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Abstract Nonleptonic two-body Bc decays including radi-
ally excited ψ(2S) or ηc(2S) mesons in the final state are
studied using the perturbative QCD approach based on kT
factorization. The charmonium distribution amplitudes are
extracted from the n = 2, l = 0 Schrödinger states for
the harmonic oscillator potential. Utilizing these distribu-
tion amplitudes, we calculate the numerical results of the
Bc → ψ(2S), ηc(2S) transition form factors and branch-
ing fractions of Bc → ψ(2S)π, ηc(2S)π decays. The ratio
between two decay modes Bc → ψ(2S)π and Bc → J/ψπ

is compatible with the experimental data within uncertain-
ties, which indicates that the harmonic-oscillator wave func-
tions for ψ(2S) and ηc(2S) work well. It is found that the
branching fraction of Bc → ηc(2S)π , which is dominated
by the twist-3 charmonium distribution amplitude, can reach
the order of 10−3. We hope it can be measured soon in the
LHCb experiment.

1 Introduction

The meson Bc, a pseudoscalar ground state of b and c quarks,
can only decay through weak interactions. Either of the heavy
quarks (b or c) in it can decay individually, which makes it an
ideal system to study weak decays of heavy quarks. Around
O(109) mesons can be anticipated with 1 fb−1 of data at
the LHC [1], which is sufficient for studying the Bc meson
family systematically. Up to now, several new decay channels
of the Bc meson [2–6] have been successfully observed by
the LHCb Collaboration, while an excited Bc meson state
which is consistent with expectations of the Bc(2S) has been
found by the ATLAS detector [7].
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Recently, the LHCb Collaboration observed the decay
mode Bc → ψ(2S)π for the first time with the measured
ratio of the branching fractions as [8]

B(Bc → ψ(2S)π)

B(Bc → J/ψπ)
= 0.250 ± 0.068(stat)

± 0.014(syst) ± 0.006(B). (1)

The last term above accounts for the uncertainty onB(ψ(2S)

→ μ+μ−)/B(J/ψ → μ+μ−). Although there is not much
data for the Bc meson decaying into two-body final states
containing a radially excited charmonium such as ψ(2S) or
ηc(2S) except the Bc → ψ(2S)π channel, many theoret-
ical studies of nonleptonic Bc decays with radially excited
charmonium mesons in the final state have been performed
by using various approaches. For example, in Ref. [9], the
authors computed the branching ratios for Bc → ψ(2S)X
decays with the modified harmonic-oscillator wave function
in the light front quark model; in Ref. [10], the ISGW2
quark model was adopted to study the production of radi-
ally excited charmonium mesons in two-body nonleptonic
Bc decays; the relativistic (constituent) quark model, the
potential model, the QCD relativistic potential model, and
the improved instantaneous BS equation and Mandelstam
approach were adopted in Refs. [11–15], respectively. How-
ever, all of these calculations are based on a naive factor-
ization hypothesis, with various form factor inputs. There
are uncontrolled large theoretical errors with quite different
numerical results, and most of them cannot give any theo-
retical error estimates because of the unreliability of these
models.

The perturbative QCD approach (pQCD) [16–19] based
on kT factorization, which not only can deal with the emis-
sion diagrams corresponding to the naive factorization terms
basically, but can also handle well the nonfactorizable dia-
grams by introducing the wave function of the light meson
in the final states of the Bc decay modes, is widely used
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in the nonleptonic two-body Bc decays [20–31]. In our
recent work [32], the pQCD approach was used successfully
in describing the S-wave ground state charmonium decays
of Bc meson based on the harmonic-oscillator wave func-
tions for the charmonium 1S states. In this work, we will
use the harmonic-oscillator wave function as the approxi-
mate wave function of the 2S states and study the Bc →
ψ(2S)π, ηc(2S)π decays in the pQCD approach to provide
a ready reference to existing and forthcoming experiments.

The structure of this paper is organized as follows. After
this Introduction, we describe the wave functions of radi-
ally excited charmonium mesons ψ(2S), ηc(2S) in Sect. 2.
We calculate and present the expressions for the Bc →
ψ(2S), ηc(2S) transition form factors in the large-recoil
regions and the Bc → ψ(2S)π, ηc(2S)π decay amplitudes
in Sect. 3. The numerical results and relevant discussions are
given in Sect. 4, and Sect. 5 contains a brief summary.

