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Abstract An approach for solving scattering problems,
based on two quantum field theory methods, the heat-kernel
method and the scattering spectral method, is constructed.
This approach converts a method of calculating heat kernels
into a method of solving scattering problems. This allows us
to establish a method of scattering problems from a method
of heat kernels. As an application, we construct an approach
for solving scattering problems based on the covariant per-
turbation theory of heat-kernel expansions. In order to apply
the heat-kernel method to scattering problems, we first cal-
culate the off-diagonal heat-kernel expansion in the frame
of covariant perturbation theory. Moreover, as an alternative
application of the relation between heat kernels and partial-
wave phase shifts presented in this paper, we give an example
of how to calculate a global heat kernel from a known scat-
tering phase shift.

1 Introduction

In this paper, based on two quantum field theory methods,
heat-kernel method [1] and scattering spectral method [2],
we present a new approach to solve scattering problems. This
approach is a series of approaches for scatterings rather than
a single approach. Concretely, our key result is an explicit
relation between partial-wave scattering phase shifts and heat
kernels. By this result, each method of calculating heat ker-
nels leads to an approach of calculating phase shifts; or, in
other words, the approach converts a method of solving heat
kernels into a method of solving scattering problems. Many
methods for scattering problems can be constructed by this
approach, since the heat-kernel theory is well studied in both
mathematics and physics and there are many mature methods
for the calculation of heat kernels.

Phase shift. All information of an elastic scattering process
is embedded in a scattering phase shift. This can be seen by

a e-mail: daiwusheng@tju.edu.cn

directly observing the asymptotic solution of the radial wave
equation. For spherically symmetric cases, the asymptotic

solution of the free radial wave equation,
[
− 1

r2
d
dr

(
r2 d

dr

)+
l(l+1)

r2

]
Rl = k2Rl , is Rl (r)

r→∞= (1/kr) sin (kr − lπ/2),

and the asymptotic solution of the radial wave equation with

a potential,
[
− 1

r2
d
dr

(
r2 d

dr

) + l(l+1)

r2 + V (r)
]
Rl = k2Rl , is

Rl (r)
r→∞= 1

kr
sin

[
kr − lπ

2
+ δl (k)

]
. (1)

This defines the partial-wave phase shift δl (k), which is the
only effect on the radial wave function at asymptotic dis-
tances [3]. Therefore, all we need to do in solving a scattering
problem is to solve for the phase shift δl (k).

Heat kernel. The information embedded in an operator D
can be extracted from a heat kernel K

(
t; r, r′), which is the

Green function of the initial-value problem of the heat-type
equation (∂t + D) φ = 0, determined by [1]

(∂t + D) K
(
t; r, r′) = 0, with K

(
0; r, r′) = δ

(
r − r′) .

(2)

The global heat kernel K (t) is the trace of the local heat
kernel K

(
t; r, r′): K (t) = ∫

drK (t; r, r) = ∑
n,l e

−λnl t ,
where λnl is the eigenvalue of the operator D.

The main aim of the present paper is to seek a relation
between the partial-wave phase shift δl (k) and the heat ker-
nel K

(
t; r, r′). By this relation, we can explicitly express

a partial-wave phase shift by a given heat kernel. There are
many studies on the approximate calculation of heat kernels
[1,4–13] and each approximate method of heat kernels gives
us an approximate method for calculating partial-wave phase
shifts.

The present work is based on our preceding work given in
Ref. [14], which reveals a relation between two quantum field
theory methods, the heat-kernel method [1] and the scattering
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spectral method [2]. In Ref. [14], using the relation between
spectral counting functions and heat kernels given by Ref.
[15] and the relation between phase shifts and state densities
given by Ref. [2], we provide a relation between the global
heat kernel and the total scattering phase shift (the total scat-
tering phase shift is the summation of all partial-wave phase
shifts, δ (k) = ∑

l (2l + 1) δl (k)).
Nevertheless, the result given by Ref. [14]—the relation

between total scattering phase shifts and heat kernels—can
hardly be applied to scattering problems, since the total phase
shift has no clear physical meaning.

To apply the heat-kernel method to scattering problems,
we in fact need a relation between partial-wave phase shifts
(rather than total phase shifts) and heat kernels. In the present
paper, we find such a relation. This relation allows us to
express a partial-wave phase shift by a known heat kernel.
Then all physical quantities of a scattering process, such as
scattering amplitudes and cross sections, can be expressed
by a heat kernel.

To find the relation between partial-wave phase shifts
and heat kernels, we will first prove a relation between
heat kernels and partial-wave heat kernels. The heat kernel
K

(
t; r, r′) is the Green function of initial-value problem of

the heat equation (2) with the operator D = −∇2+V (r) and
the partial-wave heat kernel Kl

(
t; r, r ′) is the Green func-

tion of initial-value problem of the heat equation (2) with
the radial operator Dl = − 1

r2
d
dr

(
r2 d

dr

) + l(l+1)

r2 + V (r).
By this relation, we can calculate a partial-wave heat kernel
Kl

(
t; r, r ′) from a heat kernel K

(
t; r, r′) directly.

The main aim of this paper is to explicitly express the
partial-wave phase shift by a given heat kernel. As mentioned
above, by our result, each method of calculating heat kernels
can be converted to a method of calculating scattering prob-
lems.

In order to calculate a scattering phase shift from a heat
kernel, we need off-diagonal heat kernels (i.e., heat kernels).
For this purpose, in the following, we first calculate an off-
diagonal heat-kernel expansion in the frame of the covari-
ant perturbation theory. It should be pointed out that many
methods on the calculation of diagonal heat-kernel expan-
sions in literature can be directly apply to the calculation of
off-diagonal heat kernels.

A method for calculating scattering phase shifts based on
the covariant perturbation theory in the heat kernel theory is
established as an example of our approach.

Furthermore, we compare the scattering method estab-
lished in this paper, which is based on the covariant pertur-
bation theory of heat kernels, with the Born approximation.
The comparison shows that the scattering method based on
covariant perturbation theory is a better approximation than
the Born approximation.

Besides applying the heat-kernel method to scattering
problems, on the other hand, by the method suggested in

the present paper, we can also apply the scattering method
to the heat kernel theory. In this paper, we provide a sim-
ple example for illustrating how to calculate a heat kernel
from a known scattering result; more details on this subject
will be given in a subsequent work. The value of developing
such a method, for example, is that though it is relatively
easy to obtain a high-energy expansion of heat kernels, it is
difficult to obtain a low-energy heat-kernel expansion. With
the help of scattering theory, we can calculate a low-energy
heat-kernel expansion from a low-energy scattering theory.

