common practice to decompose the temperature
anisotropies in Fourier modes,

�(n̂) =
∑

k

�(k)

L3 eik·RDn̂, (26)

with RD the radius of the last scattering surface. After-
wards, one solves the fluid equation of motions with
the initial condition provided by the curvature pertur-
bation during inflation. Furthermore, using eik·RDn̂ =
4π
∑

lm il jl(kRD)Ylm(θ, ϕ)Y �
lm(k̂), Eq. (24) can be rewrit-

ten as

3 Actually, in the literature, one finds two kinds of power spectrum:
the dimensional power spectrum P(k) and the dimensionless power
spectrum P(k); the latter is defined in terms of the former by P(k) ≡
(k3/2π2)P(k).
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alm = 4π i l

L3

∑

k

jl(kRD)Y �
lm(k̂)�(k), (27)

with jl(kRD) the spherical Bessel function of order l.
The linear evolution that relates the initial curvature per-

turbation Rk and the temperature anisotropies �(k) is sum-
marized in the transfer function T (k), in other words, T (k) is
the result of solving the fluid equation of motions (for each
mode) with the initial condition provided by the curvature
perturbation Rk and then make use of Eq. (25) to relate it
with the temperature anisotropies. Thus �(k) = T (k)Rk.

Consequently, the coefficients alm , in terms of the modes
Rk, are given by

alm = 4π i l

L3

∑

k

jl(kRD)Y �
lm(k̂)T (k)Rk, (28)

with Rk during inflation, and in the limit k 
 H or equiva-
lently |kη| 
 1.

By substituting Eq. (23), corresponding to the explicit
form ofRk for each collapse scheme, in Eq. (28), one can see
how the coefficients alm are directly related to the random
variables Xk. Consequently, the coefficients alm are in effect
a sum of random complex numbers (i.e. a sum over k where
each term is characterized by the random variables Xk, which
is itself a complex random number), leading to what can be
considered effectively as a two-dimensional (i.e. a complex
plane) random walk. As is well known, one cannot give a
perfect estimate for the direction of the final displacement
resulting from the random walk. Nevertheless, one might
give an estimate for the length of the displacement for the
random walk. Such a length is naturally associated with the
magnitude |alm |2; hence, we can make an estimate for the
most likely value of |alm |2 and interpret it as the theoreti-
cal prediction for the observed |alm |2. Moreover, since the
collapse is being modeled by a random process, we can con-
sider a set of possible realizations of such process charac-
terizing the universe in an unique manner, i.e., characterized
by the random variables Xk. If the probability distribution
function of Xk is Gaussian, then we can identify the most
likely value |alm |2ML with the mean value |alm |2 of all pos-

sible realizations; that is, |alm |2ML = |alm |2. The most likely
value |alm |2ML in each collapse scheme is explicitly given in
Appendix C.

Moreover, we need to make some further assumptions
regarding the ensemble average of the product of the random
variables for each collapse scheme. We will assume that x R,I

k
variables are uncorrelated, that is, they satisfy

x Rk,s x
R
k′,s = δk,k′ + δk,−k′ , x Ik,s x

I
k′,s = δk,k′ − δk,−k′ ,

(29)

with the label s indicating the particular scheme associated
to the random variables.

Note that we have taken into account that the real and
imaginary parts of the random variables are independent for
every scheme. Additionally, we have considered the corre-
lation between the modes k and −k in accordance with the
commutation relation given by [â R

k , â R†
k′ ] and [â I

k, â
I†
k′ ] [see

Eq. (14)].
The observational data is presented in terms of a quan-

tity Cl called the angular power spectrum. The definition
of Cl is given in terms of the coefficients alm as Cl =
(2l + 1)−1∑

m |alm |2. Therefore, we can use the prediction
for |alm |2ML for each collapse scheme and give a theoretical
prediction for Cl for the three collapse schemes considered.
Thus, Eq. (29) and using |alm |2ML for each collapse scheme,
we obtain

Cl = 4π

∫ ∞

0

dk

k
j2
l (kRD)T (k)2 C

π2 Q(|zk |)k3−2ν, (30)

where

C ≡ π

M2
PεH

(
2ν−11/2�(ν − 1)H |η|3/2−ν

)2
, (31)

and we have taken the limit L → ∞ and k → continuum
in order to go from sums over discrete k to integrals over k.
The function Q(|zk |) varies for each collapse scheme. For
the independent scheme

Q(|zk |)ind = M2(|zk |) + N 2(|zk |); (32)

for the Newtonian scheme

Q(|zk |)newt = N 2(|zk |), (33)

and for the Wigner scheme

Q(|zk |)wig = W 2(|zk |); (34)

the definitions of M, N ,W are in Appendix B.3.
In the standard inflationary paradigm, a well-known result

is that the power spectrum P(k) for the perturbation Rk and
the Cl are related by

Cl = 4π

∫ ∞

0

dk

k
j2
l (kRD)T (k)2P(k). (35)

Thus, comparing Eq. (30) with (35) we can extract an
“equivalent power spectrum” for each collapse scheme (more
details can be found in Appendix D). The form of the power
spectrum, within the three collapse schemes, has the generic
form

P(k) = C
π2 Q(|zk |)k3−2ν. (36)

Equation (36) is the main result of this section. In the next
section, we will compare our prediction with the one given
by the traditional approach and make a couple of remarks
regarding the physical implications of our prediction.

We would like to end this section by noting that our pre-
diction for the power spectrum was extracted from what in
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principle are observable quantities, i.e. the Cl . In fact, our
model gives a direct theoretical prediction for the observed
Cl , Eq. (30), and then from such expression we “read” what
can be identified as the “power spectrum” in the traditional
approach of inflation. This is conceptually different from
the orthodox approach [21] in which the power spectrum
is obtained directly from the two-point correlation function〈
0|�̂(k)�̂(k′)|0〉. In contrast, our power spectrum is obtained

from
〈
π̂k
〉〈
π̂k′
〉
, where the expectation values are evaluated at

the post-collapse state, that is, we have never relied on the
calculation of the two-point quantum correlation function. In
Appendix D we show in detail the calculation of the CMB
temperature angular power spectrum and its relation with
the scalar power spectrum, this serves to present the reader
why our proposal does not rely on the quantum two-point
correlation function.

5 Comparisons between the traditional and the collapse
power spectrum

Let us recall that the standard prediction for the scalar power
spectrum for the curvature perturbations, within single field
slow-roll inflation, is P(k) = Askns−1, where

As = 22ν̃−4|�(ν̃)|2H2|η|3−2ν̃

π3M2
PεH

, ns − 1 = −6εH + 2δV ,

(37)

with ν̃ ≡ 3/2 + 3εH − δV . On the other hand, within our
model, ν = 3/2 + εH − δV [see Eq. (12)]; therefore, the
equivalent scalar spectral index is ns − 1 = −2εH + 2δV .