2 Wave functions

In hadronic B decays, there are several energy scales
involved. In the expansion of the inverse power of heavy
quark mass, the hadronic matrix element can be factorized
into perturbative and nonperturbative factors. In the pQCD
approach, the decay amplitudeA(Bc → M2M3) can be writ-
ten conceptually as the convolution [16–19]

A(Bc → M2M3) ∼
∫

d4k1d4k2d4k3 Tr

×[C(t)�Bc(k1)�M2(k2)�M3(k3)H(k1, k2, k3, t)], (2)

where ki ’s are momenta of spectator quarks included in
each meson, and “Tr” denotes the trace over Dirac and
color indices. In the above convolution, C(t) is the Wilson
coefficient evaluated at scale t , the function H(k1, k2, k3, t)
describes the four quark operator and the spectator quark con-
nected by a hard gluon, which can be perturbatively calcu-
lated including all possible Feynman diagrams without end-
point singularity. The wave functions �Bc (k1), �M2 and �M3

describe the hadronization of the quark and anti-quark in the
Bc meson, the charmonium meson ψ(2S) or ηc(2S), and the
final state light meson pion, respectively.

As a heavy quarkonium discussed in Refs. [32,33], the
nonrelativistic QCD framework can be applied for the Bc

meson, which means its leading-order wave function should
be just the zero-point wave function with the distribution
amplitude

φBc (x) = fBc
2
√

2Nc
δ(x − mc/mBc ) exp[−ω2

Bcb
2/2]. (3)

For the light meson pion, we adopt the same distribution
amplitudes φA

π (x) and φP,T
π (x) as defined in Refs. [34–37].

The harmonic-oscillator wave functions has been adopted
to describe the 1S state mesons [38–40], and they can explain
the experimental data well [32]. In the quark model, ηc(2S)

and ψ(2S) are the first excited states of ηc and J/ψ , respec-
tively. The 2S means that for these states, the principal quan-
tum number n = 2 and the orbital angular momentum l = 0.
The definitions of the 2S state wave functions are similar to
the 1S states via the nonlocal matrix elements [41]:

〈ψ(2S)(P, εL )|c̄(z)αc(0)β |0〉

= 1√
2Nc

∫ 1

0
dxei x P·z[m/

εLαβψL (x, b)+(
/
εL

/
P)αβψ t (x, b)],

〈ψ(2S)(P, εT )|c̄(z)αc(0)β |0〉

= 1√
2Nc

∫ 1

0
dxei x P·z[m/

εT αβψV (x, b) + (
/
εT

/
P)αβψT (x, b)],

〈ηc(2S)(P)|c̄(z)αc(0)β |0〉

= − i√
2Nc

∫ 1

0
dxei x P·z[(γ5

/
P)αβψv(x, b)

+ m(γ5)αβψs(x, b)], (4)

where P stands for the momentum of the charmonium meson
ηc(2S) or ψ(2S) and m is its mass. The x represents the
momentum fraction of the charm quark inside the char-
monium, and b is the conjugate variable of the transverse
momentum of the valence quark of the meson. The εL(T )

denotes its longitudinal (transverse) polarization vector. The
asymptotic models for the twist-2 distribution amplitudes
ψ L ,T,v , and the twist-3 distribution amplitudes ψ t,V,s will
be derived following the prescription in [38].

