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Abstract A non-conformally invariant coupling between
the inflaton and the photon in the minimal Lorentz-violating
standard model extension is analyzed. For specific forms
of the Lorentz-violating background tensor, the strong-
coupling and back-reaction problems of magnetogenesis
in de Sitter inflation with scale ∼1016 GeV are evaded,
the electromagnetic-induced primordial spectra of (Gaussian
and non-Gaussian) scalar and tensor curvature perturbations
are compatible with cosmic microwave background obser-
vations, and the inflation-produced magnetic field directly
accounts for cosmic magnetic fields.

1 Introduction

Coherent magnetic fields as strong as B ∼ 10−6 G have
been detected in any type of galaxies and in galaxy clusters
(for reviews on cosmic magnetic fields, see [1–10]). Their
origin is still an open issue and is puzzling to the point that
“cosmic magnetism” should be considered one of the biggest
mysteries in cosmology.

Nowadays, what it is clear enough is that seed mag-
netic fields present prior to galaxy formation can be ampli-
fied by protogalaxy collapse and magnetohydrodynamic tur-
bulence effects and then, at least in principle, they can
reproduce the properties of presently observed galactic
fields.

Indeed, it has been recently pointed out [11] (see also ref-
erences therein) that a small-scale dynamo could exponen-
tially amplify small-scale seed magnetic fields during the
process of galactic disk formation. Successively, differential
rotation of the newly formed galactic disk would order the
chaotic field resulting from the small-scale dynamo in such
a way to reproduce the main features of the observed galac-
tic magnetic fields. This mechanism would explain galactic
magnetism if a sufficiently strong seed field is present prior
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to galaxy formation but leave substantially unanswered the
question of the presence of strong magnetic fields in clusters
of galaxies.

A plethora of mechanism acting in the early Universe have
been proposed to produce seed fields since Fermi’s proposal
of the existence of cosmic magnetic fields back in 1949 [12].

Promising candidates are those mechanism operating dur-
ing inflation since inflation-generated fields can be correlated
on superhorizon scales, and then their comoving correlation
length can be as large as the galactic one. If magnetic fields
are created after inflation, instead, their correlation length
cannot exceed the dimension of the horizon at the time of
generation, so that they are correlated on scales generally
much smaller than the characteristic scale of the observed
cosmic fields.

Since standard Maxwell electromagnetism in a Friedmann–
Robertson–Walker universe is invariant under conformal
transformations, magnetic fields cannot be generated during
inflation, as a consequence of the well-known “Parker the-
orem” [13,14]. For this reason, all inflationary models pro-
posed in the literature repose on the breaking of conformal
invariance of (standard) electrodynamics.

Turner and Widrow [15] analyzed the consequences of
adding, to the Maxwell Lagrangian, nonstandard conformal-
breaking gravitational couplings of the photon.

Ratra [16], instead, introduced a nonstandard conformal-
breaking coupling between the scalar field φ responsible for
inflation (the inflaton) and the electromagnetic field.

After these two seminal papers on the generation of large-
scale magnetic fields at inflation, many other mechanisms
have been proposed, most of which introduces nonstan-
dard photon couplings to break conformal invariance (see,
e.g., [17–59]).

There are, however, three mechanisms proposed in the
literature that work without resorting to nonstandard physics.

Dolgov [60] argued that the well-known conformal
anomaly in quantum field theory in curved spacetime induces
a breaking of conformal invariance of standard electrody-
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namics, which in turn stimulates the generation of strong,
large-scale magnetic field at inflation.

Barrow and Tsagas [61,62] (see, also, [63,64] and [65,
66]) showed that, within the framework of conventional elec-
tromagnetism, astrophysically interesting magnetic fields
can be generated if one assumes, contrarily to what previ-
ously assumed in the literature of cosmic magnetic fields,
that the spatial curvature of the Universe is nonzero and com-
patible with astrophysical observations.

The author pointed out in [67] (see, also, [68–72]) that the
process of renormalization of inflationary quantum magnetic
fluctuations naturally breaks conformal invariance giving, as
a result, a strong, scale-independent today magnetic field.

Recently, however, a potential problem for inflationary
mechanisms of magnetogenesis has been pinpointed by
Demozzi, Mukhanov, and Rubinstein [73], and it is now
known as the “strong-coupling problem”. The problem con-
sists in the fact that the full electrodynamics theory, including
both the nonstandard couplings of the photon with other fields
(as the inflaton) and the standard one with conserved exter-
nal currents, must always be in a weak-coupling regime, in
order to have reliable results. This problem, when combined
with the so-called “back-reaction problem”, which appears
in the theory when the inflation-produced electromagnetic
field appreciably back-reacts on the inflationary dynamics,
excludes all the models of inflationary magnetogenesis based
on nonstandard physics.

After this work [73], only three scenarios for inflation-
ary magnetogenesis have been suggested in which both the
strong-coupling and the back-reaction problems are avoided.
(Such problems are successfully evaded also in a magneto-
genesis model proposed by Membiela [74]. In such a model,
however, the background cosmology is given by a nonstan-
dard bouncing cosmological model instead of standard infla-
tion.)

Ferreira et al. [75,76] considered a magnetogenesis sce-
nario à la Ratra where the inflaton is kinetically coupled to
the photon and where a low scale inflation is followed by a
prolonged reheating phase dominated by a stiff fluid.

Caprini and Sorbo [77] proposed a generalization; a Ratra-
like model, where both a kinetic and an axion-like coupling
are present.

Very interesting is the scenario recently proposed by Tasi-
nato [78]. A (nonstandard) derivative interaction between
fermion fields (which give rise to the external currents) and
a scalar field (which is kinetically coupled to the photon and
amplifies electromagnetic vacuum fluctuations) “renormal-
izes” the electric charge during inflation in such a way that the
theory is always in the weak-coupling regime. (For possible
problems that could arise in this scenario, see [79].)

Beside the strong-coupling and the back-reaction prob-
lems, there is another possible problem, hereinafter referred
to as the “curvature perturbation problem”, first pointed out

by Barnaby et al. [80]. It consists in the fact that inflation-
ary electromagnetic fields generate both scalar (Gaussian and
non-Gaussian) and tensor curvature perturbations that could
be in conflict with recent observations of cosmic microwave
background (CMB) anisotropies.

In this paper, we discuss a generalization of the Ratra
model where the inflaton φ is kinetically coupled to the pho-
ton through a Lorentz-violating coupling of the form

f (φ)(LM + LLV), (1)

where f is a generic positive-defined function,LM is the stan-
dard Maxwell Lagrangian, while LLV contains all Lorentz-
violating terms that involve the photon field and that are
implemented by external background tensors.

The motivation behind the investigation of possible effects
of Lorentz-violation in inflationary magnetogenesis is that
in some theories of quantum gravity, such as loop quantum
gravity [81] and string theory [82], the breakdown of Lorentz
symmetry is expected to take place around the Planck scale,
and so before the beginning of inflation.