As has been analyzed in Ref. [47], the quantity As , namely
the amplitude, is approximately a time independent function
[i.e., d/dη{H2|η|3−2ν/εH } = O(ε2

H , δ2
V )] for all η, that is,

even if H , εH , and |η|3−2ν̃ are time dependent, their combi-
nation, as it appears in As , is essentially constant. Since As is
nearly time independent, it is customary to express P(k) in
terms of the value of the conserved quantities when the mode
crossed the horizon, k = aH . In other words, one chooses
to express the value of the power spectrum, which is written
in terms of a conserved quantity at first order in the slow-roll
parameters, as a time independent function of wavenumber
k,

P(k) = 22ν̃−4|�(ν̃)|2
π3M2

P

H2
� (k)

ε�
H (k)

(38)

where

H2
� (k)

ε�
H (k)

≡
(
H2|η|3−2ν̃

εH

) ∣∣∣∣
k=aH

, (39)

then one computes the spectral index as ns−1 = d ln P(k)/d
ln k using Eqs. (38) and (39).

On the other hand, in the collapse model, the equivalent
power spectrum is given by P(k) = C/π2Q(|zk |)k3−2ν , Eq.
(36). A few remarks are in order:

First, the quantity C is of the same structure as As in the
traditional approach [see Eqs. (31), (37)]. In other words, is
nearly a time independent function, that is to say, its deriva-
tive with respect to the conformal time is of second order
in the slow-roll parameters. One could follow the standard
procedure and re-express C when the mode crossed the hori-
zon; however, within our approach, the curvature perturba-
tion and, thus, the power spectrum is non-vanishing only after
the time of collapse.

Specifically, once the collapse has occurred (or more pre-
cisely, the collapse mechanism has ended and the semiclassi-
cal approximation is valid) at some time ηck during inflation,
and as a consequence, �k �= 0 for all k, i.e. the primor-
dial curvature perturbation has been generated. Then one can
focus on some particular Fourier mode �k and ask if its asso-
ciated proper wavelength λP = a/k (with k the comoving
wavenumber), at the time of collapse, is smaller or bigger
than the Hubble radius H−1, which we know is approxi-
mately constant during inflation. The answer is simply to
compare which of the inequalities gets satisfied k 	 a(ηck)H
or k 
 a(ηck)H ; if it is the former, then the mode is still
“inside the horizon,” and we know that it will eventually
cross the horizon, during inflation, and then will “freeze;”
however, if it is the latter, then the mode is “bigger than the
horizon” and is already “frozen,” consequently for this last
type of modes it would make no sense to evaluate the power
spectrum at the “horizon crossing.”

The second important aspect of the collapse power spec-
trum is the function Q(|zk |), which is in principle a func-
tion of k. If one assumes that the time of collapse is of
the form ηck ∝ k−1, then zk ≡ kηck = z is indepen-
dent of k; consequently, Q(|z|) would be also k indepen-
dent; thus, the collapse power spectrum would depend on
k as P(k) ∝ k3−2ν , which for all phenomenological pur-
poses would be indistinguishable from the prediction given
by the traditional inflationary approach. Consequently, in
our model, if the dependence on k of the time of collapse
ηck is slightly different from ηck ∝ 1/k, then our proposal
will yield different predictions from the standard inflationary
paradigm.

Summarizing the above discussion, if ηck ∝ k−1, the col-
lapse power spectrum can be expressed as P(k) = Akns−1,
with the amplitude given by

A = 22ν−11|�(ν − 1)|2H2|η|3−2ν

πM2
PεH

Q(|z|); (40)

we emphasize thatA is constant in time, up to second order in
the slow-roll parameters, and independent of k; additionally,
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the scalar spectral index obtained from the collapse model
is

ns − 1 = −2εH + 2δV , (41)

which is a little different from the standard prediction [see
Eq. (37)].

One can relax the condition on the form of the time of col-
lapse by allowing a small dependence on k, namely, assuming
that the time of collapse is ηck = A/k + B and use the obser-
vational data to constrain the parameters A and B (a similar
analysis has been done for the perfect de Sitter universe; see
Ref. [7]). In such case, the collapse power spectrum is of the
form P(k) = C/π2Q(|zk |)k3−2ν , with zk = A + Bk [Eq.
(36)]. That is, the collapse power spectrum depends on k in
two ways, one as k3−2ν and the other through the time of col-
lapse zk ≡ kηck = A + Bk; however, the former dependence
is due to the inflationary dynamics of the curvature perturba-
tion, and, thus, interpreted as the scalar spectral index, while
the latter reflects the consideration of the collapse hypothesis.
Additionally, one could also reinterpret the dependence on k,
introduced by the collapse proposal through the B parameter,
as something resembling to a running of the scalar spectral
index; this would be an interesting idea to pursuit since it has
been pointed out before that the lowest multipoles of the tem-
perature anisotropies prefer models with nrun �= 0 [48,49].
However, the physical interpretation of the departure of a
power law in k corresponding to the primordial power spec-
trum is different. In the collapse proposal, it arises from the
inclusion of the self-induced collapse of the wave function
while in the standard approach it arises from considering the
second-order approximation in the slow-roll parameters (see
Ref. [50])

As mentioned before, the time of collapse can occur at
any time during the inflationary regime; in particular, it can
happen when the proper wavelength of the mode is bigger
or smaller than the Hubble radius, which is approximately
constant.

If the proper wavelength of the mode, at the time of col-
lapse, is bigger than the Hubble radius, then k 
 a(ηck)H =
H(ηck) � −1/ηck , which is equivalent to −kηck 
 1. Then,
for modes with a proper wavelength bigger than the Hubble
radius at the time of collapse, the collapse power spectrum
can be approximated by

P(k) � C
π2 �(|zk |)k3−2ν, (42)

where �(|zk |) is obtained by expanding the function Q(|zk |),
when |zk | → 0 [i.e., expanding M(|zk |), N (|zk |), and
W (|zk |)], to the lowest order in |zk |. Thus, for each scheme
the function �(|zk |) is

�(|zk |)ind ≡ 4

π2

[
1 + |zk |2

2

(
1

ν − 1
− 1

ν

)]
, (43a)

�(|zk |)newt ≡ |zk |4
4π2ν2(ν − 1)2 , (43b)