First, we write down the Schrödinger equal-time wave
function 
Sch(r) for the harmonic-oscillator potential. The
radial wave function of the corresponding Schrödinger state
is given by


(2S)(r) ∝
(

3

2
− α2r2

)
e− α2r2

2 , (5)

where α2 = mω
2 and ω is the frequency of oscillations or the

quantum of energy. We perform the Fourier transformation
to the momentum space to get 
2S(k):


(2S)(k) ∝ (2k2 − 3α2)e− k2

2α2 , (6)

with k2 being the square of the three momentum. In terms of
the substitution assumption,

k⊥ → k⊥, kz → m0

2
(x − x̄), m2

0 = m2
c + k2⊥
x x̄

, (7)

with mc the c-quark mass and x̄ = 1 − x . We should make
the following replacement as regards the variable k2:

k2 → k2⊥ + (x − x̄)2m2
c

4x x̄
. (8)
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Then the wave function can be taken as


(2S)(k) → 
(2S)(x,k⊥)

∝
(
k2⊥ + m2

c(x − x̄)2

2x x̄
− 3α2

)
e− k2⊥+m2

c (x−x̄)2

8x x̄α2 . (9)

Applying the Fourier transform to replace the transverse
momentum k⊥ with its conjugate variable b, the 2S oscil-
lator wave function can be taken as


(2S)(x,b) ∼
∫

d2k⊥e−ik⊥·b
(2S)(x,k⊥)

∝ x x̄T (x)e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2], (10)

with

T (x) = 1 − 4b2mcωx x̄ + mc(x − x̄)2

ωx x̄
. (11)

We then propose the 2S states distribution amplitudes
inferred from Eq. (10),


(2S)(x, b) ∝ �asy(x)T (x)e−x x̄ mc
ω

[ω2b2+( x−x̄
2x x̄ )2], (12)

with the �asy(x) being the asymptotic models, which have
been given in [42]. Therefore, we have the distribution ampli-
tudes for the radially excited charmonium mesons ηc(2S) and
ψ(2S)


L ,T,v(x, b) = f2S
2
√

2Nc
N L ,T,vx x̄T (x)e−x x̄ mc

ω
[ω2b2+( x−x̄

2x x̄ )2],


t (x, b) = f2S
2
√

2Nc
Nt (x − x̄)2T (x)e−x x̄ mc

ω
[ω2b2+( x−x̄

2x x̄ )2],


V (x, b) = f2S
2
√

2Nc
NV [1+(x− x̄)2]T (x)e−x x̄

mc
ω

[ω2b2+( x−x̄2x x̄ )2],


s(x, b) = f2S
2
√

2Nc
NsT (x)e−x x̄ mc

ω
[ω2b2+( x−x̄

2x x̄ )2], (13)

with the normalization conditions:∫ 1

0

 i (x, 0)dx = f2S

2
√

2Nc
. (14)

Nc above is the color number, Ni (i = L , T, t, V, v, s) are
the normalization constants, and f2S is the decay constant
of the 2S state. All the distribution amplitudes in Eq. (13)
are symmetric under x ↔ x̄ . Here we do not distinguish
the leading twist distribution amplitude 
v of the ηc(2S)

meson from 
L ,T of the ψ(2S) meson, and the same decay
constant has been assumed for the longitudinally and trans-
versely polarized ψ(2S) meson. To make things clearer, the
shape of the distribution amplitude 
L(x, 0) is displayed in
Fig. 1. The free parameter ω = 0.2 GeV is adopted, such
that the valence charm quark, carrying the invariant mass
x2P2 ≈ m2

c , is almost on shell. It can be seen that the two
maximum positions are near x = 0.35 and x = 0.65 and a
larger value of parameter ω gives a wider shape. Note that

Fig. 1 The shape of the distribution amplitude for ψ L (x) when b = 0,
with the solid (dashed) line for ω = 0.2(0.3) GeV

the dip at x = 0.5 is a consequence of the radial Schrödinger
wave function of the n = 2, l = 0 state.

3 Form factors and decay amplitudes

In the pQCD approach, the Bc → ψ(2S), ηc(2S) transition
form factors in the large-recoil limit (q2 = 0), which are
similar to that of Bc → J/ψ, ηc [43], can be calculated
from the above universal hadronic distribution amplitudes.
The lowest-order diagrams are displayed in Fig. 2. The form
factors F+,0(q2), V (q2), and A0,1,2(q2) are defined via the
matrix element [44]

〈ηc(2S)(P2)|c̄γ μb|Bc(P1)〉
=

[
(P1+P2)

μ− M2−m2

q2 qμ

]
F+(q2)

+M2 − m2

q2 qμF0(q
2), (15)

〈ψ(2S)(P2)|c̄γ μb|Bc(P1)〉 = 2iV (q2)