Working in the weak-coupling regime, we will show that
strong, scaling-invariant, magnetic fields can be created with-
out back-reacting on the inflationary dynamics and with-
out generating curvature perturbations in conflict with CMB
results. This is possible if the external tensors, which repre-
sent new degrees of freedom with respect to the Ratra model,
assume specific (fine-tuned) forms that assure that the electric
part of the electromagnetic energy-momentum tensor (which
would give rise to the the three aforementioned problems) is
vanishing during inflation.

The paper is organized as follows. In Sect. 2, we dis-
cuss the characteristics (intensity and correlation length) that
a comoving cosmic magnetic field must have in order to
explain the magnetic fields detected in galaxies and clus-
ters of galaxies. In Sect. 3, we briefly review, in the con-
text of the Ratra-like model, the strong-coupling and back-
reaction problems in inflationary magnetogenesis. In Sects.
4 and 5, we introduce and quantize our model of magneto-
genesis based on Lorentz-violating couplings between the
inflaton and the photon. In Sect. 6, we derive the conditions
under which the inflation-produced electromagnetic field
does not appreciably back-react on the inflationary dynamics.
In Sect. 7, we evolve the produced magnetic field from the
end of inflation until today. In Sect. 8, we discuss additional
constraints that could be eventually imposed on the inflation-
produced electromagnetic energy-momentum tensor. In Sect.
9, we calculate the spectrum, bispectrum, and trispectrum
of the scalar curvature perturbations and estimate the spec-
trum of the tensor modes generated by the electromagnetic
field, and compare them to the current bounds derived by the
Planck mission. In Sect. 10, we discuss our results. Finally,
in Sect. 11, we draw our conclusions.
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2 Seed magnetic fields

Magnetic fields have been detected in all types of galaxies
with intensities of order µG. Galaxies at high redshift (still
in the process of being formed) and irregular galaxies do
not possess structured magnetic fields, while magnetic fields
in fully formed galaxies, such as spiral or barred galaxies,
typically trace the large-scale structure of galaxies [1,5].

These observations could be explained if a sufficiently
intense large-scale magnetic field were present prior to
galaxy formation. In this case, and due to the high conduc-
tivity of the protogalactic plasma, the magnetic field would
remain frozen in the plasma and its final spatial configu-
ration would reflect that of the galaxy. This rearrangement
of the structure (not amplification) of the magnetic field
could easily be realized by a galactic dynamo action, whose
efficiency in reorganizing the primordial field is subjected
to only this condition: that the comoving magnetic corre-
lation length be greater than about 100 pc [1]. Moreover,
due to the Alfvén theorem (see, e.g., [3]), a frozen-in mag-
netic field is amplified by a factor of [ρgal/ρm(t)]2/3 and
its correlation decreased by [ρgal/ρm(t)]1/3 during proto-
galactic collapse [15]. Here, ρgal and ρm(z) ∝ (1 + z)3 are,
respectively, the galactic and cosmic matter densities, and
for typical galaxies ρgal/ρm(t0) ∼ 106 at the present cos-
mic time t0 � 4 × 1017s. Therefore, a comoving seed field
B0 ∼ 10−10[(1 + zgal)/(1 + zta)]2G, correlated on a comov-
ing scale greater than λB ∼ 10[(1+zta)/(1+zgal)] kpc, could
explain the galactic magnetism. The redshift-dependent fac-
tors come from the fact that between the turn-around redshift
zta (when the protogalactic collapse begins) and the galaxy
redshift zgal, a frozen-in primordial magnetic field is decou-
pled from the Hubble flow and does not evolve adiabatically.
Typically, zta ∼ fewtens, while zgal ranges from 0 to few [2].

The observation of galaxy clusters reveals the presence of
intracluster large-scale-correlated µG magnetic fields. The
intensity of such fields rise to tens of µG in the cluster cores,
but this can be probably ascribed to fast-acting dynamo mech-
anisms due to cluster cooling flows [1].

Numerical simulations [83] of cluster formation starting
at redshift zta = 15 have shown that a few × 10−10 G seed
field is processed by magnetohydrodynamic effects in such
a way to reproduce the observed magnetic Faraday rotation
maps of clusters at low redshifts (zcl � 0). It has also be
found that the initial magnetic field correlation properties
are inessential to the final result, although the scale of the
initial magnetic field fluctuations was limited by the resolu-
tion length of order 100 kpc [84]. The overall amplification of
a factor few×103 is explained as a Alfvén frozen-flux effect
of [ρcl/ρm(t0)]2/3 ∼ 102 during cluster collapse [since, typ-
ically, ρcl/ρm(t0) ∼ 103], plus an amplification of a factor
of few tens, probably due to a Kelvin–Helmholtz instability
of the intracluster plasma flows [83]. Therefore, a comoving

seed field B0 ∼ 10−10(1 + zta)
−2 G, correlated on a comov-

ing scale greater than λB ∼ 100 (1 + zta) kpc, could explain
cluster magnetic fields.

Roughly speaking, then, in order to explain both galactic
magnetism and galaxy cluster magnetic fields, it suffices to
have a comoving seed magnetic field such that [67]

10−13G � B0 � few × 10−12 G, (2)

λB � few × Mpc. (3)

Limits on primordial magnetic fields. If cosmic magnetic
fields are relics from inflation, they could modify the stan-
dard evolution of the universe in the radiation and matter
eras. However, this is not the case, since the present lim-
its on primordial magnetic fields do not exclude the exis-
tence of large-scale magnetic fields as strong as those in
Eq. (2). Indeed, the most significant limits on large-scale
cosmic magnetic fields come from big bang nucleosynthe-
sis analyses, B0 � 1 × 10−6 G [85–87], data on large-scale
structures, B0 � few × 10−9 G [87,88], studies of CMB
radiation, B0 � few×10−9 G [87,89–93], studies of the ion-
ization history of our Universe, B0 � 10−9 G [94], Faraday
rotation maps of distant quasars, B0 � 10−11 G [95,96], and
blazar observations, B0 � 7 × 10−14 G [97–99], where the
last lower limit refers to the less conservative bound from the
blazar 1ES 0229+200 [99]. It is interesting to observe that
the upper limit from Faraday rotation maps and the lower
limit from blazar observations are a just few times outside
the interval of B0 in Eq. (2). Narrowing the above limits
could then eventually reveal the primordial nature of cosmic
magnetic fields.

3 Strong coupling and back-reaction in inflationary
magnetogenesis

Let us now discuss, in some detail, two requirements that
have to be imposed on any magnetogenesis mechanism
operating during inflation. We focus our attention to the
“standard” kinetically coupled scenario for magnetogenesis,
where the inflaton field φ is coupled to the standard kinetic
Maxwell term via a generic coupling f (φ). This represents
an extended version of the model proposed by Ratra [16],
where f (φ) ∝ eαφ , with α being a constant.

The first requirement, that the full theory, namely when
including conserved external currents, must be in a weak-
coupling regime, has been discussed only recently in [73].