The starting point of this work, as mentioned above, is
a relation between the heat-kernel method and the scatter-
ing spectral method in quantum field theory. The heat-kernel
method is important both in physics and mathematics. In
physics, the heat-kernel method has important applications
in, e.g., Euclidean field theory, gravitation theory, and sta-
tistical mechanics [1,13,16–18]. In mathematics, the heat-
kernel method is an important basis of the spectral geometry
[1,19]. There is much research on the calculation of heat
kernels. Besides exact solutions, there are many systematic
studies on the asymptotic expansion of heat kernels [20], such
as covariant perturbation theory [10–13]. With various heat-
kernel expansion techniques, one can obtain many approxi-
mate solutions of heat kernels. Scattering spectral method is
an important quantum theory method which can be used to
solve a variety of problems in quantum field theory, e.g., to
characterize the spectrum of energy eigenstates in a poten-
tial background [2] and to solve the Casimir energy [21–25].
The method particular focuses on the property of the quantum
vacuum.

In Sect. 2, we find a relation between partial-wave phase
shifts and heat kernels. As a key step, we give a relation
between partial-wave heat kernels and heat kernels. In Sect.
3, based on the relation between partial-wave phase shifts and
heat kernels given in Sect. 2, we establish an approach for
the calculation of partial-wave phase shifts, based on an heat-
kernel expansion, the covariant perturbation theory. In Sect.
4, a comparison of the approach established in the present
paper and the Born approximation is given; in particular,
we compare these two methods through an exactly solvable
potential. In Sect. 5, we give an example for calculating a heat
kernel from a given phase shift. Conclusions and an outlook
are given in Sect. 6. Moreover, an integral formula and two
integral representations are given in Appendices A and B.

2 Relation between partial-wave phase shift and heat
kernel: calculating scattering phase shift from heat
kernel

The main result of the present paper is the following theo-
rem which reveals a relation between partial-wave scatter-
ing phase shifts and heat kernels. This relation allows us to
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obtain a partial-wave phase shift from a known heat kernel
directly. By this relation, what we can obtain is not only one
method for scattering problems. It is in fact a series of meth-
ods for scattering problems: each heat kernel method leads
to a method for solving scattering problems.

Theorem 1 The relation between the partial-wave scatter-
ing phase shift, δl (k), and the heat kernel, K

(
t; r, r′) =

K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′), is

δl (k) = 2π2
∫ ∞

0
r2dr

∫ 1

−1
d cos γ Pl (cos γ )

1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t
K s (

t; r, θ, ϕ, r, θ ′, ϕ′) + δl (0) , (3)

where K s
(
t; r, r′) is the scattering part of a heat ker-

nel, Pl (cos γ ) is the Legendre polynomial, and γ is the
angle between r and r′ with cos γ = cos θ cos θ ′ +
sin θ sin θ ′ cos

(
ϕ′ − ϕ

)
.

Notice that only the radial diagonal heat kernel,
Ks

(
t; r, θ, ϕ, r, θ ′, ϕ′), appears in Eq. (3). The heat ker-

nel K
(
t; r, r′) is split into three parts: K

(
t; r, r′) =

Ks
(
t; r, r′) + Kb

(
t; r, r′) + K f

(
t; r, r′). The free part

of a heat kernel K f
(
t; r, r′) = K (0)

(
t; r, r′) is the heat

kernel of the operator D = −∇2; the bound part of a
heat kernel corresponds to the bound state, if it exists,
of the system, which, in the spectral representation, is
Kb

(
t; r, r′) = ∑

bound states e
−λtψλ (r) ψ∗

λ

(
r′); the scat-

tering part of a heat kernel corresponds to the scattering
state of the system, which, in the spectral representation, is
Ks

(
t; r, r′) = ∑

scattering states e
−λtψλ (r) ψ∗

λ

(
r′) [14]. Note

that δl (0) = π/2 if there is a half-bound state and δl (0) = 0
if there is no half-bound state [14].

The remaining task of this section is to prove this theorem.
In order to prove the theorem, we need to first find a relation
between partial-wave heat kernels and heat kernels.

2.1 Relation between partial-wave heat kernel and heat
kernel

As mentioned above, the heat kernel K
(
t; r, r′) of an opera-

tor D is determined by the heat equation (2) [1]. For a spher-
ically symmetric operator D, the heat kernel K

(
t; r, r′) =

K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′) can be expressed as

K
(
t; r, r′) =

∑
n,l,m

e−λnl tψnlm (r) ψ∗
nlm

(
r′) , (4)

where λnl and ψnlm (r) = Rnl (r) Ylm (θ, ϕ) are the eigen-
value and eigenfunction of D, determined by the eigenequa-
tion Dψnlm = λnlψnlm , where Rnl (r) is the radial wave
function andYlm (θ, ϕ) is the spherical harmonics. The global
heat kernel is the trace of the local heat kernel K

(
t; r, r′):

K (t) =
∫

drK (t; r, r) =
∑
n,l

e−λnl t . (5)

The local partial-wave heat kernel

Kl
(
t; r, r ′) =

∑
n

e−λnl t Rnl (r) Rnl
(
r ′) (6)

of the operator D is the heat kernel of the lth partial-wave
radial operator [14]

Dl = − 1

r2

d

dr

(
r2 d

dr

)
+ l (l + 1)

r2 + V (r) (7)

which determines the radial equation Dl Rnl = λnl Rnl . The
global partial-wave heat kernel is the trace of the local partial-
wave heat kernel Kl

(
t; r, r ′),

Kl (t) =
∫ ∞

0
r2dr Kl (t; r, r) =

∑
n

e−λnl t . (8)

Now we prove that the relation between Kl
(
t; r, r ′) and

K
(
t; r, r′) can be expressed as follows.

Lemma 1 The relation between the partial-wave heat kernel
Kl

(
t; r, r ′) and the heat kernel K

(
t; r, r′) = K

(
t; r, θ, ϕ,

r ′, θ ′, ϕ′) is

Kl
(
t; r, r ′) = 2π

∫ 1

−1
d cos γ Pl (cos γ )

×K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′) (9)

and

K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′) = 1

4π

∑
l

(2l + 1)

×Pl (cos γ ) Kl
(
t; r, r ′) . (10)

Proof In a scattering with a spherically symmetric poten-
tial, the scattering wave function ψnlm (r, θ, ϕ) = Rnl (r)
Ylm (θ, ϕ). Then, by Eq. (4), the heat kernel can be expressed
as

K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′) =

∑
n,l

e−λnl t Rnl (r) Rnl
(
r ′)

×
l∑

m=−l

Ylm (θ, ϕ) Y ∗
lm

(
θ ′, ϕ′) .

(11)

Using the relation [26]

l∑
m=−l

Ylm (θ, ϕ) Y ∗
lm

(
θ ′, ϕ′)

= 2l + 1

4π
Pl

(
cos θ cos θ ′ + sin θ sin θ ′ cos

(
ϕ′ − ϕ

))
,

(12)
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we obtain

K
(
t; r, θ, ϕ, r ′, θ ′, ϕ′) = 1

4π

∑
l

(2l + 1) Pl (cos γ )

×
∑
n

e−λnl t Rnl (r) Rnl
(
r ′) .