M + m
εμνρσ ε∗

ν P2ρ P1σ ,

(16)

〈ψ(2S)(P2)|c̄γ μγ5b|Bc(P1)〉
= 2mA0(q

2)
ε∗ · q
q2 qμ + (M + m)A1(q

2)

[
ε∗μ − ε∗ · q

q2 qμ

]

−A2(q
2)

ε∗ · q
M + m

[
(P1 + P2)

μ − M2 − m2

q2 qμ

]
, (17)

where q = P1 − P2 is the momentum transfer and P1(P2)

is the momentum of the initial (final) state meson. M is the
mass of Bc meson, and ε∗ is the polarization vector of the
ψ(2S) meson. In the large-recoil limit, say q2 = 0, we have

F0(0) = F+(0), A0(0) = 1 + r

2r
A1(0) − 1 − r

2r
A2(0).

(18)
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Fig. 2 The leading-order
Feynman diagrams for the
Bc → (ψ(2S), ηc(2S))

transitions

b̄

c

(a)

Bc ψ(2S)/ηc(2S)

(b)

It is straightforward to calculate the form factors F0(q2),
V (q2), and A0,1(q2) at the tree level in the pQCD. They read

F0 = 2

√
2

3
πM2 fBC f

∫ 1

0
dx2

×
∫ ∞

0
b1b2db1db2 exp

(
−ω2

Bb
2
1

2

)

×{[ψv(x2, b2)(x2 − 2rb) − ψ s(x2, b2)r(2x2 − rb)]
× Eab(ta)h(αe, βa, b1, b2)St (x2)

+[ψv(x2, b2)(rc + r2(1 − x1)) − ψ s(x2, b2)

× 2r(1 − x1 + rc)]Eab(tb)h(αe, βb, b2, b1)St (x1)},
(19)

V = 2

√
2

3
(1 + r)πM2 fBC f

∫ 1

0
dx2

×
∫ ∞

0
b1b2db1db2 exp

(
−ω2

Bb
2
1

2

)

×{[ψV (x2, b2)r(1 − x2) + ψT (x2, b2)(rb − 2)]
× Eab(ta)h(αe, βa, b1, b2)St (x2)

−ψV (x2, b2)r Eab(tb)h(αe, βb, b2, b1)St (x1)}, (20)

A0 = 2

√
2

3
πM2 fBC f

∫ 1

0
dx2

×
∫ ∞

0
b1b2db1db2 exp

(
−ω2

Bb
2
1

2

)

×{[ψ L(x2, b2)(x2 − 2rb) − ψ t (x2, b2)r(2x2 − rb)]
× Eab(ta)h(αe, βa, b1, b2)St (x2)

−ψ L(x2, b2)[rc + r2(1 − x1)]Eab(tb)

× h(αe, βb, b2, b1)St (x1)}, (21)

A1 = 2

√
2

3

r

1 + r
πM2 fBC f

∫ 1

0
dx2

×
∫ ∞

0
b1b2db1db2 exp

(
−ω2

Bb
2
1

2

)

×
{[

ψV (x2, b2)(1+x2−r2(1−x2)−4rb)+ψT(x2, b2)

×
[
r(2 − 4x2 + rb) + rb − 2

r

]]

× Eab(ta)h(αe, βa, b1, b2)St (x2) − ψV (x2, b2)

×[1−2x1+2rc+r2]Eab(tb)h(αe, βb, b2, b1)St (x1)

}
,

(22)

with r = m
M and rb,c = mb,c

M . The functions Eab, the scales
ta,b, and the hard functions h are given in Appendix B of Ref.
[32].