�(|zk |)wig ≡ 16

π

×
[

5

4
+ 1

4|zk |2
(

1 −
√

1 + 10|zk |2 + 9|zk |4
)]−2

×
[ |zk |ν−1/2

�(ν)2ν−1 cos �k + |zk |ν+1/2

�(ν − 1)2ν
sin �k

]2

, (43c)

where tan 2�k � 4|zk |/(1 − 3|zk |2).
On the other hand, if the proper wavelength associated to

the mode is smaller than the Hubble radius, at the time of
collapse, then k 	 a(ηck)H , which is equivalent to −kηck 	
1. Then the approximated collapse power spectrum, when
−kηck = |zk | → ∞, is

P(k) � C
π2 ϒ(|zk |)k3−2ν, (44)

where ϒ(|zk |) is obtained by considering the asymptotic
behavior of the function Q(|zk |) [i.e., the asymptotic behav-
ior of M(|zk |), N (|zk |),W (|zk |)] when |zk | → ∞. Thus, for
each scheme the function ϒ(|zk |) is

ϒ(|zk |)ind ≡ 4

π2

{[

1 + 1

4|zk |2
(

�(ν + 3/2)

�(ν − 1/2)

)2
]

×
[

sin β(ν, |zk |) + cos β(ν, |zk |)
|zk |

×
(

−2ν + �(ν + 5/2)

2�(ν + 1/2)

)]2

+
[

1 + 1

|zk |2

×
(

−2ν + �(ν + 5/2)

2�(ν + 1/2)

)2 ][
cos β(ν, |zk |)

− sin β(ν, |zk |)
2|zk |

�(ν + 3/2)

�(ν − 1/2)

]2
}

, (45a)

ϒ(|zk |)newt ≡ 4

π2

[

1 + 1

|zk |2
(

−2ν + �(ν + 5/2)

2�(ν + 1/2)

)2
]

×
[

cos β(ν, |zk |)

− sin β(ν, |zk |)
2|zk |

�(ν + 3/2)

�(ν − 1/2)

]2

, (45b)

ϒ(|zk |)wig ≡ 16

π2

{[
2ν

|zk |3/2

(
cos β(ν, |zk |)

− sin β(ν, |zk |)
2|zk |

�(ν + 3/2)

�(ν − 1/2)

)

−
(

sin β(ν, |zk |)

+cos β(ν, |zk |)
2|zk |

�(ν + 5/2)

�(ν + 1/2)

)]
cos �k
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+
[

cos β(ν, |zk |)

− sin β(ν, |zk |)
2|zk |

�(ν + 3/2)

�(ν − 1/2)

]
sin �k

}2

,

(45c)

where β(ν, |zk |) ≡ |zk | − (π/2)(ν + 1/2) and tan 2�k �
−4/3|zk |.

Expressions (43) and (45) are useful for performing the
comparisons between the theoretical prediction of our model
and the observational data.

6 Primordial power spectrum in quasi-de Sitter

In this section, we will show the primordial power spectrum
in the quasi-de Sitter case for the different collapse schemes
analyzed in this paper.

In particular, we will focus on the cases in which the proper
wavelength associated to the mode is bigger and smaller than
the Hubble radius at the time of collapse, i.e, we analyze the
cases such that the comoving k, associated to the curvature
perturbation, is bigger or smaller than a(ηck)H = H(ηck);
these cases correspond to Eqs. (42) and (44) respectively.

This preliminary qualitative analysis indicates that the
aforementioned collapse schemes are good candidates to
account for the observational data of the CMB collected by
the Planck [28] and WMAP [29] collaborations. However,
we will not perform here the statistical analyses to com-
pare the theoretical predictions with the observational data
in order to constrain the value of the free parameters of the
collapse model (A and B). We will leave this task for a forth-
coming paper [51].

First, let us define a fiducial model with a primordial power
spectrum P(k) = Askns−1 with ns = 0.96, which will be
taken just as a reference to discuss the plots we obtain for the
collapse models. The value of ns , for our fiducial model, is
the mean value obtained by the Planck and WMAP collab-
orations. Let us remind the reader that the free parameters
of all collapse schemes (A and B) are related to the time of
collapse of each mode of the inflaton field ηck = A/k + B.

Figures 1, 2 and 3 show the primordial spectra for the dif-
ferent collapse schemes (independent, Newtonian, Wigner),
in the case where the proper wavelength associated to the
mode is bigger than the Hubble radius at the time of collapse,
i.e. k 
 H(ηck) [Eq. (43)], for different values of the collapse
parameters A and B. The primordial power spectrum of the
fiducial model is also shown in each figure; the value of As

(detailed in the caption of each figure) is settled in each case
in order to provide the reader a clear idea regarding the dif-
ferences in the form of the different spectra shown in the plot.
For example, in Fig. 1 the fiducial power spectrum could be
normalized in such a way that it almost overlaps the primor-
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Fig. 1 Primordial power spectra for the independent scheme in the
case where k 
 H(ηck). The power spectrum of the fiducial model is
also shown in red. Different values of the collapse time ηck = A/k + B
are considered, the scalar spectral index ns = 0.96; top A = −10−1,
bottom A = −10−2; for both figures As = 0.39. The difference in
the amplitude between the collapse models and the fiducial model is
artificially set to show the functional form of both models

dial spectrum for B = −0.1 Mpc. However, for B = −0.5
and B = −1 Mpc there is no value of As that makes both
spectra (collapse and fiducial model) overlap. Hereinafter,
we discuss the effects of introducing the collapse hypothesis
for the different collapse schemes in the primordial power
spectrum. The relevant values for k that will affect the pre-
diction of the CMB temperature and polarization anisotropy
are 10−6 Mpc−1 < k < 10−1 Mpc−1. Therefore, we have
drawn a vertical line in each figure, at k = 0.1 Mpc−1.

Figure 1 shows no change in the slope of the primordial
power spectrum (with respect to the fiducial model one) for
the independent scheme in the range k < 0.1 Mpc−1 and the
considered values of B and the two values of A; a noto-
rious deviation in shape from the fiducial one occurs for
k > 0.1 Mpc−1. However, we have already mentioned that
the relevant values of l that affect the CMB spectrum corre-
spond to 10−6 Mpc−1 < k < 10−1 Mpc−1; thus we expect
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Fig. 2 Primordial power spectra for the Newtonian collapse scheme in
the case where k 
 H(ηck). The power spectrum of the fiducial model is
also shown in red. Different values of the collapse time ηck = A/k + B
are considered, the scalar spectral index ns = 0.96; top A = −10−1 and
As = 2.8×105, bottom A = −10−3 and As = 3×1013. The difference
in the amplitude between the collapse models and the fiducial model is
artificially set to show the shape of both models

no deviation of the CMB temperature spectrum respect the
fiducial one for this scheme.