The second requirement, namely that the inflation-
produced electromagnetic field must not appreciably back-
react on the inflationary dynamics, has been instead first
discussed by Ratra [16], but it was ignored in the seminal
paper [15] by Turner and Widrow on inflationary magneto-
genesis.
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3.1 Strong coupling

Let us consider the action for the electromagnetic field Aμ,

Sem =
∫

d4x
√−g Lem, (4)

where g is the determinant of the metric tensor gμν , and Lem

the electromagnetic Lagrangian density, and let us assume
that the electromagnetic field is coupled to the (homoge-
neous) inflaton field φ through a general coupling of the form

Lem = f (φ)LM + Lint. (5)

Here, f (φ) is a generic, positive-defined function of the
inflaton, LM = − 1

4 Fμν Fμν is the standard free Maxwell
Lagrangian density, with Fμν = ∂μ Aν −∂ν Aμ, while Lint =
jμ Aμ is the standard interaction term with conserved exter-
nal current. If, for the sake of simplicity, we assume that jμ
is provided just by a charged massless fermion fields ψ , we
than have jμ = eψ̄γ μψ , where e is the electric charge, and
γ μ are the Dirac matrices in curved spacetime. The latter are
related to the standard Dirac matrices in Minkowski space-
time through γ μ = eμ

aγ a , with eμ
a being the vierbein [13].1

(In this paper, indices in Minkowski spacetime are indi-
cated with the first letters of the Latin alphabet and run from
0 to 3. Indices in curved spacetimes are indicated with Greek
letters and run from 0 to 3. Latin indices from the middle of
the alphabet run from 1 to 3 and indicates spatial components
of a given tensor.)

Re-writing the Lagrangian density (5) as

Lem = f (φ)

(
LM + e

f (φ)
ψ̄γ μψ

)
, (6)

we see that the quantity e/ f (φ) plays the role of an effective,
time-dependent electric charge. The case f (φ) � 1 would
then correspond to a strong coupling between the fermion
and the electromagnetic fields, and the theory would be in a
(unmanageable) strong-coupling regime, as first pointed out
in [73]. For this reason, we assume that f (φ) � 1 during
inflation and, obviously, f (φ) � 1 at the end of inflation in
order to recover the standard electrodynamics. Accordingly,
we will consistently neglect, in the following, the interaction
term Lint in Eq. (5).

3.2 Backreaction

It is tacitly assumed in the literature that inflationary mag-
netogenesis takes place in a fixed curved spacetime back-
ground. Therefore, we must consistently check that the vac-
uum expectation value (VEV) of the electromagnetic energy-

1 The vierbein satisfies the condition eμ
aebμ = ηab, and is such that

gμν = e a
μ e b

ν ηab, where ηab is the metric tensor in Minkowski space-
time.

momentum tensor is always negligible with respect to the
energy-momentum tensor of the inflaton.

The electromagnetic energy-momentum tensor can be
found by varying the action with respect to the metric tensor,

(Tem)μν = 2√−g

δSem

δgμν
. (7)

We obtain (Tem)μν = f (φ)(TM)μν , where (TM)μν =
FαμF α

ν + 1
4 Fαβ Fαβgμν is the standard Maxwell energy-

momentum tensor.
Let us restrict our analysis to the case of a spatially

flat, Friedmann–Robertson–Walker universe, described by
the line element

ds2 = a2(dη2 − dx2), (8)

where η is the conformal time and a(η) is the expansion
parameter [the latter is normalized to unity at the present
conformal time η0, a(η0) = 1]. Moreover, we assume, for
the sake of simplicity, that inflation is described by a de Sitter
phase. In this case, the conformal time is inversely propor-
tional to the expansion parameter, η = −1/Ha, and the
Hubble parameter H is a constant. Moreover, the energy-
momentum tensor of the inflaton is (T μ

ν )inf = M4δ
μ
ν , where

δ
μ
ν is the Kronecker delta. Here, M is the scale of infla-

tion, related to the energy density of inflation, ρinf , through
M4 = ρinf = 3H2/(8πG), where G = 1/m2

Pl is the Newton
constant and mPl ∼ 1019 GeV is the Planck mass.

Since both the background spacetime and the coupling
function f (φ) are homogeneous and isotropic, the VEV of
the electromagnetic energy-momentum tensor takes on the
simple form

〈(Tem)μν 〉 = ρem diag(1,−1/3,−1/3,−1/3), (9)

where ρem = 〈(Tem)0
0〉 is the VEV of the electromagnetic

energy density. (For the quantization of the theory and a for-
mal definition of the vacuum, see Sect. 5.) Consequently, the
condition that the electromagnetic back-reaction on inflation
is negligible can be expressed as ρem � ρinf . The electro-
magnetic energy density is made up of an electric contribu-
tion and a magnetic part,

ρem = f (φ)

(
1

2
〈E2〉 + 1

2
〈B2〉

)
, (10)

where the electric and magnetic fields are defined as usual as
a2E = −Ȧ and a2B = ∇ ×A, with Aμ = (0,A). Here, and
in the following, we work the Coulomb gauge, A0 = ∂i Ai =
0, we denote the differentiation with respect to the conformal
time with a dot, and we use the symbol ∇ for indicating the
nabla operator in comoving coordinates.

The two-point correlators 〈E2〉 and 〈B2〉 are formally infi-
nite due to the ultraviolet divergence of the corresponding
spectra. This kind of divergence, typical in quantum theory
in curved spacetime, can be cured by the standard techniques
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of renormalization, such as adiabatic renormalization. Nev-
ertheless, we are principally interested in large-scale electro-
magnetic modes which are outside the horizon. These modes,
which are expected to behave classically, belong to the non-
divergent, infrared part of the spectra. Therefore, it is con-
venient to work in Fourier space and introduce the so-called
electric and magnetic power spectra, PE(k, η) and PB(k, η),
through

〈E2〉 =
∫ ∞

0

dk

k
PE(k), 〈B2〉 =

∫ ∞

0

dk

k
PB(k). (11)

The electromagnetic energy density stored on the mode k is
then

ρem(k) = f (φ)

[
1

2
PE(k) + 1

2
PB(k)

]
, (12)

where ρem(k, η) is the electromagnetic energy spectrum
defined by ρem = ∫ ∞

0
dk
k ρem(k).