(13)

Then, by Eq. (6), we prove the relation (10).
Multiplying both sides of Eq. (10) by Pl ′ (cos γ ) and then

integrating cos γ from −1 to 1 give
∫ 1

−1
d cos γ Pl ′ (cos γ ) K

(
t; r, θ, ϕ, r ′, θ ′, ϕ′)

= 1

4π

∑
l

(2l + 1)

×
[∫ 1

−1
d cos γ Pl ′ (cos γ ) Pl (cos γ )

]
Kl

(
t; r, r ′) .

(14)

Using the orthogonality of the Legendre polynomials [26]

∫ 1

−1
d cos γ Pl ′ (cos γ ) Pl (cos γ ) = 2

2l ′ + 1
δll ′ , (15)

we obtain
∫ 1

−1
d cos γ Pl ′ (cos γ ) K

(
t; r, θ, ϕ, r ′, θ ′, ϕ′)

= 1

2π
Kl ′

(
t; r, r ′) . (16)

This proves the relation (9). ��

2.2 Proof of Theorem 1

Now, with Lemma 1, we can prove Theorem 1.

Proof In Ref. [14], we prove a relation between total phase
shifts and global heat kernels,

δ (k) = 1

2i

∫ c+i∞

c−i∞
Ks (t)

t
ek

2tdt + δ (0), (17)

and a relation between partial-wave phase shifts and partial-
wave global heat kernels,

δl (k) = 1

2i

∫ c+i∞

c−i∞
Ks
l (t)

t
ek

2tdt + δl (0) . (18)

Here the global heat kernel and the global partial-wave heat
kernel are split into the scattering part, the bound part, and
the free part: K (t) = Ks (t)+Kb (t)+K f (t) and Kl (t) =
Ks
l (t) + Kb

l (t) + K f
l (t) [14].

Starting from the global partial-wave heat kernel given
by Eq. (8) and using the relation between partial-wave heat
kernels and heat kernels given by Lemma 1, Eq. (9), we have

Kl (t) =
∫ ∞

0
r2dr Kl (t; r, r)

= 2π

∫ ∞

0
r2dr

∫ 1

−1
d cos γ Pl (cos γ )

K
(
t; r, θ, ϕ, r, θ ′, ϕ′) . (19)

Substituting Eq. (19) into Eq. (18) proves Theorem 1. ��

It should be noted here that the relations given by Ref.
[14], Eqs. (17) and (18), only allow one to calculate the total
phase shift δ (k) from a heat kernel K (t) or to calculate the
partial-wave phase shift δl (k) from a partial-wave heat kernel
Kl (t). Such results, however, are not useful in scattering
problems, because the total phase shift δ (k) is not physically
meaningful and the partial-wave heat kernel Kl (t) is often
difficult to obtain.

Nevertheless, the result given by Theorem 1, Eq. (3),
allows one to calculate the partial-wave phase shift δl (k)
from a heat kernel K (t) rather than a partial-wave heat ker-
nel Kl (t). The heat kernel has been fully studied and there
are many well-known results [1].

3 Heat-kernel approach for phase shift: covariant
perturbation theory

In this section, based on the heat-kernel expansion given by
the covariant perturbation theory [10–12], by the relation
between partial-wave phase shifts and heat kernels given by
Eq. (3), we establish an expansion for scattering phase shifts.
The covariant perturbation theory is suitable for our purposes,
since it provides a uniformly convergent expansion of heat
kernels [10,27].

The covariant perturbation theory type expansion for a
partial-wave scattering phase shift is δl (k) = δ

(1)
l (k) +

δ
(2)
l (k) + · · · with

δ
(1)
l (k) = −π

2

∫ ∞

0
rdrV (r) J 2

l+1/2 (kr) , (20)

δ
(2)
l (k) = −π2

2

∫ ∞

0
rdr Jl+1/2 (kr)Yl+1/2 (kr) V (r)

×
∫ r

0
r ′dr ′ J 2

l+1/2

(
kr ′) V (

r ′) , (21)

where Jν (z) and Yν (z) are the Bessel functions of the first
and second kinds, respectively [26].

A detailed calculation is as follows.
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3.1 Covariant perturbation theory for heat-kernel expansion

The heat-kernel expansion is systematically studied in
the covariant perturbation theory [10–12]. The heat-kernel
expansion given by covariant perturbation theory reads [4,6]

K
(
t; r, r′) = K (0)

(
t; r, r′) + K (1)

(
t; r, r′)

+K (2)
(
t; r, r′) + · · ·

= 〈r| e−H0t + (−t)
∫ ∞

0
dα1dα2δ (1 − α1 − α2)

×e−α1H0t V e−α2H0t

+ (−t)2
∫ ∞

0
dα1dα2dα3δ (1 − α1 − α2 − α3) e

−α1H0t

×Ve−α2H0t V e−α3H0t + · · · ∣∣r′〉 , (22)

where

K (0)
(
t; r, r′) = 〈r| e−H0t

∣∣r′〉 = 1

(4π t)3/2 e
−|r−r′|2

/(4t)

(23)

is the zero-order (free) heat kernel. Substituting the zero-
order heat kernel (23) into Eq. (22), we obtain the first two
orders of a heat kernel,

K (1)
(
t; r, r′) = 〈r| (−t)

∫ ∞

0
dα1dα2δ (1 − α1 − α2)

×e−α1H0t V e−α2H0t
∣∣r′〉

= −
∫ t

0
dτ

∫
d3yV (y)

exp
(
− 1

4(t−τ)
|r − y|2

)

[4π (t − τ)]3/2

×
exp

(
− 1

4τ

∣∣y − r′∣∣2
)

(4πτ)3/2 (24)

and

K (2)
(
t; r, r′) = 〈r| (−t)2

×
∫ ∞

0
dα1dα2dα3δ (1 − α1 − α2 − α3)

×e−α1H0t V e−α2H0t V e−α3H0t
∣∣r′〉

=
∫

d3yV (y)
∫

d3zV (z)
∫ t

0
dτ

∫ τ

0
dτ ′

×
exp

(
− 1

4(t−τ)
|r − y|2

)

[4π (t − τ)]3/2

×
exp

(
− 1

4(τ−τ ′) |y − z|2
)

[4π (τ − τ ′)]3/2

exp
(
− 1

4τ ′
∣∣z − r′∣∣2

)

(4πτ ′)3/2 . (25)

For the spherical potentials V (r) = V (r), K (1)
(
t; r, r′) and

K (2)
(
t; r, r′) given by Eqs. (24) and (25) become

K (1)
(
t; r, r ′, γ

) = −
∫ ∞

0
y2dyV (y)

∫
dΩy

∫ t

0
dτ

×
exp

(
− 1

4(t−τ)

(
r2 + y2 − 2r y cos γry

))

[4π (t − τ)]3/2

×exp
(− 1

4τ

(
r ′2 + y2 − 2r ′y cos γr′y

))

(4πτ)3/2 (26)

and

K (2)
(
t; r, r ′, γ

)=
∫ ∞

0
y2dyV (y)

∫
dΩy

∫ ∞

0
z2dzV (z)

∫
dΩz

×
∫ t

0
dτ

∫ τ

0
dτ ′ exp

(
− 1

4(t−τ)

(
r2 + y2 − 2ry cos γry

))

[4π (t − τ)]3/2

×
exp

(
− 1

4(τ−τ ′)
(
y2 + z2 − 2yz cos γyz

))

[4π (τ − τ ′)]3/2

×exp
(− 1

4τ ′
(
z2 + r ′2 − 2zr ′ cos γzr′

))

(4πτ ′)3/2 , (27)

whereγ is the angle between r and r′,γry is the angle between
r and y, γr′y is the angle between r′ and y, γyz is the angle
between y and z, and γzr′ is the angle between z and r′.