Once again, Fig. 2 shows no change in the slope of the
power spectrum, but unlike the previous case, there is a devi-
ation from the fiducial power spectrum for increasing values
of B; this deviation happens within the relevant range of k.
Furthermore, the large value of As , considered to perform the
comparisons between the collapse and fiducial power spec-
trum, should be noted. A value of this parameter different
from the value of the standard model could result in a dif-
ferent value for the energy scale of the inflationary period.
However, the complete determination of this energy scale not
only depends on the temperature fluctuations of the CMB
but also on the B-mode polarization. As mentioned before, a
recent joint paper by the BICEP2/Keck and Planck collabo-
rations concludes that there is no evidence for primordial
B-modes at low angular multipoles.

Fig. 3 Primordial power spectra for the Wigner collapse scheme in the
case where k 
 H(ηck). The power spectrum of the fiducial model is
also shown in red. Different values of the collapse time ηck = A/k + B
are considered, the scalar spectral index ns = 0.96; top A = −10−1

with As = 80, bottom A = −10−2 with As = 7000. The difference
in the amplitude between the collapse models and the fiducial model is
artificially set to show the functional form of both models

Figure 3 shows the differences in the primordial spectra
among different values of B for the two values of A con-
sidered and also with respect to the fiducial model for the
Wigner scheme. It is interesting to note that the deviation
with respect to the fiducial model is opposite to the New-
tonian scheme discussed previously. Furthermore, as is the
case with the Newtonian scheme, it is necessary to consider
large values of As to provide a reasonable match between
the collapse and fiducial model spectra. Thus, the discussion
presented for the Newtonian scheme is also valid for this
case.

In summary, in this preliminary analysis for the case where
k 
 H(ηck), we could find values of the collapse parameters
(A and B) which cause the primordial power spectrum of the
collapse models to be almost equal to the fiducial primordial
power spectrum for all the schemes considered in this paper.
In consequence, we expect that the corresponding CMB spec-
trum will not deviate too much from the fiducial one.
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Fig. 4 Primordial power spectra for the independent scheme in the case
where k 	 H(ηck). The power spectrum of the fiducial model is also
shown in red. Different values of the collapse time ηck = A/k + B are
considered, the scalar spectral index ns = 0.96; top A = −102, bottom
A = −106, for both figures As = 0.43. The difference in the amplitude
between the collapse models and the fiducial model is artificially set to
show the shape of both models

Figures 4, 5 and 6 show the primordial spectra for the dif-
ferent collapse schemes (independent, Newtonian, Wigner)
in the case where the proper wavelength associated to the
mode is smaller than the Hubble radius at the time of col-
lapse, i.e. k 	 H(ηck) [Eq. (45)] for different values of the
collapse parameters A and B. The primordial power spec-
trum of the fiducial model is also shown in each figure and the
value of As (detailed in the caption of each figure) is settled
in each case in order to provide the reader a clear idea regard-
ing the differences in the form of the different spectra shown
in the plot. The relevant values for k that will affect the pre-
diction of the CMB temperature and polarization anisotropy
are 10−6 Mpc−1 < k < 10−1 Mpc−1. Therefore, we have
drawn a vertical in each figure, at k = 0.1 Mpc−1. For
the independent scheme (Fig. 4), it should be noted that for
A = −102 the power spectrum deviates from the fiducial
model for increasing values of B, however, it is a small
change compared to the deviations of other schemes (see
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Fig. 5 Primordial power spectra for the Newtonian collapse scheme in
the case where k 	 H(ηck). The power spectrum of the fiducial model is
also shown in red. Different values of the collapse time ηck = A/k + B
are considered, the scalar spectral index ns = 0.96; top A = −102

with As = 0.3, bottom A = −105 with As = 0.42. The difference in
the amplitude between the collapse models and the fiducial model is
artificially set to show the shape of both models

Figs. 5 and 6), while for A = −106 there is no difference in
the spectrum among different values of B. This is due to the
fact that for large values of A, the value of zk becomes also
very large, and therefore the value of B does not affect the
final form of the power spectrum. This behavior is similar
to the case where the scale factor is exactly de Sitter (see
Ref. [7]).

For the Newtonian scheme (Fig. 5) it should be mentioned
that in both cases (A = −102 and A = −105) considered
for increasing values of B the spectrum deviates from the
fiducial one for k > 0.01 Mpc−1.

For the Wigner scheme (Fig. 6), it should be mentioned
that for increasing values of B the power spectrum deviates
more from the fiducial model in both cases (A = −102 and
A = −106) for k > 0.005 Mpc−1. In summary, increasing
the value of B results in a deviation from the fiducial model
spectrum; the deviation is more drastic for the Newtonian
and Wigner scheme.
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Fig. 6 Primordial power spectra for the Wigner collapse scheme in the
case where k 	 H(ηck). The power spectrum of the fiducial model is
also shown in red. Different values of the collapse time ηck = A/k + B
are considered, the scalar spectral index ns = 0.96; top A = −102

with As = 0.39, bottom A = −106 with As = 0.21. The difference
in the amplitude between the collapse models and the fiducial model is
artificially set to show the shape of both models

7 Predictions of the collapse schemes on the CMB
temperature spectrum

The aim of this section is to show that introducing the collapse
of the inflaton wave function during inflation has observ-
able consequences on the CMB fluctuation spectrum. In this
paper, we will limit ourselves to the analysis of the temper-
ature auto-correlation spectrum; however, from a previous
analysis of similar models [7] we might expect that the E-
mode polarization and temperature-E-mode cross correla-
tion will also be modified as a consequence of the collapse
hypothesis. As we will see, the effect is different for the
three collapse schemes proposed in this paper and it also
depends on the value of the time of collapse. This is not a
surprise, since we have shown in the previous section that
there are differences between the primordial power spec-
trum in each collapse scheme and the standard inflationary
model one. We want to stress that, in this paper, we will
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Fig. 7 The temperature auto-correlation (TT) power spectrum for the
independent scheme in the case where k 
 H(ηck). All models are
normalized to the maximum of the first peak of the fiducial model. The
power spectrum of the fiducial model is also shown in red. Different
values of the collapse time ηck = A/k + B are considered, the scalar
spectral index ns = 0.96; top A = −10−1, bottom A = −10−2

only perform a preliminary analysis of the CMB spectrum
predicted by the collapse models for some particular cases;
a complete analysis, including statistical analysis, in which
recent CMB data are confronted with the predictions from
all collapse schemes, is in progress [51]. In order to per-
form our analysis, let us define the cosmological parameters
of our fiducial model: baryon density in units of the criti-
cal density �Bh2 = 0.02212, dark matter density in units
of the critical density �CDMh2 = 0.1187, Hubble constant
in units of Mpc−1 km s−1 H0 = 67.75, reionization optical
depth, τ = 0.092, and the scalar spectral index, ns = 0.96.
These are the best-fit values presented by the Planck collab-
oration [52]. The value of As is settled in each case in order
to match the maximum of the first Doppler peak with the
fiducial model one.