The condition that the electromagnetic back-reaction on
inflation is negligible can then be defined, mode-by-mode,
by

ρem(k) � ρinf ∼ 1010
(

M

1016 GeV

)−4

H4. (13)

A particularly interesting class of models is that for which
the coupling function f (φ) scales in time as f (φ) ∝ η6.
This gives a scale-invariant magnetic spectrum, to wit PB(k)

independent on k. The attractive figure of this model resides
in the fact that, as firstly pointed out in [100], all the existing
constraints on cosmic magnetic fields do not strongly peak
over a specific range of either small or large scales. Hence,
a scaling-invariant magnetic field can satisfy, in a “natural
way”, all the current experimental bounds, included the one
in Eq. (3). For the scaling-invariant case, the electric and
magnetic spectra are, roughly speaking,

PE(k) ∼ PB(k)

(−kη)2 , PB(k) ∼ H4

f (φ)
. (14)

On superhorizon scales (−kη � 1), then, the dominant con-
tribution to the electromagnetic energy-momentum tensor is
provided by the electric part. Its maximum value is attained
at the end of inflation, η = ηend. Therefore, back-reaction on
inflation is negligible on scales λ = 1/k such that

λ � λmax = 10−16
(

M

1016 GeV

)−3

Mpc, (15)

where we used the fact that −kηend ∼ 10−22 (Mpc/λ)

(1016 GeV/M).
To simplify the analysis, we have considered here the case

of instantaneous reheating, to wit, we have assumed that after
inflation the Universe entered directly in the radiation domi-
nated era. Needless to say, the electromagnetic back-reaction
on inflation has to be negligible on all observable scales. This,

in turns, means that λmax has to be greater than the present
horizon scale, H−1

0 � 4000 Mpc, where H0 is the Hubble
constant. Accordingly, the scale of inflation has to be below
109 GeV. Such a low scale seems to be incompatible with
recent results on the detection of inflation-produced grav-
itational waves, which require a scale of inflation around
1016 GeV [101]. However, even assuming a scale as low as
M ∼ 109 GeV, the amplitude of the inflation-produced mag-
netic field would be today too small to directly explain cosmic
magnetism. Indeed, the actual magnetic field for the scaling-
invariant case is

B0 ∼ 10−12
(

M

1016 GeV

)2

G, (16)

and it assumes the extremely low value B0 ∼ 10−26 G for
M ∼ 109 GeV.

4 Lorentz-violating couplings

The arguments in Sect. 3 clearly show that the generation
of (scaling-invariant) magnetic fields during (de Sitter) infla-
tion, able to directly explain cosmic magnetization, is prob-
lematic due to their strong back-reaction effects. The validity
of this sort of no-go theorem for inflationary magnetogene-
sis, however, is not general, but it is restricted to the specific
model described by the Lagrangian density (5). This leaves
open the possibility to explore different couplings between
the inflaton and the photon that may eventually generate, in
a self-consistent way, cosmic magnetic fields.

In the following, we investigate one such a possibility, by
looking at a possible new interaction of the inflaton with the
electromagnetic field, this time in the context of the Lorentz-
violating extension of the standard model of particle physics
(for other mechanisms of cosmic magnetic fields at inflation
reposing on the violation of Lorentz symmetry see [102–
111]).

4.1 Lagrangian

The photon sector of the minimal Lorentz-violating standard
model extension (SME) is described by the action

Sγ =
∫

d4x
√−g (LM + LLV), (17)

where LM is the Lorentz- and CPT-invariant Maxwell
Lagrangian density, while

LLV = LCPT−even + LCPT−odd (18)

contains all Lorentz-violating terms that involve the photon
field. They can be separated into two parts, LCPT−even and
LCPT−odd, with the former preserving and the latter violating
CPT symmetry, respectively.
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In Minkowski spacetime, Lorentz violation is achieved
by coupling the electromagnetic field to rank-n, constant
spacetime tensors ka1a2...an , known as external or background
tensors. The passage from Minkowski to a general curved
spacetime is obtained via the vierbein e a

μ , kμ1μ2...μn =
e a1
μ1 e a2

μ2 . . . e an
μn ka1a2...an [112]. In this passage, however, the

external tensors acquire a spacetime dependence and then
cease to be constant. This is due to the fact that the vierbein
e a
μ (x) is, generally, a function of the spacetime position x .

In the photon sector, the most general renormalizable
Lagrangian density contains only three Lorentz-violating
terms,

LCPT−even = −1

4
(kF )μναβ Fμν Fαβ, (19)

LCPT−odd = 1

2
(kAF )μ Aν F̃μν − (kA)μ Aμ, (20)

where (kF )μναβ , (kAF )μ, and (kA)μ, are background tensors.
Their components are arbitrary real spacetime functions and
are known as coefficients for Lorentz violation. Although
the presence of the external tensors may indicate an explicit
breaking of Lorentz violation, the form of the Lagrangian
terms (19) and (20) is completely general and independent of
the origin of the Lorentz violation. Indeed, these terms would
have the same form in the case where Lorentz violation were
spontaneous, deriving, for example, from the fact that the
external tensor kμ1μ2...μn are vacuum expectation values of
corresponding field operators Kμ1μ2...μn ,

kμ1μ2...μn = 〈0|Kμ1μ2...μn |0〉. (21)

We now generalize the coupling in Eq. (5) by assuming that
the inflaton is coupled to the photon field, via the generic
function f (φ), to both the standard photon kinetic term, LM,
and the Lorentz-violating term, LLV,

Lem = f (φ)(LM + LLV). (22)

For the sake of simplicity, we consider only the CPT-even
terms in the Lagrangian density (18). The electromagnetic
Lagrangian density then reads

Lem = f (φ)LMK, (23)

where

LMK = LM − 1

4
(kF )μναβ Fμν Fαβ (24)

is referred to as the Maxwell–Kostelecký Lagrangian den-
sity. The dimensionless rank-4 background tensor (kF )μναβ

is antisymmetric on the first two and last two indices, and
it is symmetric for the interchange of the first and last
pair of indices. These symmetries reduce the number of
independent components of (kF )μναβ to 21. It is useful
to decompose (kF )μναβ into irreducible multiplets [112],
21 = 1a +1s +9s +10s , where 1a represents an antisymmet-
ric singlet (pseudoscalar), 1s a symmetric singlet (scalar), 9s

a symmetric traceless rank-2 tensor, and 10s a rank-4 tensor
possessing the same symmetries of (kF )μναβ and such that
any contraction is identically zero.

Let us restrict our analysis to the case where the back-
ground tensor in Eq. (24) is constructed from fundamental
(not composite) tensors which appear just once in the defi-
nition of (kF )μναβ . Excluding the cases where such funda-
mental tensors are a scalar and/or a pseudoscalar, in which
case the resulting theory is Lorentz invariant, we are left with
the cases of a fundamental rank-2 symmetric tensor and/or a
fundamental rank-4 tensor. In this paper, and for the sake of
simplicity, we consider just the case of a fundamental rank-
2 tensor (kF )μν , and leave the case of a rank-4 tensor to
future investigations. In this specific case, the independent
components of (kF )μναβ reduce to 10, and they are given
by kF = (kF )

μ
μ and (̂kF )μν = (kF )μν − 1

4 kF gμν , which
are, respectively, the trace and the traceless part of the tensor
(kF )μν . Accordingly, the electromagnetic Lorentz-violating
Lagrangian density, which describe the coupling between the
inflaton and the photon, can be written as

Lem = f (φ)

(
LM + 1

4
ξ1kF Fαβ Fαβ − ξ2(̂kF )μν Fμα Fν

α

)
,

(25)

where ξi are real numerical factors. The background tensor
(kF )μναβ , when expressed as a function of the fundamental
rank-2 tensor (kF )μν , has the form

(kF )μναβ = −ξ1kF gμ[αgβ]ν + 4ξ2(̂kF )μ][αgβ][ν, (26)

where square brackets [. . .] indicate antisymmetrization of
the indices enclosed, e.g., Tμ1...[μi μ j ]...μn = 1

2 (Tμ1...μi μ j ...μn

− Tμ1...μ j μi ...μn ) and Tμ1]...[μn = 1
2 (Tμ1...μn − Tμn ...μ1).