3.2 First-order phase shift δ
(1)
l (k)

In this section, we calculate the first-order phase shift in the
frame of covariant perturbation theory.

The first-order phase shift δ(1)
l (k) can be obtained by sub-

stituting the first-order heat kernel given by covariant per-
turbation theory, Eq. (26), into the relation between partial-
wave phase shifts and heat kernels, Eq. (3), and taking r ′ = r
(radial diagonal):

δ
(1)
l (k) = −2π2

∫ ∞

0
r2dr

1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ t

0
dτ

×
∫ ∞

0
y2dyV (y)

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

exp
(
− r2+y2

4τ

)

(4πτ)3/2 I1,

(28)

where I1 is an integral with respect to the angle,

I1 =
∫ 1

−1
d cos γ Pl (cos γ )

∫
dΩy

× exp

(
r y

2 (t − τ)
cos γry

)
exp

( r y
2τ

cos γr′y
)

. (29)

To calculate I1, we use the expansion [26]

eiz cos a =
∞∑
l=0

(2l + 1) i l
√

π

2z
Jl+1/2 (z) Pl (cos a) (30)
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to rewrite I1 as

I1 =
∑
l1=0

(2l1 + 1) i l1 jl1

(
r y

i2 (t − τ)

)

×
∑
l2=0

(2l2 + 1) i l2 jl2
( r y

i2τ

) ∫ 1

−1
d cos γ Pl (cos γ )

×
∫

dΩy Pl1
(
cos γry

)
Pl2

(
cos γr′y

)
, (31)

where jν (z) = √
π/ (2z)Jν+1/2 (z) is the spherical Bessel

function of the first kind. Without loss of generality, we
choose r′ = (

r ′, 0, 0
)

and then γr′y = θy and γ = θr . Now,
the integral with respect to Ωy can be worked out directly by
using the integral formula (A.1) given in Appendix A:
∫

dΩy Pl1
(
cos γry

)
Pl2

(
cos γr′y

)

=
∫

dΩy Pl1
(
cos γry

)
Pl2

(
cos θy

)

= Pl1 (cos θr )
4π

2l1 + 1
δl1,l2 . (32)

The integral with respect toγ (= θr ), then, can also be worked
out by using the orthogonality of the Legendre polynomials∫ 1
−1 dx Pl ′ (x) Pl (x) = 2/

(
2l ′ + 1

)
δll ′ [26]:

∫ 1

−1
d cos θr Pl (cos θr ) Pl1 (cos θr )

4π

2l1 + 1
δl1,l2

= 8π

(2l + 1)2 δl,l1δl1,l2 . (33)

By Eqs. (32) and (33), we obtain

I1 =
∑
l1=0

(2l1 + 1) i l1 jl1

(
r y

i2 (t − τ)

)

×
∑
l2=0

(2l2 + 1) i l2 jl2
( r y

i2τ

) 8π

(2l + 1)2 δl,l1δl1,l2

= 8π i2l jl

(
r y

i2 (t − τ)

)
jl

( r y

i2τ

)
. (34)

Substituting Eq. (34) into Eq. (28) gives

δ
(1)
l (k)=−2π2 1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ t

0
dτ

∫ ∞

0
y2dyV (y) I2,

(35)

where

I2 = 8π i2l
∫ ∞

0
r2dr

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

exp
(
− r2+y2

4τ

)

(4πτ)3/2

× jl

(
r y

i2 (t − τ)

)
jl

( r y

i2τ

)
. (36)

To calculate the integral I2, we use the integral representa-
tion, Eq. (B.1), given in Appendix B to represent the factor

jl
(

r y
i2(t−τ)

)
jl

( r y
i2τ

)
as

jl

(
r y

i2 (t − τ)

)
jl

( r y

i2τ

)
= 1

2

∫ 1

−1
d cos θ

×
sin

√[
r y

i2(t−τ)

]2 + ( r y
i2τ

)2 − 2 r y
i2(t−τ)

r y
i2τ

cos θ

√[
r y

i2(t−τ)

]2 + ( r y
i2τ

)2 − 2 r y
i2(t−τ)

r y
i2τ

cos θ

Pl (cos θ) .

(37)

Substituting the integral representation (37) into Eq. (36) and
working out the integral give

I2 = 4π i2l
∫ 1

−1
d cos θ Pl (cos θ)

∫ ∞

0
r2dr

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

×
exp

(
− r2+y2

4τ

)

(4πτ)3/2

sin

√[
ry

i2(t−τ)

]2 + ( ry
i2τ

)2 − 2 ry
i2(t−τ)

ry
i2τ

cos θ

√[
ry

i2(t−τ)

]2 + ( ry
i2τ

)2 − 2 ry
i2(t−τ)

ry
i2τ

cos θ

= i2l

(4π t)3/2

∫ 1

−1
d cos θ Pl (cos θ) exp

(
− y2

2t
(cos θ + 1)

)
. (38)

Substituting Eq. (38) into Eq. (35) and performing the inte-
gral with respect to τ , we have

δ
(1)
l (k) = −

√
π

4
i2l

∫ ∞

0
y2dyV (y)

1

2π i

×
∫ c+i∞

c−i∞
dt

ek
2t

t

1√
t
e−y2/(2t)

×
∫ 1

−1
d cos θ Pl (cos θ) exp

(
− y2 cos θ

2t

)
. (39)

Using the expansion exp
(−y2 cos θ/ (2t)

) = ∑
l=0 (2l + 1)

i l jl
(
i y

2

2t

)
Pl (cos θ) [see Eq. (30)] and the orthogonality of

the Legendre polynomials, we can work out the integral:

∫ 1

−1
d cos θ Pl (cos θ) exp

(
− y2 cos θ

2t

)

=
∑
l ′=0

(
2l ′ + 1

)
i l

′
jl ′

(
i
y2

2t

)

×
∫ 1

−1
d cos θ Pl (cos θ) Pl ′ (cos θ)

= 2i l jl

(
i
y2

2t

)
= i2l 2

√
π t

y
Il+1/2

(
y2

2t

)
, (40)

where Iv (z) is the modified Bessel function of the first kind
and the relation jν (z) = √

π/ (2z)i l Iν+1/2 (z) is used. Sub-
stituting Eq. (40) into Eq. (39), we have
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δ
(1)
l (k) = −π

2

∫ ∞

0
ydyV (y)

1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

×e−y2/(2t) Il+1/2

(
y2

2t

)
. (41)

Finally, by performing the inverse Laplace transformation in
Eq. (41),

1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t
e−r2/(2t) Il+1/2

(
r2

2t

)
= J 2

l+1/2 (kr) ,

(42)

the first-order phase shift given by the covariant perturbation
theory, Eq. (20), is obtained.