The quark diagrams contributing to the Bc → ψ(2S)π,

ηc(2S)π decays are displayed in Fig. 3, where (a) and (b)
are for the factorizable topology, and (c) and (d) are for the
nonfactorizable topology. The effective Hamiltonian relevant
to the considered decays is written as [45]

Heff = GF√
2
V ∗
cbVud [C1(μ)O1(μ) + C2(μ)O2(μ)] + h.c.,

(23)

with V ∗
cb and Vud the Cabibbo–Kobayashi–Maskawa (CKM)

matrix elements,C1,2(μ) the Wilson coefficients, and O1,2(μ)

the effective four quark operators

O1(μ) = b̄αγ μ(1 − γ5)cβ ⊗ ūβγμ(1 − γ5)dα,

O2(μ) = b̄αγ μ(1 − γ5)cα ⊗ ūβγμ(1 − γ5)dβ, (24)

where α and β are the color indices. Since the four quarks in
the operators are different from each other, there is no pen-
guin contribution. Therefore there will be noCP violation in
the decays of Bc → ψ(2S)π, ηc(2S)π within the standard
model. After a straightforward calculation using the pQCD
formalism of Eq. (2), we have the decay amplitudes

A(Bc → (ψ(2S), ηc(2S))π) = V ∗
cbVud

×
[(

C2 + 1

3
C1

)
Fe + C1Me

]
. (25)

The detailed expressions of Fe and Me are the same as
the Bc → (J/ψ, ηc)π decay modes in Appendix A of
Ref. [32], except for the replacements J/ψ → ψ(2S) and
ηc → ηc(2S).

4 Numerical results and discussions

In the numerical calculations we need the following input
parameters (in units of GeV) [46]:
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Fig. 3 Feynman diagrams for
Bc → ψ(2S)π, ηc(2S)π decays

π

b̄

c c

c̄

ud̄

ηc(2S)/ψ(2S)Bc

(a) (b)

(c) (d)

mc = 1.275, mb = 4.18, MBc = 6.277,

mψ(2S) = 3.686, mηc(2S) = 3.639. (26)

For the relevant CKM matrix elements we use Vcb = (40.9±
1.1) × 10−3 and Vud = 0.97425 ± 0.00022 [46].

The decay constant fψ(2S) can be derived from the process
ψ(2S) → e+e− by the relationship

fψ(2S) =
√

3mψ(2S)�ψ(2S)→e+e−

4πα2Q2
c

, (27)

using the data given in [46]

�ψ(2S)→e+e− = (2.36 ± 0.04) keV. (28)

Then we have fψ(2S) = 296+3
−2 MeV. The decay constant

fηc(2S) can be determined by the double photon decay of
ηc(2S) as

fηc(2S) =
√

81πmηc(2S)�ηc(2S)→γ γ

4(4πα)2 . (29)

Using the measured results of the branching fractions
ηc(2S) → γ γ and the full width of ηc(2S) [46],

B(ηc(2S) → γ γ ) = (1.9 ± 1.3) × 10−4,

�ηc(2S) = 11.3+3.2
−2.9 MeV, (30)

we can get the decay constant fηc(2S) = 243+79
−111 MeV. As

for the decay constant for Bc, we adopt fBc = 489 MeV [47].

Our numerical results for the form factors FBc→ηc(2S)
0 ,

ABc→ψ(2S)
0,1,2 and V Bc→ψ(2S) are listed in Table 1. We find

that the form factors are close by different approaches within
errors, except the results in Ref. [11], which are typically
smaller. Some dominant uncertainties are considered in our

numerical values: the first error comes from the shape param-
eters ωB = 0.6 ± 0.1 (ω = 0.2 ± 0.1) GeV for the
Bc(ψ(2S)/ηc(2S)) meson, the second one is induced by
mc = 1.275 ± 0.025 GeV, the third error comes from the
decay constants of the ψ(2S) or ηc(2S) meson, and the
last one is caused by the variation of the hard scale from
0.75t to 1.25t in Eq. (2), which characterizes the size of
next-to-leading-order contribution. It is found that the main
errors come from the uncertainties of the shape parame-
ters and the charm-quark mass. Therefore, the decay of
Bc → ψ(2S)(ηc(2S)) provides a good platform to under-
stand the wave function of the radially excited charmonium
states and the constituent quark model. The uncertainty from
the decay constant of ηc(2S) meson is large due to the low
accuracy measurement of the branching fraction in Eq. (30);
the relevant uncertainty of F0 is large, too. We expect that
it could be measured precisely at LHCb and Super-B facto-
ries in the near future. We also noticed that the error from
the uncertainty of the hard scale t is small, which means the
next-to-leading-order contributions can be safely neglected.
The errors from the uncertainty of the CKM matrix elements
are very small, and they have been neglected.