Figures 7, 8, and 9 show the prediction for the CMB tem-
perature fluctuation spectrum for the independent, Newto-
nian and Wigner schemes in the case where k 
 H(ηck). Let
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Fig. 8 The temperature auto-correlation (TT) power spectrum for the
Newtonian scheme in the case where k 
 H(ηck). All models are nor-
malized to the maximum of the first peak of the fiducial model. The
power spectrum of the fiducial model is also shown in red. Different
values of the collapse time ηck = A/k + B are considered, the scalar
spectral index ns = 0.96; top A = −10−1, bottom A = −10−3

us first analyze the case of the independent scheme; for the
two cases shown in this paper (A = −10−1 and A = −10−2)
there is only a very tiny difference between the fiducial spec-
trum and the one including the self-induce collapse of the
inflaton’s wave function. We have calculated the χ2 using
the latest release of Planck data, and the difference between
the value of the fiducial model and the collapse model is
within the expected values for this quantity. In consequence,
we expect that any value of B can explain recent observa-
tional data.

Conversely, Figs. 8 and 9 show large deviations for
increasing values of B in the temperature power spectrum
with respect to the fiducial one. On the other hand, we would
like to stress that the values of As required to match the
collapse spectrum with the fiducial spectrum are large and,
thus, these cases could be severely constrained with future
measurements of the B-polarization mode.

In such a way, we expect that future statistical analysis,
using the latest Planck data, will allow us to constrain the

Fig. 9 The temperature auto-correlation (TT) power spectrum for the
Wigner scheme in the case where k 
 H(ηck). All models are normal-
ized to the maximum of the first peak of the fiducial model. The power
spectrum of the fiducial model is also shown in red. Different values
of the collapse time ηck = A/k + B are considered, the scalar spectral
index ns = 0.96; top A = −10−1, bottom A = −10−2

values of B for the Newtonian and Wigner schemes in the
case where the collapse occurs when the proper wavelength
of the mode is larger than the Hubble radius.

Figures 10, 11, and 12 show the prediction for the temper-
ature fluctuation spectrum for the independent, Newtonian
and Wigner schemes in the case where k 	 H(ηck). In the
independent scheme (Fig. 10), we obtain no changes in the
CMB temperature power spectrum for the different values
of B considered and only a small difference with respect
to the fiducial model (in agreement with Fig. 4). Therefore,
we expect that any value of B will explain recent observa-
tional data for the values of A analyzed in this paper. In the
Newtonian and Wigner schemes (Figs. 11 and 12, respec-
tively), for an increasing value of B we can observe an
increase in the value of the secondary peaks and a decrease
of the value at the valleys; the magnitude of the changes
depending on the value of B, the change is greater for
the Wigner scheme. Therefore, we expect that a statisti-
cal analysis comparing the model predictions with obser-
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Fig. 10 The temperature auto-correlation (TT) power spectrum for the
independent scheme in the case where k 	 H(ηck). All models are
normalized to the maximum of the first peak of the fiducial model. The
power spectrum of the fiducial model is also shown in red. Different
values of the collapse time ηck = A/k + B are considered, the scalar
spectral index ns = 0.96; top A = −102, bottom A = −106

vational data can give good constraints on the value of B
and in consequence on the time of collapse. In particu-
lar, from this preliminary analysis, we can expect that the
value of B should be smaller than 1 Mpc in order to fit
recent observational data. To get a more stringent bound
we need to perform a statistical analysis using Planck and
other CMB data and this is left for a forthcoming work
[51].

In summary, from the predictions for the CMB temper-
ature power spectrum shown in this section, we expect that
the comparison with recent observational data will constrain
the values of B for the Newtonian and Wigner schemes in
the two cases analyzed in this paper (i.e. when the proper
wavelength of the mode is smaller/bigger than the Hubble
radius at the time of collapse). In contrast, we expect that
any value of B will match recent observational data for the
independent scheme in the cases where k 	 H(ηck) and
k 
 H(ηck). However, we remind the reader that this analysis
is valid only for the values of A considered in this section;

1000

3000

5000

2 30

l(l
+1

)C
l/(

2π
)

fiducial model
B= 0.1 Mpc
B= 1 Mpc
B= -1 Mpc

500 1000 1500 2000
l

1000

3000

5000

2 30

l(l
+1

)C
l/(

2π
)

fiducial model
B= 0.1 Mpc
B= 1 Mpc
B= -1 Mpc
B= 10 Mpc

500 1000 1500 2000
l

Fig. 11 The temperature auto-correlation (TT) power spectrum for the
Newtonian scheme in the case where k 	 H(ηck). All models are nor-
malized to the maximum of the first peak of the fiducial model. The
power spectrum of the fiducial model is also shown in red. Different
values of the collapse time ηck = A/k + B are considered, the scalar
spectral index ns = 0.96; top A = −102, bottom A = −105

a complete analysis studying all allowed values of A is in
progress.

8 Summary and Conclusions

In this paper, we have calculated the primordial power spec-
tra for the simplest inflationary model, i.e. a single scalar
field in the slow-roll approximation, but taking into account
a collapse of the inflaton wave function (for each mode); the
motivation for considering an objective collapse is to pro-
vide a precise explanation for the emergence of an inhomo-
geneous and anisotropic universe. Unlike previous works, we
have considered a quasi-de Sitter background to perform our
calculations. Even though we have not assumed a particular
mechanism for the collapse to happen, we have chosen three
different collapse schemes, in which the difference between
them is due to the variable that is affected by the collapse and
their correlations.

123



393 Page 20 of 25 Eur. Phys. J. C (2015) 75 :393

1000

3000

5000

2 30

l(l
+1

)C
l/(

2 π
)

fiducial model
B= 0.01 Mpc
B= 0.1 Mpc
B= 1 Mpc
B= -1 Mpc

500 1000 1500 2000
l

1000

3000

5000

2 30

l(l
+1

)C
l/(

2 π
)

fiducial model
B= 0.01 Mpc
B= 0.1 Mpc
B= 1 Mpc
B= -1 Mpc

500 1000 1500 2000
l

Fig. 12 The temperature auto-correlation (TT) power spectrum for the
Wigner scheme in the case where k 	 H(ηck). All models are normal-
ized to the maximum of the first peak of the fiducial model. The power
spectrum of the fiducial model is also shown in red. Different values
of the collapse time ηck = A/k + B are considered, the scalar spectral
index ns = 0.96; top A = −102, bottom A = −106

The three collapse schemes induced a modification to
the standard scalar power spectrum of the form P(k) =
(C/π2)kns−1Q(|zk |), with ns−1 = −2εH+2δV and Q(|zk |)
a function of the time of collapse ηck (recall the definition
zk ≡ kηck).