3.3 Second-order phase shift δ
(2)
l (k)

In this section, we calculate the second-order phase shift in
the frame of covariant perturbation theory.

The second-order phase shift δ
(2)
l (k) can be obtained by

substituting the second-order heat kernel given by covari-
ant perturbation theory, Eq. (27), into the relation between
partial-wave phase shifts and heat kernels, Eq. (3), and taking
r ′ = r :

δ
(2)
l (k) = 2π2

∫ ∞

0
r2dr

1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ t

0
dτ

∫ τ

0
dτ ′

×
∫ ∞

0
y2dyV (y)

∫ ∞

0
z2dzV (z)

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

×
exp

(
− y2+z2

4(τ−τ ′)

)

[4π (τ − τ ′)]3/2

exp
(
− z2+r2

4τ ′
)

(4πτ ′)3/2 I3, (43)

where

I3 =
∫ 1

−1
d cos γ Pl (cos γ )

∫
dΩy

∫
dΩz exp

(
r y cos γry

2 (t − τ)

)

× exp

(
yz cos γyz

2 (τ − τ ′)

)
exp

( zr cos γzr′

2τ ′
)

. (44)

Using Eq. (30), we rewrite the integral I3 as

I3 =
∑
l1=0

(2l1 + 1) i l1 jl1

(
r y

i2 (t − τ)

)

×
∑
l2=0

(2l2 + 1) i l2 jl2

(
yz

i2 (τ − τ ′)

)

×
∑
l3=0

(2l3 + 1) i l3 jl3
( zr

i2τ ′
)

×
∫ 1

−1
d cos γ Pl (cos γ )

∫
dΩy

×
∫

dΩz Pl1
(
cos γry

)
Pl2

(
cos γyz

)
Pl3 (cos γzr′) . (45)

Without loss of generality, we choose r′ = (
r ′, 0, 0

)
and then

we have γzr′ = θz . The integral with respect to Ωz can then
be worked out by use of the integral formula, Eq. (A.1), given
in Appendix A:

∫
dΩz Pl2

(
cos γyz

)
Pl3 (cos γzr′)

=
∫

dΩz Pl2
(
cos γyz

)
Pl3 (cos θz)

= Pl2
(
cos θy

) 4π

2l2 + 1
δl2,l3 . (46)

The integral with respect to Ωy also can be integrated directly
by Eq. (A.1),

∫
dΩy Pl1

(
cos γry

)
Pl2

(
cos θy

) 4π

2l2 + 1
δl2,l3

= Pl1 (cos θr )
4π

2l1 + 1
δl1,l2

4π

2l2 + 1
δl2,l3 . (47)

Then, performing the integral with respect to γ (γ = θr when
r′ = (

r ′, 0, 0
)
) in Eq. (45), we have

4π

2l1+1
δl1,l2

4π

2l2+1
δl2,l3

∫ 1

−1
d cos θr Pl (cos θr ) Pl1 (cos θr )

= 32π2

(2l + 1)3 δl,l1δl1,l2δl2,l3 . (48)

By Eqs. (46), (47), and (48), we have

I3 = 32π2i3l jl

(
r y

i2 (t − τ)

)
jl

(
yz

i2 (τ − τ ′)

)
jl

( zr

i2τ ′
)

.

(49)

Substituting Eq. (49) into Eq. (43) gives

δ
(2)
l (k) = 64π4i3l 1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ t

0
dτ

∫ τ

0
dτ ′

×
∫ ∞

0
y2dyV (y)

∫ ∞

0
z2dzV (z)

×
exp

(
− y2+z2

4(τ−τ ′)

)

[4π (τ − τ ′)]3/2 jl

(
yz

i2 (τ − τ ′)

)

×
∫ ∞

0
r2dr

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

exp
(
− z2+r2

4τ ′
)

(4πτ ′)3/2

× jl

(
r y

i2 (t − τ)

)
jl

( zr

i2τ ′
)

. (50)

To perform the integral with respect to r , by using the integral
representation (B.1) given in Appendix B, we rewrite
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jl

(
r y

i2 (t − τ)

)
jl

( zr

i2τ ′
)

= 1

2

∫ 1

−1
d cos θ

×
sin

√[
r y

i2(t−τ)

]2+( zr
i2τ ′

)2−2 r y
i2(t−τ)

zr
i2τ ′ cos θ

√[
r y

i2(t−τ)

]2+( zr
i2τ ′

)2−2 r y
i2(t−τ)

zr
i2τ ′ cos θ

Pl (cos θ) .

(51)

Then the integral with respect to r can be worked out,

∫ ∞

0
r2dr

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

exp
(
− z2+r2

4τ ′
)

(4πτ ′)3/2

× jl

(
r y

i2 (t − τ)

)
jl

( zr

i2τ ′
)

= 1

2

∫ 1

−1
d cos θ Pl (cos θ)

×
∫ ∞

0
r2dr

exp
(
− r2+y2

4(t−τ)

)

[4π (t − τ)]3/2

exp
(
− z2+r2

4τ ′
)

(4πτ ′)3/2

×
sin

√[
r y

i2(t−τ)

]2 + ( zr
i2τ ′

)2 − 2 r y
i2(t−τ)

zr
i2τ ′ cos θ

√[
r y

i2(t−τ)

]2 + ( zr
i2τ ′

)2 − 2 r y
i2(t−τ)

zr
i2τ ′ cos θ

= 1

8π

∫ 1

−1
d cos θ Pl (cos θ)

1

[4π (t − τ + τ ′)]3/2

× exp

(
− y2 + z2 + 2yz cos θ

4 (t − τ + τ ′)

)
. (52)

Substituting Eq. (52) into Eq. (50), we have

δ
(2)
l (k) = 8π3i3l 1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ t

0
dτ

∫ τ

0
dτ ′

×
∫ ∞

0
y2dyV (y)

∫ ∞

0
z2dzV (z)

exp
(
− y2+z2

4(τ−τ ′)

)

[4π (τ − τ ′)]3/2

× jl

(
yz

i2 (τ − τ ′)

) exp
(
− y2+z2

4(t−τ+τ ′)

)

[4π (t − τ + τ ′)]3/2

×
∫ 1

−1
d cos θ Pl (cos θ) exp

(
− yz cos θ

2 (t − τ + τ ′)

)
. (53)

Using the expansion (30) and the orthogonality of the Leg-
endre polynomials, we have
∫ 1

−1
d cos θ Pl (cos θ) exp

(
− yz cos θ

2 (t − τ + τ ′)

)

=
∑
l ′=0

(
2l ′ + 1

)
i l

′
jl ′

(
− yz

i2 (t − τ + τ ′)

)