4.2 Equation of motion

As in Sect. 3, we restrict our analysis to the case of a
spatially flat, Friedmann–Robertson–Walker universe. Since
gμν = a2ημν , we can take for the vierbein e b

μ = aδb
μ,

where δb
μ is the Kronecker delta. Accordingly, we have

(kF )μν = e b
μ e c

ν (kF )cb = a2δb
μδc

ν(kF )cb. Let now assume
that the background tensor (kF )ab is homogeneous and
isotropic, so that the number of its independent components
reduces to 2. In this case, (kF )ab can be generally written as
(kF )cb = diag(ρK , pK , pK , pK ), where ρK and pK are two
scalar functions which depend only on the conformal time
η. In curved spacetime, then, the background tensor assumes
the form

(kF )μν = diag(ρK ,−pK ,−pK ,−pK ). (27)
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It is useful, for the following discussion, to introduce the
electromagnetic Lagrangian Lem through

Sem =
∫

dη Lem. (28)

Taking into account Eq. (4) and the fact that
√−g = a4, we

have

Lem =
∫

d3x a4Lem, (29)

with Lem given by Eq. (25). Working in the Coulomb gauge,
we have

Lem =
∫

d3x

(
1

2
εȦ2 − 1

2μ
(∇A)2

)
, (30)

where we have defined the time-dependent functions

ε = f (φ)[1 − (ξ1 − ξ2)ρK + (3ξ1 + ξ2)pK ], (31)

μ−1 = f (φ)[1 − (ξ1 + ξ2)ρK + (3ξ1 − ξ2)pK ]. (32)

Varying the action (30) with respect toA, we find the equation
of motion for the vector potential,

Ä + ε̇

ε
Ȧ − 1

n2 ∇2A = 0, (33)

where we have defined n = √
εμ, and we assume that ε and

μ are positive-defined quantities.

4.3 Analogy with continuous media

It is well known in the literature that there exists an analogy
between the photon sector of the minimal SME and the elec-
trodynamics of continuous (or macroscopic) media [113].
In our case, this analogy works as follows. We rewrite the
electromagnetic Lagrangian density as

Lem = LM + 1

4
χ

μν
αβ Fμν Fαβ (34)

where

χ
μν

αβ = 1

2
{1 − f (φ)[1 − (ξ1 + ξ2)kF ]}δμν

αβ

−4ξ2 f (φ) δ
[μ
[α (kF )

ν]
β] (35)

is the susceptibility tensor, and δ
μν
αβ the generalized Kro-

necker delta. Introducing the polarization–magnetization
tensor Mμν as

Mμν = χ
μν

αβ Fαβ, (36)

the equation of motion is

Dμν

;μ = 0, (37)

where

Dμν = Fμν − Mμν (38)

is the displacement tensor. In the Coulomb gauge, Eq. (37)
reduces to 0 = 0 for ν = 0, and to Eq. (33) for ν = i .

Let us introduce the electric and magnetic fields, a2 Ei =
−F0i and a2 Bi = 1

2 εi jk Fjk , the displacement and magne-
tizing fields, a2 Di = −D0i and a2 Hi = 1

2 εi jkD jk , and
the polarization and magnetization fields, a2 Pi = M0i and
a2 Mi = 1

2 εi jkM jk .
Equation (38) can then be rewritten, in three-dimensional

form, as D = E + P and H = B − M, where X =
(X1, X2, X3), and X stands for E, B, D, H, P, or M. Equa-
tion (36) gives, instead, P = (ε−1)E and M = (1−μ−1)B,
so that

D = εE, (39)

H = μ−1B. (40)

The equations connecting the displacement and magnetiz-
ing fields to the electric and magnetic fields are known, in
the electrodynamic theory of continuous media, as “constitu-
tive relations”, and completely determine (together with the
boundary conditions) the propagation properties of electro-
magnetic signals. In particular, Eqs. (39) and (40) describe an
isotropic linear medium with electric permittivity ε and mag-
netic permeability μ. Accordingly, the evolution in vacuum
of electromagnetic fields described by the Lorentz-violating
electromagnetic Lagrangian density (34) is formally equiv-
alent to the evolution of electromagnetic fields described by
the standard Maxwell theory in a continuous medium with
ε and μ given by Eqs. (31) and (32). Continuing with the
analogy of continuous media, the quantity n defined below
Eq. (33) can be interpreted as the refractive index of the
medium.

Finally, and for the sake of completeness, we observe that
the equation of motion, in terms of the displacement and
magnetizing fields, assume the form

∇ · (a2D) = 0,
∂(a2D)

∂η
= ∇ × (a2H), (41)

while the Bianchi identities are

∇ · (a2B) = 0,
∂(a2B)

∂η
= −∇ × (a2E). (42)

Inserting Eqs. (39) and (40) in the second equation of
Eq. (41), we recover Eq. (33).

5 Quantization

Let us now quantize the electromagnetic field whose dynam-
ics is described by the Lagrangian (30).
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5.1 Wronskian condition

We expand the electromagnetic vector potential as

A(η, x) =
2∑

λ=1

∫
d3k

(2π)3
√

2k
εk,λ ak,λ Ak,λ(η) eikx + H.c.,

(43)

where k is the comoving wave number, with k = |k|, and
εk,λ are the standard circular polarization vectors.2

The annihilation and creation operators ak,λ and a†
k,λ sat-

isfy the usual commutation relations,

[ak,λ, a†
k′,λ′ ] = (2π)3δλλ′δ(k − k′), (44)

[ak,λ, ak′,λ′ ] = [a†
k,λ, a†

k′,λ′ ] = 0. (45)

The vacuum state |0〉 is defined by ak,λ|0〉 = 0 for all k and
λ, and it is normalized as 〈0|0〉 = 1.

The equation of motion for the two photon polarization
states, Ak,λ, is obtained by inserting Eq. (43) in Eq. (33),

Äk,λ + ε̇

ε
Ȧk,λ + k2

n2 Ak,λ = 0. (46)

In order to have a consistent quantization of the electromag-
netic field, the solutions of the above equation must satisfy
a normalization condition, known as the Wronskian condi-
tion, which can be obtained as follows. Let us introduce the
electromagnetic conjugate momentum, π = (π1, π2, π3),
as usual as

π = δLem

δȦ
= εȦ, (47)

where in the last equality we used Eq. (30), and let us impose
the canonical commutation relation

[Ai (x), π j (y)] = iδ j
⊥ i (x − y), (48)

where

δ⊥
i j =

∫
d3k

(2π)3 eik(x−y)(δi j − k̂i k̂ j ) (49)

is the transverse delta function. Inserting Eqs. (43) and (47) in
the left hand side of Eq. (48), we find that the latter equation
is satisfied only if