Moreover, we have characterized the time of collapse as
ηck = A/k + B. If B = 0, in all schemes, we can recover an
equivalent power spectrum that is, for all practical purposes,
indistinguishable from the standard one. The reason for this,
is that in this case, zk = A and the dependence of primordial
power spectrum with k is the same than in standard inflation-
ary models. The only difference in this case is the relation
between ns and the slow-roll parameters of the inflationary
model [see Eqs. (37), (41)]. However, we would like to stress
that present constraints on ns (obtained by comparison with
observational data) that affect the slow-roll parameters can
be fulfilled by our model as well as the standard one, since in
both cases the requirement for an efficient inflationary stage
is εV � δV 
 1.

On the other hand, by assuming B �= 0, we have
found small departures from the standard prediction that are
uniquely determined by the collapse proposal; this is in con-
trast with previous works, in which the introduction of the B
parameter was used primarily to depart from an exact scale-
invariant spectrum. Moreover, given that those works were
based on assumptions that led to a power spectrum with a
spectral index ns = 1, one could not tell the precise dif-
ference between the dependence on k given purely by the
dynamics in the aforementioned background or by the col-
lapse proposal.

The primordial power spectrum for the collapse models
obtained in this paper considering B �= 0 has an additional
dependence on k, which is similar to the one that is obtained in
standard inflationary models with a running spectral index.4

However, as follows from Eqs. (43) and (45) the dependence
on k of the collapse primordial spectrum is different from
the standard model one. Additionally, as we have mentioned
before, the lowest multipoles of the temperature anisotropy
are best fitted by models with nrun �= 0 [48,49].

We have also shown some plots of the primordial spec-
trum resulting from our schemes for some specific values of
the collapse parameters and compared them with the stan-
dard inflationary model spectrum. We have considered the
case where the associated proper wavelength of the modes
is bigger and smaller than the Hubble radius at the time of
collapse. Finally, we have shown the effects of introducing
a self-induced collapse of the inflaton wave function on the
CMB temperature fluctuation spectrum. For this preliminary
analysis, most of the collapse models proposed in this paper
seem to be good candidates to explain present data of the
CMB fluctuation spectrum. In particular, in some cases there
are no differences between the prediction of the collapse
models with respect to standard inflationary model. How-
ever, in other cases, for an increasing value of B (affecting
the time of collapse) there are important departures from the
standard model prediction. Therefore, by performing a sta-
tistical analysis using all present observational data from the
CMB (which is left for future work [51]) we will be able to
constrain the value of B and thus the acceptable values for
the time of collapse. Finally, we have also shown that some
particular cases could be discarded without performing any
statistical analysis.

We conclude that a more detailed analysis involving recent
observational data can be used to discriminate between the
three collapse schemes presented. Nevertheless, from the the-
oretical point of view, we think that the Wigner collapse
scheme should be preferred over the other two schemes since
it takes into account the natural correlations between the
canonical variables that are present in the pre-collapse vac-

4 The primordial power spectrum with a running spectral index has the

form: P(k) = As(
k
k0

)ns−1+ 1
2 nrun log(k/k0).
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uum state. The choice of the Wigner distribution to describe
these correlations in the present setting is justified by some
of its standard properties regarding the “classical limit,” and
by the fact that there is a precise sense in which it is known
to encode the correlations in question.
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Appendix A: Deduction of Eq. (4)

The Einstein equations at first order in the perturbations,
δG0

0 = 8πGδT 0
0 , δG0

i = 8πGδT 0
i and δGi

j = 8πGδT i
j ,

are given, respectively, by

∇2� − 3H(H + � ′) = 4πG[−φ′2
0  + φ′

0δφ
′

+∂φVa2δφ], (A.1)

∂i (H + � ′) = 4πG∂i (φ
′
0δφ), (A.2)

[� ′′ + H(2� + )′ + (2H′ + H2) + 1
2∇2( − �)]δij

− 1
2∂ i∂ j ( − �) = 4πG[φ′

0δφ
′ − φ′2

0  − ∂φVa2δφ]δij .
(A.3)

The perturbations considered �, correspond to the gauge-
invariant quantities known as the Bardeen potentials; the per-
turbations δφ and δφ′ are the gauge invariant perturbations
associated to the inflaton field. For the case i �= j in Eq. (A.3),
together with appropriate boundary conditions (more easily
seen in the Fourier transformed version), leads to � = ;
from now on we will use this result.

Equations (A.1)–(A.3) above, together with Friedmann
equations, can be manipulated to yield the following expres-
sion:

∇2� + μ� = 4πG(ωδφ + φ′
0δφ

′), (A.4)

where μ ≡ H2 − H′ and ω ≡ 3Hφ′
0 + a2∂φV . Use of the

equation of motion for φ0 in the slow-roll approximation,
i.e. 3Hφ′

0 + a2∂φV ≈ 0, implies that ω ≈ 0. Thus (A.4)
becomes

∇2� + μ� = 4πGφ′
0δφ

′. (A.5)

Appendix B: Explicit equations of Sect. 3

Appendix B.1: Equations of Sect. 3.2

The mode function yk(η) of Eq. (12), can be expressed
as yk(η) = Re[yk(η)] + iIm[yk(η)]; similarly, the mode
function gk(η) can be expressed as gk(η) = Re[gk(η)] +
iIm[gk(η)] (recall that gk = y′

k − Hyk). Thus, the real and
imaginary parts of yk and gk are:

Re[yk(η)] =
(π

4

)1/2
√−kη

k1/2 Jν(−kη), (B.6)

Im[yk(η)] =
(π

4

)1/2
√−kη

k1/2 Yν(−kη), (B.7)

Re[gk(η)] = k1/2
(π

4

)1/2
(−α Jν(−kη)√−kη

+√−kηJν+1(−kη)

)
, (B.8)

Im[gk(η)] = k1/2
(π

4

)1/2
(−αYν(−kη)√−kη

+√−kηYν+1(−kη)

)
, (B.9)

where α ≡ 1/2 + ν + 1/(1 − εH ).
With the previous expressions at hand, we can now com-

pute
(
�ŷ R,I

k (ηck)
)2

0
and

(
�π̂

R,I
k (ηck)