×
∫ 1

−1
d cos θ Pl (cos θ) Pl ′ (cos θ)

= 2i l jl

(
− yz

i2 (t − τ + τ ′)

)
. (54)

Substituting Eq. (54) into Eq. (53) and setting T = τ − τ ′,
we have

δ
(2)
l (k) = 16π3 1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ ∞

0
y2dyV (y)

×
∫ ∞

0
z2dzV (z)

∫ t

0
dτ

∫ τ

0
dT

exp
(
− y2+z2

4T

)

(4πT )3/2

×
exp

(
− y2+z2

4(t−T )

)

[4π (t − T )]3/2 jl
( yz

i2T

)
jl

(
− yz

i2 (t − T )

)
. (55)

Exchanging the order of integrals
∫ t

0 dτ
∫ τ

0 dT →∫ t
0 dT

∫ t
T dτ

and resetting T = τ ′ give

δ
(2)
l (k) = 16π3 1

2π i

∫ c+i∞

c−i∞
dt

ek
2t

t

∫ ∞

0
y2dyV (y)

×
∫ ∞

0
z2dzV (z)

∫ t

0
dτ ′

∫ t

τ ′
dτ

exp
(
− y2+z2

4τ ′
)

(4πτ ′)3/2

×
exp

(
− y2+z2

4(t−τ ′)

)

[4π (t − τ ′)]3/2 jl
( yz

i2τ ′
)
jl

(
− yz

i2 (t − τ ′)

)
. (56)

Integrating with respect to τ , we have

δ
(2)
l (k) = 1

4

∫ ∞

0
y2dyV (y)

∫ ∞

0
z2dzV (z)

× 1

2π i

∫ c+i∞

c−i∞
dtek

2tI4, (57)

where

I4 = 1

t

∫ t

0
dτ ′ exp

(
− y2+z2

4(t−τ ′)

)

(t − τ ′)1/2

×
exp

(
− y2+z2

4τ ′
)

τ ′3/2 jl

(
− yz

i2 (t − τ ′)

)
jl

( yz

i2τ ′
)

= −8
∫ ∞

0
kdke−k2t

{
k2 jl (ky) nl (ky) j2

l (kz) , y> z
k2 j2

l (ky) jl (kz) nl (kz) , y< z
,

(58)

where nl (z) is the spherical Bessel function of the second
kind. Thus, the inverse Laplace transformation of I4 can be
worked out:

1

2π i

∫ c+i∞

c−i∞
dtek

2tI4

= −4

{
k2 jl (ky) nl (ky) j2

l (kz) y > z
k2 j2

l (ky) jl (kz) nl (kz) , y < z
. (59)

Substituting Eq. (59) into Eq. (57), we have

δ
(2)
l (k) = −k2

∫ ∞

0
y2dy jl (ky) nl (ky) V (y)

×
∫ y

0
z2dz j2

l (kz) V (z)
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− k2
∫ ∞

0
y2dy j2

l (ky) V (y)

×
∫ ∞

y
z2dz jl (kz) nl (kz) V (z) . (60)

By exchanging the order of integrals,
∫ ∞

0 dy
∫ ∞
y dz →∫ ∞

0 dz
∫ z

0 dy, we rewrite Eq. (60) as

δ
(2)
l (k) = −k2

∫ ∞

0
y2dy jl (ky) nl (ky) V (y)

×
∫ y

0
z2dz j2

l (kz) V (z)

−k2
∫ ∞

0
z2dz jl (kz) nl (kz) V (z)

×
∫ z

0
y2dy j2

l (ky) V (y) . (61)

Obviously, the two parts in Eq. (61) are equal. Using jl (z) =√
π/ (2z)Jl+1/2 (z) and nl (z) = √

π/ (2z)Yl+1/2 (z) gives
Eq. (21).

4 Comparison with Born approximation

The approach for scattering problems established in the
present paper is to convert a method of calculating heat ker-
nels into a method of solving scattering problems. As an
application, in Sect. 3, we suggest a method for the scatter-
ing phase shift, based on the covariant perturbation theory of
heat kernels.

In scattering theory, there are many approximation meth-
ods, such as the Born approximation, the WKB method, the
eikonal approximation, and the variational method [28].

In this section, we compare our method with the Born
approximation.

4.1 Comparison of first-order contribution

For clarity, we list the result given by the above section in
the following.

The first-order phase shift given by the covariant pertur-
bation theory given in Sect. 3 reads

δ
(1)
l (k)cpt = −π

2

∫ ∞

0
rdr J 2

l+1/2 (kr) V (r) . (62)

For comparison: the first-order phase shift given by the Born
approximation reads [28]

δ
(1)
l (k)Born = arctan

[
−π

2

∫ ∞

0
rdrV (r) J 2

l+1/2 (kr)

]

� −π

2

∫ ∞

0
rdr J 2

l+1/2 (kr) V (r) + · · · . (63)

Obviously, the leading contributions of these two methods
are the same (in the Born approximation, the first-order con-

tribution is in fact arctan
[
− (π/2)

∫ ∞
0 rdrV (r) J 2

l+1/2 (kr)
]
,

but the higher contribution can be safely ignored in the first-
order contribution).

4.2 Comparison of second-order contribution

The second-order phase shift given by the covariant pertur-
bation theory given in Sect. 3 [Eqs. (21) and (61)] reads

δ
(2)
l (k)cpt = −π2

2

∫ ∞

0
rd r Jl+1/2 (kr)Yl+1/2 (kr) V (r)

×
∫ r

0
r ′dr ′ J 2

l+1/2

(
kr ′) V (

r ′)

= −π2

4

∫ ∞

0
rdr Jl+1/2 (kr) Yl+1/2 (kr) V (r)

×
∫ r

0
r ′dr ′ J 2

l+1/2

(
kr ′) V (

r ′)

−π2

4

∫ ∞

0
rdr J 2

l+1/2 (kr) V (r)

×
∫ ∞

r
r ′dr ′ Jl+1/2

(
kr ′) Yl+1/2

(
kr ′) V (

r ′) .

(64)

The second-order phase shift given by the Born approxima-
tion [28] reads

δ
(2)
l (k)Born = arctan

[
−π2

4

∫ ∞

0
rdr Jl+1/2 (kr) Yl+1/2 (kr) V (r)

×
∫ r

0
r ′dr ′ J 2

l+1/2

(
kr ′) V (

r ′)

− π2

4

∫ ∞

0
rdr J 2

l+1/2 (kr) V (r)

×
∫ ∞

r
r ′dr ′ Jl+1/2

(
kr ′) Yl+1/2

(
kr ′) V (

r ′)
]

� −π2

4

∫ ∞

0
rdr Jl+1/2 (kr) Yl+1/2 (kr) V (r)

×
∫ r

0
r ′dr ′ J 2

l+1/2

(
kr ′) V (

r ′)

−π2

4

∫ ∞

0
rdr J 2

l+1/2 (kr) V (r)

×
∫ ∞

r
r ′dr ′ Jl+1/2

(
kr ′) Yl+1/2

(
kr ′) V (

r ′) + · · · .