2∑
λ=1

εk,λ ⊗ ε∗
k,λ

(
W [Ak,λ, A∗

k,λ] − 2ik

ε

)
= 0, (50)

where we used Eqs. (44) and (45). Here,

W [A(1)
k,λ, A(2)

k,λ] = A(1)
k,λ Ȧ(2)

k,λ − Ȧ(1)
k,λ A(2)

k,λ (51)

2 The vectors εk,λ satisfy the following properties: (i) k · εk,λ = 0, (ii)
εk,λ · ε∗

k,λ′ = δλλ′ , (iii)
∑

λ(εk,λ)i (ε
∗
k,λ′ ) j = δi j − k̂i k̂ j , (iv) ε∗−k,λ =

−εk,λ, and (v) i k̂ × εk,λ = (−1)λ+1εk,λ, where k̂ = k/k.

is the Wronskian of any two independent solutions, A(1)
k,λ(η)

and A(2)
k,λ(η), of Eq. (46). Using the Abel identity [114], the

above Wronskian can be found explicitly,

W [A(1)
k,λ(η), A(2)

k,λ(η)] = W [A(1)
k,λ(ηi ), A(2)

k,λ(ηi )] ε(ηi )

ε(η)
, (52)

where ηi is an arbitrary time. Accordingly, Eq. (50) can be
written as

2∑
λ=1

εk,λ ⊗ ε∗
k,λ

(
W [Ak,λ(ηi ), A∗

k,λ(ηi )] − 2ik

ε(ηi )

)
= 0.

(53)

We now take ηi as the initial time, namely when inflation
begins, and we assume that Ak,1(ηi ) = Ak,2(ηi ). This choice
implies that W [Ak,λ(ηi ), A∗

k,λ(ηi )] does not depend on λ.
Consequently, Eq. (53) is satisfied only if

W [Ak,λ(ηi ), A∗
k,λ(ηi )] = 2ik

ε(ηi )
, (54)

in which case we have

W [Ak,λ(η), A∗
k,λ(η)] = 2ik

ε(η)
, (55)

for all η. Equation (55) represents the desired condition that
must be satisfied by any solution Ak,λ(η) of the equation
of motion in order to have a consistent quantization of the
electromagnetic field.

5.2 Bunch–Davies normalized solutions

Let us assume, for the sake of simplicity, that the external
tensor (kF )

μ
ν is constant during inflation3 (so that ρk and pK

are constant as well), and that the coupling function f (φ)

evolves in time following a simple power law,

f (φ(η)) = fi

(
η

ηi

)γ

, (56)

where fi = f (φ(ηi )), and γ is a free index. In this case,
the permittivity ε and the permeability μ evolve in time as
ηγ , while the refractive index n is a constant. The solution
of Eq. (46) is then easily found,

Ak,λ = (−kη)ν[c(1)
k H (1)

ν (−kη/n) + c(2)
k H (2)

ν (−kη/n)],
(57)

where ν = (1 − γ )/2, H (1,2)
ν (x) are the Hankel functions of

first and second kind, respectively, and c(1,2)
k are integration

constants. The latter can be fixed by the choice of the vac-
uum, which we take to be the Bunch–Davies vacuum [13,14].
It reduces to the standard Minkowski vacuum in the short

3 It is important to stress that (kF )μν must evolve after inflation in such
a way to be consistent with current experimental limits on Lorentz-
violation coefficients [115].

123



Eur. Phys. J. C (2015) 75 :278 Page 9 of 20 278

wavelength limit, k → ∞. To find it, let us re-scale the elec-
tromagnetic field as

ψk,λ = Ak,λ√
|W [Ak,λ, A∗

k,λ]|
. (58)

Inserting Eq. (58) in Eq. (46), we see that the re-scaled ψ-
modes satisfy the equation of motion

ψ̈k,λ = Ukψk,λ, (59)

where we have defined

Uk = − k2

n2 + 1√
ε

∂2

∂η2

√
ε. (60)

Let us observe that Eq. (59) is formally equal to the zero-
mode, one-dimensional Schrodinger equation with potential
energy Uk , η taking the place of the spatial coordinate, and
k playing the role of a free constant parameter. If ψ

(1)
k,λ and

ψ
(2)
k,λ are any two solutions of Eq. (59), the following inner

product is conserved:

〈ψ(1)
k,λ|ψ(2)

k,λ〉 = −i(ψ(1)
k,λψ̇

(2)
k,λ − ψ̇

(1)
k,λψ

(2)
k,λ). (61)

Moreover, using Eq. (55), we see that ψ-modes are normal-
ized as

〈ψk,λ|ψ∗
k,λ〉 = 1. (62)

For k → ∞, the potential energy is dominated by the
first term in the right-hand-side of Eq. (60). Therefore, the
positive-frequency solution of Eq. (59) in the short wave-
length limit is ψk,λ = ck e−iωkη, where ωk = k/n and ck is an
integration constant. The latter is fixed the normalization con-
dition (62), ck = 1/

√
2ωk , so that ψk,λ = 1/

√
2ωk e−iωkη.

Accordingly, the Minkowski vacuum (k → ∞) is defined by
the normalized electromagnetic field solution

Ak,λ = √
Z e−iωkη, (63)

where Z = √
μ/ε is, in the language of the electrodynamics

of continuous media, the wave impedance of the medium.
Equation (57) must then reduce to Eq. (63) in the limit

k → ∞. This happens only if c(1)
k = [πeiπ(ν+1/2)(−kηi )

γ /

2ε(ηi )]1/2 and c(2)
k = 0, in which case

Ak,λ =
√

π

2
ei π

2 (ν+1/2)
√

Z
√−ωkη H (1)

ν (−ωkη) (64)

is the desired Bunch–Davies vacuum normalized solution.

6 Backreaction on inflation

We now draw our attention to the electromagnetic back-
reaction on inflation in the model described by Lagrangian
(25). We will find the conditions under which such a back-
reaction is completely negligible.

Let us first observe that Lagrangian density (34) can be
conveniently rewritten as

Lem = −1

4
FμνDμν, (65)

with Dμν given by Eq. (38). The electromagnetic energy-
momentum tensor is obtained by inserting Eq. (65) in Eq. (7).
We find

(Tem)μν = (Tmed)μν + (TX )μν. (66)

Here,

(Tmed)μν = Fα{μD α
ν} + 1

4
FαβDαβgμν (67)

is the standard electromagnetic energy-momentum tensor
in a medium described by the displacement tensor (38)
[curly brackets {. . .} indicate a symmetrization of the
indices enclosed, e.g., Tμ1...{μi μ j }...μn = 1

2 (Tμ1...μi μ j ...μn +
Tμ1...μ j μi ...μn )], and

(TX )μν = 1

4
X αβ

γ δμν Fαβ Fγ δ. (68)

The rank-five tensor

X αβ
γ δμν = 2√−g

δ

δgμν

∫
d4x

√−g χ
αβ

γ δ (69)

is antisymmetric on the first two and second two indices,
symmetric in the last two indices, and it is symmetric for the
interchange of the first and second pair of indices.