The branching fractions for the Bc → ηc(2S)π,ψ(2S)π

decays in the Bc meson rest frame can be written as

B(Bc → (ψ(2S), ηc(2S))π) = G2
FτBc

32πMB
(1 − r2)|A|2,

(31)

where the decay amplitudes A have been given explicitly in
Eq. (25). In Table 2, we show the results of the branching frac-
tions for the two-body nonleptonic Bc → ηc(2S)π,ψ(2S)π

decays, where the sources of the errors in the numerical esti-
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Table 1 The form factors for FBc→ηc(2S)
0 , ABc→ψ(2S)

0,1,2 and V Bc→ψ(2S) at q2 = 0 evaluated by pQCD and by other methods in the literature. We
also show theoretical uncertainties induced by the shape parameters, mc, fψ(2s) or fηc(2s), and the hard scale t , respectively

This work Ref. [9] Ref. [10]a Ref. [11] Ref. [48]

F0 0.70+0.09+0.12+0.23+0.02
−0.05−0.10−0.32−0.01 – 0.325 0.27 –

A0 0.56+0.09+0.07+0.00+0.01
−0.05−0.04−0.00−0.01 0.45 0.42 0.23 0.20

A1 0.56+0.13+0.06+0.00+0.01
−0.04−0.03−0.00−0.01 0.335 0.35 0.18 0.38

A2 0.62+0.27+0.04+0.01+0.02
−0.05−0.01−0.01−0.00 0.102 0.15 0.14 0.90

V 0.95+0.18+0.15+0.01+0.03
−0.08−0.10−0.01−0.01 0.525 0.73 0.24 0.90

a Comparing the definitions of the transition form factor of Ref. [10] with ours, we have the following relations at the maximal recoil point:

F0 = f +, V = (M +m)g, A1 = f
M+m , A2 = −(M +m)a+, A0 = f +(M2−m2)a++q2a−

2m , where the values of f +, g, f, a+, a− are given in [10]

Table 2 Branching ratios (10−4) of the Bc → ηc(2S)π,ψ(2S)π decays. The errors are induced by the same sources as in Table 1

Modes This work [9]a [10] [11] [12] [13] [14] [15] [49]b

Bc → ηc(2S)π 10.3+3.4+4.0+7.8+1.2
−1.8−2.8−7.2−0.4 – 2.4 1.7 2.2 2.4 0.66 2.87 –

Bc → ψ(2S)π 6.7+2.8+1.8+0.1+0.7
−1.1−1.2−0.1−0.3 2.97 3.7 1.1 0.63 2.2 2.0 2.66 7.6 (5.8)

a We quote the result with the modified wave functions for ψ(2S)
b The nonbracketed (bracketed) results are evaluated at the NLO (LO) level

mates have the same origin as in the discussion of the form
factors in Table 1. It is easy to see that the most important the-
oretical uncertainties are caused by the nonperturbative shape
parameters, the charm-quark mass, and the decay constant
fηc(2S), which can be improved by future experiments. It is
found that the branching fractions of Bc decays to the 2S state
are smaller than those of the 1S state in our previous study
[32] in the perturbative QCD approach. This phenomenon
can be understood from the wave functions of the two states.
The presence of the node in the 2S wave function, which
can be seen in Fig. 1, causes the overlap between the initial
and final state wave functions to become smaller. Besides,
the tighter phase space and the smaller decay constants of 2S
state also suppress their branching ratios.