(65)

It can be directly seen that the leading contribution of the
second-order Born approximation and the leading contribu-
tion of the second-order covariant perturbation theory are the
same.
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4.3 Comparison through an exactly solvable potential
V (r) = α/r2

In this section, we compare the two methods, the covariant
perturbation theory method, and the Born approximation,
through an exactly solvable potential:

V (r) = α

r2 . (66)

Using these two approximation methods to calculate an exac-
tly solvable potential can help us to compare them intuitively.

The phase shift for the potential (66) can be solved exactly,

δl = −π

2

⎡
⎣

√(
l + 1

2

)2

+ α −
(
l + 1

2

)⎤
⎦ . (67)

In order to compare the methods term by term, we expand
the exact result (67) as δl = δ

(1)
l + δ

(2)
l + · · · , where

δ
(1)
l = − πα

2(2l + 1)
, (68)

δ
(2)
l = πα2

2(2l + 1)3 . (69)

First order The first-order contribution given by the
covariant perturbation theory and the Born approximation
can be directly obtained by substituting the potential (66)
into Eqs. (20) and (63), respectively:

δ
(1)
l (k)cpt = − πα

2(2l + 1)
, (70)

δ
(1)
l (k)Born = arctan

[
− πα

2(2l + 1)

]

� − πα

2(2l + 1)
− 1

3

[
− πα

2(2l + 1)

]3

. (71)

Comparing with the direct expansion of the exact solu-
tion, Eqs. (68) and (69), we can see that both results are
good approximations, and the result given by covariant per-
turbation theory is better than the result given by the Born
approximation.

Second order The second-order contribution given by the
covariant perturbation theory and the Born approximation
can be directly obtained by substituting the potential (66)
into Eqs. (21) and (65), respectively:

δ
(2)
l (k)cpt = πα2

2(2l + 1)3 , (72)

δ
(2)
l (k)Born = arctan

[
πα2

2(2l + 1)3

]

� πα2

2(2l + 1)3 − 1

3

[
πα2

2(2l + 1)3

]3

. (73)

Comparing with the second-order contribution, Eq. (69),
we can see that, like that in the case of first-order contribu-
tions, the result given by the covariant perturbation theory is
better.

5 Calculating global heat kernel from phase shift

The key result of this paper is a relation between partial-
wave phase shifts and heat kernels. Besides solving a scat-
tering problem from a known heat kernel, obviously, we can
also calculate a heat kernel from a known phase shift. Here,
we only give a simple example with the potential α/r2. A
systematic discussion of how to calculate heat kernels and
other spectral functions, such as one-loop effective actions,
vacuum energies, and spectral counting functions, from a
solved scattering problem will be given elsewhere.

For the potential

V (r) = α

r2 , (74)

the exact partial-wave phase shift is given by Eq. (67),

δl = −π

2

⎡
⎣

√(
l + 1

2

)2

+ α −
(
l + 1

2

)⎤
⎦ . (75)

By the relation between a global heat kernel and a scatter-
ing phase shift given by Ref. [14],

Ks
l (t) = 2

π
t
∫ ∞

0
kdkδl (k) e

−k2t − δl (0)

π
, (76)

we can calculate the scattering part of the global heat kernel
immediately,

Ks
l (t) = −1

2

⎡
⎣

√
α +

(
l + 1

2

)2

−
(
l + 1

2

)⎤
⎦ . (77)

In this case, the bound part of heat kernel Kb
l (t) = 0 and

the free part of heat kernel K f
l (t) = R/

√
4π t − 1

2

(
l + 1

2

)
,

where R is the radius of the system. The global partial-wave
heat kernel then reads

Kl (t) = Ks
l (t) + Kb

l (t) + K f
l (t)

= R√
4π t

− 1

2

√
α +

(
l + 1

2

)2

. (78)

As a comparison, we calculate the partial-wave heat kernel
for V (r) = α/r2 by another approach.
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The partial-wave heat kernel of a free particle, K f
l ,

which is the heat kernel of the radial operator Dfree =
− 1

r2
d
dr

(
r2 d

dr

) + l(l+1)

r2 , can be calculated directly:

K f
l

(
t; r, r ′) = 1

2t
√
rr ′ exp

(
−r2 + r ′2

4t

)
Il+1/2

(
rr ′

2t

)
.

(79)

By setting s(s+1)

r2 = l(l+1)

r2 + α
r2 , where s=

√
α + (l + 1/2)2−

1/2, we can obtain the partial-wave heat kernel of the operator
Dl = − 1

r2
d
dr

(
r2 d

dr

) + l(l+1)

r2 + α
r2 ,

Kl
(
t; r, r ′) = 1

2t
√
rr ′ exp

(
−r2 + r ′2

4t

)

×I√
α+(l+1/2)2

(
rr ′

2t

)
. (80)

Taking the trace of Kl
(
t; r, r ′) gives the global partial-wave

heat kernel Kl (t):

Kl (t) =
∫ R

0
r2dr Kl (t; r, r)

= R2(1+η)

(4t)1+η � (2 + η)

× 2F2

(
η + 1

2
, η + 1; η + 2, 2η + 1;− R2

t

)
,(81)

where η = √
(l + 1/2)2 + α, pFq

(
a1, a2 · · · ap; b1, b2 · · ·

bq ; z
)

is the generalized hypergeometric function [26].
Expanding Kl (t) at R → ∞ gives

Kl (t) = R√
4π t

− 1

2
η + √

t
2η2 − 1

2 + ie−R2/t−iπη

4
√

πR
+ · · · .

(82)

When R → ∞, one recovers the heat kernel given by Eq.
(78).

6 Conclusions and outlook

In this paper, based on two quantum field theory methods, the
heat-kernel method [1] and the scattering spectral method [2],
we suggest an approach for calculating the scattering phase
shift. The method suggested in the present paper is indeed
a series of different methods of calculating scattering phase
shifts constructed from various heat-kernel methods.

The key step is to find a relation between partial-wave
phase shifts and heat kernels. This relation allows us to
express a partial-wave phase shift by a heat kernel. Then each

method of the calculation of heat kernels can be converted to
a method of the calculation of phase shifts.

As an application, we provide a method for the calculation
of phase shifts based on the covariant perturbation theory of
heat kernels.

Furthermore, as emphasized above, by this approach,
we can construct various methods for scattering problems
with the help of various heat-kernel methods. In subsequent
works, we shall construct various scattering methods by using
various heat-kernel expansions.

In this paper, as a byproduct, we also provide an off-
diagonal heat-kernel expansion based on the technique devel-
oped in the covariant perturbation theory for diagonal heat
kernels, since the heat-kernel method for scatterings estab-
lished in the present paper is based on the off-diagonal
heat kernel rather than the diagonal heat kernel. It should
be emphasized that many methods for calculating diagonal
heat kernels can be directly applied to the calculation of off-
diagonal heat kernels. That is to say, the method for calcu-
lating the diagonal heat kernel often can also be converted to
a method for calculating off-diagonal heat kernels and scat-
tering phase shifts, as we have done in the present paper.
Therefore, we can construct scattering methods from many
methods of diagonal heat kernels, e.g., [1,9,29].