When the susceptibility tensor has the form of Eq. (35), the
electromagnetic energy-momentum tensor can be written, in
its full form, as

(Tem)μν = f (φ)

[
FαμF α

ν + 1

4
Fαβ Fαβgμν

−1

2
(ξ1 + ξ2)(kF )μν Fαβ Fαβ

−2ξ2(kF )αβ FαμF β
ν + 4ξ2(kF )α{μFν}β F β

α

−ξ2(kF )αβ Fαγ Fβγ gμν

]
. (70)

Due to symmetry, we find that the only (possible) non-
null components of the vacuum expectation value of the
electromagnetic energy-momentum tensor, 〈(Tem)

μ
ν 〉, are the

electromagnetic energy density, 〈(Tem)0
0〉, and 〈(Tem)i

j 〉 =
1
3 (〈(Tem)

μ
μ〉 − 〈(Tem)0

0〉)δi j . Here, (Tem)
μ
μ is the trace of the

electromagnetic energy-momentum tensor, which is, in gen-
eral, different from zero due to the coupling of the photon to
the background tensor (kF )

μ
ν . In particular, we have

ρem = ε

2
〈E2〉 + 1

2μ
〈B2〉 + 〈(TX )0

0〉, (71)

Tem = 〈(TX )μμ〉, (72)
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where we have defined

ρem = 〈(Tem)0
0〉, Tem = 〈(Tem)μμ〉. (73)

When the susceptibility tensor has the form of Eq. (35), we
have

〈(TX )0
0〉 = f (φ)ρK[−(ξ1 − ξ2)〈E2〉 + (ξ1 + ξ2)〈B2〉],

(74)

〈(TX )i
i 〉 = f (φ)pK[(3ξ1 + ξ2)〈E2〉 − (3ξ1 − ξ2)〈B2〉].

(75)

The vacuum expectation value of the squared magnetic and
electric fields operator are easily found:

〈B2〉 =
∫ ∞

0

dk

k
PB(k, η), (76)

〈E2〉 =
∫ ∞

0

dk

k
PE(k, η), (77)

where PB(k, η) and PE(k, η) are the so-called magnetic and
electric power spectra,

PB(k, η) =
2∑

λ=1

k4

4π2a4 |Ak,λ(η)|2, (78)

PE(k, η) =
2∑

λ=1

k2

4π2a4 | Ȧk,λ(η)|2. (79)

Defining also the electromagnetic energy density spec-
trum, ρem(k, η), and the electromagnetic trace spectrum,
Tem(k, η), through

ρem(η) =
∫ ∞

0

dk

k
ρem(k, η), (80)

Tem(η) =
∫ ∞

0

dk

k
Tem(k, η), (81)

we recast Eqs. (71) and (72) as

ρem(k, η) = 1

2
τ1PE + 1

2
τ2PB, (82)

Tem(k, η) = τ3PE + τ4PB, (83)

where we have defined

τ1 = ε − 2(ξ1 − ξ2) f (φ)ρK , (84)

τ2 = μ−1 + 2(ξ1 + ξ2) f (φ)ρK , (85)

τ3 = ε − f (φ), (86)

τ4 = f (φ) − μ−1. (87)

Let us now specialize our results to the case of de Sitter
spacetime and for large-scale, superhorizon modes. Inserting
the asymptotic expansion for −kη → 0 of the solution (64)
in Eqs. (78) and (79), we get

PB(k, η) = |cν |2
4π

Zn4(−ωkη)5+2ν H4, (88)

PE(k, η) = 4ν2

(−kη)2 PB(k, η), (89)

respectively. We are principally interested in the case of a
scaling-invariant magnetic spectrum (the general case goes
along the same lines as below), so that we take ν = −5/2
[corresponding to γ = 6 in Eq. (56)]. In this case, we have

PB(k, η) = 9

2π2 Zn4 H4, (90)

PE(k, η) = 225

2π2 Zn4 H4

(−kη)2 . (91)

Looking at Eqs. (82), (83), (90), and (91), and observing that
Z = n/ε ∼ 1/ f (φ), we conclude, following the discus-
sion in Sect. 3.2, that the electromagnetic back-reaction on
inflation is not generally negligible. This conclusion could
be avoided if the coefficients τ1 and τ3, which enter in the
definition of the electric part of the electromagnetic energy-
momentum tensor, are vanishing. This happens only if the
background tensor (kF )

μ
ν assumes a particular form, which

we are now going to determine. Assuming that τ3 = 0, we
straightforwardly get

ε = f (φ), μ = n2

f (φ)
, Z = n

f (φ)
. (92)

The above equations, when combined with the condition
τ1 = 0 and Eq. (31), give

ρK = 1

2(ξ1 − ξ2)
, pK = 1

2(3ξ1 + ξ2)
, (93)

which determine the form of (kF )
μ
ν in Eq. (27) as a function

of ξi and, accordingly,

n =
√

(ξ1 − ξ2)(3ξ1 + ξ2)

3(ξ1 − ξ2)2 − 4ξ2
2

. (94)

Imposing the reality condition, n2 > 0, we find

ξ1 = 0 or ξ2 = 0 or
ξ1

ξ2
∈ X, (95)

where

X =
(

−∞,−1

3

)
∪

(
1 − 2√

3
, 0

)
∪ (0, 1)

∪
(

1 + 2√
3
,+∞

)
. (96)
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Taking into account Eqs. (92) and (93), we find

PB(k, η) = 9n5

2π2 f (φ)
H4, (97)

ρem(k, η) = 9n5ϒ1

2π2 H4, (98)

Tem(k, η) = 9n5ϒ2

2π2 H4, (99)

where we have defined

ϒ1 = ξ1(3ξ1 − ξ2)

(ξ1 − ξ2)(3ξ1 + ξ2)
, (100)

ϒ2 = 4ξ1ξ2

(ξ1 − ξ2)(3ξ1 + ξ2)
. (101)

We observe that all the three of the above spectra are
scaling-invariant, and that ρem(k, η) and Tem(k, η) are time-
independent, while the time dependence of PB(k, η) is all
encoded in f (φ).

Finally, imposing 〈(Tem)
μ
ν 〉 � (Tinf)

μ
ν , we get

|ρem|
ρinf

= 32 n5|ϒ1|
(

M

mPl

)4

� 1, (102)

|Tem|
ρinf

= 32 n5|ϒ2|
(

M

mPl

)4

� 1, (103)

which are the wanted conditions that must be satisfied in
order to have a negligible electromagnetic back-reaction on
inflationary dynamics.

7 Actual magnetic field

We have seen that inflation is able to produce superhorizon
magnetic field fluctuations whose intensity is given by the
magnetic power spectrum (97). For the following discussion,
it is useful to define the magnetic field strength on the scale
λ = 1/k as

B(λ, η) = √
PB(1/λ, η). (104)

At the end of inflation, we have then the scale-invariant mag-
netic field

Bend = 3√
2π

(
n5

fend

)1/2

H2, (105)

where Bend = B(λ, ηend) and fend = f (φ(ηend)).
Such a field will evolve from the end of inflation until

today. In this section, we will find the actual value of the
inflation-produced magnetic field as a function of the free
parameters of the model, namely the constants ξ1 and ξ2 [the
other two free parameters, ρK and pK , are assumed to be
fixed by Eq. (93)] and, consequently, find the regions in the
parameter space (ξ1, ξ2) where it satisfies both the constraint
in Eq. (2) and those in Eqs. (102) and (103).