We also make a comparison of our results with the pre-
vious studies. One can see that our results are comparable
to those of [49] within the error bars, but larger than the
results from other modes. This is because they have used
the smaller form factors at maximum recoil. Regardless of
this effect, our results are consistent with theirs. For exam-
ple, as shown in Tables 1 and 2, our values of A0 and F0

are about 2.5 times the results of Ref. [11], and result in
our branching ratios to be six times larger than theirs. For a
more direct comparison with the available experimental data,
we compare the present results in Table 2 with those for the
decays of Bc to S-wave charmonium states J/ψ and ηc (also
based on the harmonic-oscillator wave functions), whose
results can be found in Ref. [32], and we obtain the ratios
B(Bc → (ψ(2S)π))/B(Bc → (J/ψπ)) = 0.29+0.17

−0.11 and

B(Bc → (ηc(2S)π))/B(Bc → (ηcπ)) = 0.35+0.36
−0.29. The

former is consistent with the data 0.25 ± 0.068 ± 0.014 [8],

and also comparable with the recent prediction of the Bethe–
Salpeter relativistic quark model [15], 0.24. This fact may
indicate that the harmonic-oscillator wave functions for radi-
ally excited states are reasonable and applicable. Although
the Bc → ηc(2S)π decay has not yet been measured so far,
the predicted large branching ratio (10−3) makes it possi-
ble to measure it soon at the LHCb experiment or a future
facility.

We now investigate the relative importance of the twist-2
and twist-3 contributions in Eq. (4) to the decay amplitude,
whose results are displayed separately in Table 3, where the
label “twist-2 (twist-3)” corresponds to the contribution of
the twist-2 (twist-3) distribution amplitude only, while the
label “total” corresponds to both of the contributions. It is
found that the contribution of the twist-3 distribution ampli-
tude is not power-suppressed for Bc → ηc(2S)π decay,
whose contribution is 1.5 times larger than the twist-2 contri-
bution. The reason is that the term ψ s(x2, b2)2r in Eq. (19)
from Fig. 3b gives the dominant contribution to the decay
amplitude, since the asymptotic model of the twist-3 distribu-
tion amplitude in Eq. (13) for the ηc(2S) meson has no factor
like x(1 − x) to suppress its integral value in the end-point
region, which leads to a large enhancement compared with
the twist-2 contribution. However, because twist-3 terms of
the ψ(2S) meson distribution amplitude do not contribute to
the Bc → ψ(2S)π decay amplitude from Fig. 3b, the con-
tribution from other diagrams with the twist-3 distribution
amplitude is only one-fifth smaller than that of the twist-2
contribution in this process. It is also found that there is a
very strong interference between contributions of the twist-
2 and twist-3 wave functions for both Bc → ψ(2S)π and
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Table 3 The values of decay amplitude from twist-2 and twist-3 charmonium wave functions for Bc → ηc(2S)π,ψ(2S)π decays. The results are
given in units of GeV3

Modes Twist-2 Twist-3 Total

A(Bc → ψ(2S)π) −1.7 − 0.07i −0.4 − 0.06i −2.1 − 0.13i

A(Bc → ηc(2S)π) −1.5 − 2.3i 3.9 + 1.4i 2.4 + 0.9i

Bc → ηc(2S)π decays. The numerical results show that the
contributions from the twist-3 wave function have an oppo-
site sign between the two channels. This results in construc-
tive interference for the former, but destructive interference
for the latter. The reason is that the amplitudes are different
between the two decays at twist-3 level, which can be seen
in Eqs. (A1) and (A4) of [32]. A similar situation also exists
in Bc → Dπ, D∗π [29] decays.

5 Conclusion

We calculated the form factors of the weak Bc decays to
radially excited charmonia and the branching ratios of the
Bc → ψ(2S)π, ηc(2S)π decays in the pQCD approach.
The new charmonium distribution amplitudes based on the
radial Schrödinger wave function of the n = 2, l = 0 state
for the harmonic-oscillator potential are employed. We dis-
cussed theoretical uncertainties arising from the nonpertur-
bative shape parameters, the charm-quark mass, the decay
constants, and the scale dependence. It is found that the
main uncertainties of the processes concerned come from
the shape parameters and the charm-quark mass. The the-
oretically evaluated ratio B(Bc → (ψ(2S)π))/B(Bc →
(J/ψπ)) = 0.29+0.17

−0.11 is consistent with the data, which indi-
cates that the harmonic-oscillator wave functions work well,
not only for the ground state charmonium, but also for the
radially excited charmonia. It is also found that the twist-3
charmonium distribution amplitude gives a large contribu-
tion, especially for Bc → ηc(2S)π decay, whose branching
fraction is of the order of 10−3, which could be tested at the
ongoing large hadron collider.
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