The heat kernel theory is well studied in both mathemat-
ics and physics. Here, as examples, we list some methods on
the calculation of heat kernel. In Refs. [30–32], the authors
calculate the heat-kernel coefficient with different boundary
conditions. In Ref. [33], using the background field method,
the author calculates the fourth and fifth heat-kernel coef-
ficients. In Refs. [34–36], the authors calculate the third
coefficient by the covariant technique. In Refs. [9,37], by
a string-inspired worldline path-integral method, the authors
calculate the first seven heat-kernel coefficients. In Ref. [29],
a direct, nonrecursive method for the calculation of heat
kernels is presented. In Ref. [38], the first five heat-kernel
coefficients for a general Laplace-type operator on a com-
pact Riemannian space without boundary by the index-free
notation are given. In Refs. [10–13,27,39–43], a covariant
perturbation theory which yields a uniformly convergent
expansion of heat kernels is established. In Refs. [44–46],
a covariant pseudo-differential-operator method for calculat-
ing heat-kernel expansions in an arbitrary space dimension is
given.

An important application of the method given by this paper
is to solve various spectral functions by a scattering method.
The problem of spectral functions is an important issue in
quantum field theory [15,47,48]. A subsequent work on this
subject is a systematic discussion of calculating heat kernels,
effective actions, vacuum energies, etc., from a known phase
shift. We will show that, based on scattering methods, we can
obtain some new heat-kernel expansions. It is well known that
though there are many discussions on the high energy heat-
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kernel expansion, the low-energy expansion of heat kernels is
relatively difficult to obtain. While there are some successful
low-energy scattering theories, by using the relation given in
this paper we can directly obtain some low-energy results for
heat kernels.

Starting from the result given by the present paper, we
can study many problems. The method presented in this
paper can be applied to low-dimensional scatterings. One-
and two-dimensional scatterings and their applications have
been thoroughly studied, such as the transport property of
low-dimensional materials [49–51]. We will also consider a
systematic application of our method to relativistic scatter-
ing. The relativistic scattering is an important problem, e.g.,
the collision of solitons in relativistic scalar field theories
[52] and the Dirac scattering in the problem of the electron
properties of graphene [53,54]. We can also apply the method
to low-temperature physics. There are many scattering prob-
lems in low-temperature physics, such as the scattering in
the problem of the transition temperature of a BEC [55,56]
and the transport property of spin-polarized fermions at low
temperature [57,58].

The application of the method to inverse scattering prob-
lems is an important subject of our subsequent work.
The inverse scattering problem has extreme significance in
physics [59,60]. In practice, for example, the inverse scatter-
ing method can be applied to the problem of the BEC [61]
and the Aharonov–Bohm effect [62].

In Ref. [47], we provide a method for solving for the
spectral function, such as one-loop effective actions, vacuum
energies, and spectral counting functions in quantum field
theory. The key idea is to construct the equations obeyed by
these quantities. We show that, for example, the equation of
the one-loop effective action is a partial integro-differential
equation. By the relation between partial-wave phase shifts
and heat kernel, we can also construct an equation obeyed by
phase shifts.

Moreover, in conventional scattering theory, approximate
large-distance asymptotics is used to seek an explicit result.
In Ref. [63], we show that such an approximate treatment is
not necessary: without the large-distance asymptotics, one
can still rigorously obtain an explicit result. The result pre-
sented in this paper can be directly applied to the scattering
theory without large-distance asymptotics.
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Appendix A:
∫
dΩ ′Pl (cos γ ) Pl ′

(
cos θ ′)

In this appendix, we provide an integral formula:

∫
dΩ ′Pl (cos γ ) Pl ′

(
cos θ ′) = 4π

2l + 1
Pl (cos θ) δll ′ , (A.1)

where γ is the angle between r = (r, θ, φ) and r′ =(
r ′, θ ′, φ′) and dΩ ′ = sin θ ′dθ ′dφ′.

Proof Using the integral formula [64]

∫
dΩ ′Yl0 (γ ) Yl ′0

(
θ ′) =

√
4π

2l + 1
Yl0 (θ) δll ′ (A.2)

and the relation Yl0 (θ, φ) = √
(2l + 1) / (4π)Pl (cos θ), we

have

∫
dΩ ′Yl0 (γ ) Yl ′0

(
θ ′) =

√
2l + 1

4π

√
2l ′ + 1

4π

×
∫

dΩ ′Pl (cos γ ) Pl ′
(
cos θ ′)

= Pl (cos θ) δll ′ . (A.3)

This proves Eq. (A.1). ��

Appendix B: Integral representations of jl (u) jl (v) and
jl (u) nl (v)

In this appendix, we provide two integral representations for
the product of two spherical Bessel functions jl (u) jl (v) and
jl (u) nl (v):

jl (u) jl (v) = 1

2

∫ 1

−1
d cos θ

sin w

w
Pl (cos θ) , (B.1)

where w = √
u2 + v2 − 2uv cos θ and l is an integer.

Proof Using the expansion [65]

sin w

w
=

∞∑
l=0

(2l + 1) jl (u) jl (v) Pl (cos θ) , (B.2)

where u = |u| and v = |v| with θ as the angle between
u and v. Multiplying both sides of (B.2) by Pl ′ (cos θ) and
integrating from 0 to π give
∫ 1

−1
d cos θ

sin w

w
Pl ′ (cos θ)

=
∞∑
l=0

∫ 1

−1
d cos θ (2l + 1) jl (u) jl (v)

Pl (cos θ) Pl ′ (cos θ) = 2 jl ′ (u) jl ′ (v) . (B.3)
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Here, the orthogonality,
∫ 1
−1 d cos θ Pl (cos θ) Pl ′ (cos θ) =

2/ (2l + 1) δll ′ , is used. This proves Eq. (B.1). We have

jl (u) nl (v) = −1

2

∫ 1

−1
d cos θ

cos w

w
Pl (cos θ) , (u < v) ,

(B.4)

where w = √
u2 + v2 − 2uv cos θ . ��

Proof Using the expansion [65]

cos w

w
= −

∞∑
l=0

(2l + 1) jl (u) nl (v) Pl (cos θ), u < v,

(B.5)

where u = |u| and v = |v| with θ the angle between u and v.
Multiplying both sides of (B.5) by Pl ′ (cos θ) and integrating
from 0 to π give
∫ 1

−1
d cos θ

cos w

w
Pl ′ (cos θ)

= −
∞∑
l=0

(2l + 1) jl (u) nl (v)

×
∫ 1

−1
d cos θ Pl (cos θ) Pl ′ (cos θ)

= −
∞∑
l=0

(2l + 1) jl (u) nl (v)
2

2l + 1
δll ′

= −2 jl ′ (u) nl ′ (v) . (B.6)

This proves Eq. (B.4). ��
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