)2

0
within the indepen-

dent and Newtonian collapse schemes. The exact form of the
quantum uncertainties can be obtained from Eq. (13), that is,

(
�ŷ R,I

k (ηck)
)2

0
= L3

4
|yk(ηck)|2

= L3π |zk |
16k

[
J 2
ν (|zk |) + Y 2

ν (|zk |)
]
, (B.10)

(
�π̂

R,I
k (ηck)

)2

0
= L3

4
|gk(ηck)|2 = L3πk

16

×
[(−α Jν(|zk |)√|zk | +√

zk |Jν+1(|zk |)
)2

+
(−αYν(|zk |)√|zk | +√|zk |Yν+1(|zk |)

)2
]

,

(B.11)

with zk ≡ kηck and ηck the time of collapse for each mode.
Note that this quantities have the information that the back-
ground space-time is quasi-de Sitter.
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In the case of the Wigner scheme, the explicit formulas
characterizing the parameters �k(zk) and �k(zk) are:

�k = (2L)3/2

√
π |zk |

4k

[
J 2
ν (|zk |) + Y 2

ν (|zk |)
]1/2

[

S(|zk |)

−
√

S2(|zk |)−
(

π |zk |
2

)2

(J 2
ν (|zk |)+Y 2

ν (|zk |))2

⎤

⎦

−1/2

,

(B.12)

tan 2�k = −π2|zk |
4

[
J 2
ν (|zk |) + Y 2

ν (|zk |)
]

×
[
S(|zk |) − π |zk |

8

(
J 2
ν (|zk |) + Y 2

ν (|zk |)
)2
]−1

×[−2ν(J 2
ν (|zk |) + Y 2

ν (|zk)) + |zk |
× (Jν(|zk |)Jν+1(|zk |) + Yν(|zk |)Yν+1(|zk |))],

(B.13)

where

S(|zk |) ≡ 1 + π2

16
{|zk |2(J 2

ν (|zk |) + Y 2
ν (|zk |))2

+ 4[J 2
ν (|zk |)+Y 2

ν (|zk |)−|zk |(Jν(|zk |)Jν+1(|zk |)
+Yν(|zk |)Yν+1(|zk |))]2}. (B.14)

Appendix B.2: Equations of Sect. 3.3

In order to deduce Eq. (20), we introduce the quantity dR,I
k ≡

〈�|â R,I
k |�〉, which determines the expectation value of the

field and momentum operator for the mode k at all times after
the collapse. That is, from Eq. (13), we have
〈
π̂

R,I
k (η)

〉
�

= √
2R[gk(η)dR,I

k ], (B.15)

which corresponds to expectation values at any time after
the collapse in the post-collapse state |�〉. One can then

relate the value of dR,I
k with the value of the expec-

tation value of the fields operators at the time of col-
lapse

〈
ŷ R,I
k (ηck)

〉
�

= √
2R[yk(ηck)dR,I

k ], 〈π̂ R,I
k (ηck)

〉
�

=√
2R[gk(ηck)dR,I

k ]. Using the latter relations to express dR,I
k

in terms of the expectation values at the time of collapse
and substituting it in (B.15), we obtain an expression for the
expectation value of the momentum field operator in terms
of the expectation value at the time of collapse
〈
π̂

R,I
k (η)

〉
�

= F(kη, zk)
〈
ŷ R,I
k (ηck)

〉
�

+G(kη, zk)
〈
π̂

R,I
k (ηck)

〉
�
, (B.16)

with

F(kη, zk) ≡ kπ

4

{(−αYν(|zk |)√|zk | +√|zk |Yν+1(|zk |)
)

×
(−α Jν(|kη|)√|kη| +√|kη|Jν+1(|kη|)

)

−
(−α Jν(|zk |)√|zk | +√|zk |Jν+1(|zk |)

)

×
(−αYν(|kη|)√|kη| +√|kη|Yν+1(|kη|)

)}
,

(B.17)

G(kη, zk) ≡ π
√|zk |

4

{
Jν(|zk |)

×
[−αYν(|kη|)√|kη| +√|kη|Yν+1(|kη|)

]

−Yν(|zk |)
[−α Jν(|kη|)√|kη| +√|kη|Jν+1(|kη|)

]}
.

(B.18)

Furthermore, given Eqs. (B.16) and (15), we can find the
curvature perturbation in the longitudinal gauge within the
three collapse schemes.

For the independent scheme the curvature perturbation is

� ind
k (η) =

√
L3πεV H

25/2MPk2

×
⎧
⎨

⎩
F(kη, zk)Xk,1

√ |zk |
k

[
J 2
ν (|zk |)+Y 2

ν (|zk |)
]1/2

+G(kη, zk)Xk,2
√
k

×
[(−α Jν(|zk |)√|zk | +√|zk |Jν+1(|zk |)

)2

+
(−αYν(|zk |)√|zk | +√|zk |Yν+1(|zk |)

)2
]1/2

⎫
⎬

⎭
.

(B.19)

Meanwhile, for the Newtonian scheme we have

�newt
k (η) =

√
L3πεV H

25/2MPk2
G(kη, zk)Xk,2

√
k

×
[(−α Jν(|zk |)√|zk | +√|zk |Jν+1(|zk |)

)2

+
(−αYν(|zk |)√|zk | +√|zk |Yν+1(|zk |)

)2
]1/2

(B.20)

and, finally, for the Wigner scheme

�
wig
k (η) =

√
εV

2

H

MPk2 �k[F(kη, zk) cos �k

+kG(kη, zk) sin �k]Xk, (B.21)

with Xk ≡ x Rk + i x Ik .
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Appendix B.3: Definitions of the functions M(|zk|),
N(|zk|), and W(|zk|)

M(|zk |) ≡ −√|zk |
[−α Jν(|zk |)√|zk | +√|zk |Jν+1(|zk |)

]

×
[
J 2
ν (|zk |) + Y 2

ν (|zk |)
]1/2

, (B.22)

N (|zk |) ≡ √|zk |Jν(|zk |)

×
[(−α Jν(|zk |)√|zk | +√|zk |Jν+1(|zk |)

)2

+
(−αYν(|zk |)√|zk | +√|zk |Yν+1(|zk |)

)2
]1/2

,

(B.23)

W (|zk |) ≡ 2k1/2

π1/2L3/2

×
[

−
(−α Jν(|zk |)√|zk |

+√|zk |Jν+1(|zk |)
)

�k cos �k

+√|zk |Jν(|zk |)�k sin �k

]
. (B.24)

Appendix C: Equations of Sect. 4

The explicit expressions for |alm |2ML can be found by substi-
tuting Rk , given in Eq. (23) into Eq. (28), and then making
the identification |alm |2ML = |alm |2

|alm |2 ind
ML = 16π2 C

L3

∑

k,k′

jl(kRD) jl(k′RD)

k3/2k′3/2

×Y �
lm(k̂)Ylm(k̂′)T (k)T (k′)

×
(
M(|zk |)M(|zk′ |)Xk,1X�

k′,1

+N (|zk |)N (|zk′ |)Xk,2X�
k′,2

)
(kk′)3/2−ν,

(C.25)

|alm |2 newt
ML = 16π2 C

L3

∑

k,k′

jl(kRD) jl(k′RD)

k3/2k′3/2

×Y �
lm(k̂)Ylm(k̂′)T (k)T (k′)N (|zk |)N (|zk′ |)

×Xk,2X�
k′,2(kk

′)3/2−ν, (C.26)

|alm |2 wig
ML = 16π2 C

L3

∑

k,k′

jl(kRD) jl(k′RD)

k3/2k′3/2

×Y �
lm(k̂)Ylm(k̂′)T (k)T (k′)

×W (|zk |)W (|zk′ |)XkX�
k′(kk′)3/2−ν, (C.27)

with

C ≡ π

M2
PεH

(
2ν−11/2�(ν − 1)H |η|3/2−ν

)2
, (C.28)

where we used the fact that in slow-roll inflation εV � εH .

Appendix D: On the meaning of the power spectrum
within the collapse proposal

In order to obtain the power spectrum in the traditional infla-
tionary scenario one needs to compute the quantum two-
point correlation function. That is, if �̂ represents the quan-
tum operator associated to the metric perturbation, then the
(scalar) power spectrum is obtained from

〈
0|�̂k�̂k′ |0〉 = 2π2

k3 P(k)δ(k − k′). (D.29)

On the other hand, let us recall that in general, the defi-
nition of the power spectrum is given in terms of �k, i.e. a
classical stochastic field not a quantum operator. Therefore,
the standard approach is based on the identification

〈
0|�̂k�̂k′ |0〉 = �k�k′ (D.30)

with �k�k′ denoting an average over an ensemble of classi-
cal stochastic fields. The justification for the relation above
relies on arguments based on decoherence and the squeez-
ing nature of the evolved vacuum state [18,19] (although
we do not subscribe to such arguments for the reasons
exposed in [2,8]). Nevertheless, the explanation about the
fact that a single outcome or realization �k has emerged is
incomplete.

Therefore, in order to show explicitly the manner in which
we can obtain an equivalent power spectrum within the col-
lapse proposal, we start by focusing on the temperature
anisotropies of the CMB observed today on the celestial two-
sphere and its relation to the scalar metric perturbation �,
which can be approximated by

δT

T0
(θ, ϕ) � 1

3
�. (D.31)

On the other hand, the observational data are described in
terms of the coefficients alm of the multipolar series expan-
sion

δT

T0
(θ, ϕ) =

∑

lm

almYlm(θ, ϕ),

alm =
∫

δT

T0
(θ, ϕ)Y ∗

lm(θ, ϕ)d�, (D.32)

here θ and ϕ are the coordinates on the celestial two-sphere,
with Ylm(θ, ϕ) as the spherical harmonics.
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The value for the quantities alm are then given by

alm = 4π i l

3

∫
d3k

(2π)3 jl(kRD)Y ∗
lm(k̂)T (k)�k, (D.33)

with jl(kRD) as the spherical Bessel function of order l and
RD is the comoving radius of the last scattering surface. We
have explicitly included the modifications associated with
latetime physics encoded in the transfer functions T (k). The
metric perturbation �k is the primordial curvature perturba-
tion.

Now, the problem is that, if we compute the expectation
value of the right-hand side (i.e., identifying 〈�̂〉 = �) in the
vacuum state |0〉, we obtain 0, while it is clear that for any
given l,m, the measured value of this quantity is not 0. That
is, if we rely in this case on the one-point function and the
standard identification of quantum averages with classical
ensemble average, we find a large conflict between expecta-
tion and observation. Nevertheless, in the standard approach,
somehow (e.g. by invoking decoherence, squeezing of the
vacuum, many-world interpretation of quantum mechanics,
etc.) occurs the transition �̂k → �k = Aeiαk with αk a
random phase and A is identified with the quantum uncer-
tainty of �̂k, i.e. A2 = 〈

0|�̂2
k|0
〉
, but the random nature of

�k remains unclear.
In our approach, the random nature comes directly from

the stochastic aspects of the quantum dynamical reduction,
i.e. from the self-induced collapse. Thus, using Eq. (15) in
Eq. (D.33) we obtain

alm = 4π i l

3

∫
d3k

(2π)3 jl(kRD)Y ∗
lm(k̂)�(k)�k

= 4π i l

3

√
εH

2

H

MP

∫
d3k

(2π)3 jl(kRD)Y ∗
lm(k̂)T (k)

〈
π̂k
〉

k2 .

(D.34)

The previous expression shows how the expectation value of
the momentum field in the post-collapse state acts as a source
for the coefficients alm .

Furthermore, the angular power spectrum is defined by

Cl = 1

2l + 1

∑

m

|alm |2. (D.35)

For the reasons presented in Sect. 4, we can identify the
observed value |alm |2 with the most likely value of |alm |2ML
and in turn, assume that the most likely value coincides
approximately with the average |alm |2. Thus, in our approach,
the observed Cl coincides with

Cl � 1

2l + 1

∑

m

|alm |2. (D.36)

From Eq. (D.34) we obtain

|alm |2 =
(

4π

3

)2 ∫ d3kd3k′

(2π)6 jl(kRD) jl(k
′RD)

×Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)�k�k′

=
(

4π

3

)2 ∫ d3kd3k′

(2π)6 jl(kRD) jl(k
′RD)

×Y ∗
lm(k̂)Ylm(k̂′)T (k)T (k′)

[
ε

2

H2

M2
P

〈
π̂k
〉〈
π̂k′
〉

k2k ′2

]

.

(D.37)

Consequently, using the generic definition of the power spec-
trum [i.e. not relying on the identification (D.30)] we have

�k�k′ ≡ 2π2

k3 P(k)δ(k − k′), (D.38)

and also using Eq. (D.37), the power spectrum, associated to
�k, in our approach is given by

P(k) = ε

2

H2

M2
P

〈
π̂k(η)

〉〈
π̂k′(η)

〉
. (D.39)

The quantity
〈
π̂k(η)

〉〈
π̂k′(η)

〉
is obtained by using Eq. (20)

in the limit −kη → 0, i.e. when the proper wavelength of
the modes of interest are bigger than the Hubble radius, but
taking into account that Eq. (20) is different for each collapse
scheme.
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