7.1 Evolution after reheating

In order to find the present intensity of the magnetic field,
we must evolve it from the end of inflation until the present
time η0. As in Sect. 3.2, and to simplify the analysis, we
consider the case of instantaneous reheating. After the end
of reheating (which corresponds in this case to the end of
inflation and the beginning of radiation era), the dynamics of
the inflation-produced electromagnetic field is governed by
standard Lagrangian

Lem = LM + jμ Aμ, (106)

since f (φ(η)) = 1 after inflation. Here, we have assumed,
for the sake of simplicity, that the background tensor field is
vanishingly small for η > ηend. This assures that the experi-
mental constraints on the coefficients of the Lorentz violation
(kF )μναβ are automatically fulfilled [115].

The post-inflationary external electric current jμ is van-
ishing on superhorizon scales due to causality [61,62], while
inside the horizon it can be written as jμ = (0,−σ̃c E), where
σ̃c = aσc is the comoving conductivity and σc is the standard
conductivity of the plasma. Accordingly, the equation of the
motion for the comoving magnetic field a2B, also known as
the magnetic flux F, is

F̈ − ∇2F = 0 (107)

for modes that live outside the horizon, and [15]

F̈ − ∇2F = −σ̃cḞ (108)

for subhorizon modes. Going to Fourier space, Fk(η) =∫
d3x eikxF(x, η), and observing that |k2Fk|/|F̈k| ∼ (−kη)2,

we find that superhorizon magnetic modes (−kη � 1)
evolve according to F̈k = 0, so that they scale adiabatically,
B ∝ a−2. Modes inside the horizon (−kη � 1), instead,
evolve according to the so-called (comoving) autoinduction
equation (see, e.g., [116]), Ḟk = −(k2/σ̃c)Fk. The solution
of the above equation is

Fk(η) = Fk(ηRH) e−k2�2
d/(2π)2

, (109)

where

�d(η) = 2π

√∫ η

ηRH

dη′
σ̃c(η′)

(110)

is the comoving dissipation length and RH indicates the time
of reheating. Accordingly, modes with wave number k �
2π/�d evolve adiabatically, while modes with k � 2π/�d

are dissipated.4

4 Here, we are neglecting possible effects of magnetohydrodynamic
turbulence that could take place in correspondence of the electroweak
and/or quark-hadron (QCD) phase transitions, and that could affect the
evolution of the inflation-generated magnetic field [116–134]. However,
it has been recently shown [135] that a scaling-invariant magnetic field
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Putting all together, we conclude that, during the expan-
sion of the Universe after reheating, magnetic modes are
washed out on scales below the dissipation length and diluted
adiabatically on larger scales. However, the actual dissipa-
tion length is very small compared to the scale of interest for
cosmic magnetic fields.

To see this, we firstly remember the conductivity σc

depends, generally, on the temperature T [15]. In the
radiation-dominated era, and for temperatures much greater
than the electron mass me, we have σc(T ) ∼ T/e2 [15],
where e is the absolute value of the electric charge. After
the epoch of e+e− annihilation (Tanh ∼ me), the conductiv-
ity is given by σc(T ) ∼ (T/e2)

√
T/me [136], while in the

matter-dominated era (T < Teq � 3 eV), and after electrons
and ions have recombined (Trec � 0.3 eV), it drops to the
constant value σc(T ) ∼ 10−13me/e2 � 8 × 108 s−1 [15].

Taking into account that η ∝ a and η ∝ a1/2 in
the radiation-dominated and matter-dominated eras, respec-
tively, and that a ∝ g−1/3

∗S T −1 after reheating, where g∗S(T )

is the effective number of entropy degrees of freedom at the
temperature T [137], we conveniently split the integral in
Eq. (111), evaluated at the present time, in four integrals,∫ η0
ηRH

dη/σ̃c = I1 + I2 + I3 + I4. Here, I1 = ∫ ηanh
ηRH

dη/σ̃c,

I2 = ∫ ηeq
ηanh

dη/σ̃c, I3 = ∫ ηrec
ηeq

dη/σ̃c, and I4 = ∫ η0
ηrec

dη/σ̃c.

Since I1/I2 ∼ (Teq/me)
3/2 ∼ 10−8, I2/I3 ∼ Trec/Teq ∼

10−1, and I3/I4 ∼ 10−13(me/Trec)
3/2 ∼ 10−4, the integral

I4 dominates over the other three in the expression for the
actual dissipation length. Accordingly, we have

�d(t0) � 2π

(
3t0
σc

)1/2( t0
trec

)1/6

� 10−2 pc, (111)

where we used the fact that in the matter-dominated era
a(t) � (t/t0)2/3 and then η(t) � 3t0(t/t0)1/3, and trec �
8 × 1012 s [137].

7.2 Actual magnetic field strength

As anticipated, the actual dissipation length is negligibly
small compared to the scale of interest for cosmic mag-
netic fields, which is of order of 1 Mpc. We conclude that
the inflation-produced magnetic field evolve adiabatically,
from the time of reheating until today. Its actual intensity is
then

B0 = Bend

(
g∗S,0

g∗S,RH

)2/3( T0

TRH

)2

cos θW, (112)

where B0 = B(λ, η0), g∗S,0 = g∗S(T0) = 43/11 [138],
g∗S,RH = g∗S(TRH) [138], T0 � 2.37 × 10−4 eV [137] is
the actual temperature, and TRH is the reheat temperature.

Footnote 4 continued
stays almost unchanged on scales of cosmological interest, although on
smaller scales its spectrum is progressively suppressed.

Above the electroweak phase transition (when we assume
inflation is taking place) the U (1) gauge field which is quan-
tum mechanically excited is indeed the hypercharge field, not
the electromagnetic one [16]. Below the electroweak phase
transition, however, the hypercharge field is projected onto
the electromagnetic field, and this gives the cosine of the
Weinberg angle θW.

The reheat temperature can be related to the energy scale
of inflation by observing that the energy density of radiation
at the beginning of radiation era, ρrad = (π2/30)g∗,RH T 4

RH,
where g∗,RH is the effective number of degrees of free-
dom at the time of reheating and can be taken equal to
g∗S,RH [137], must be equal to the energy density at the end
of inflation. We get TRH = [30/(π2g∗,RH)]1/4 M . Taking
g∗S,RH = 427/4 [137], referring to the massless degrees of
freedom of the standard model of particle physics above the
electroweak scale, the actual, scale-invariant magnetic field
is

B0 � 2 × 10−12

(
n5

fend

)1/2(
M

1016GeV

)2

G. (113)

Let us now take fend ∼ 1 and M ∼ 1016 GeV. Accordingly,
we have

B0 ∼ n5/210−12 G. (114)

The condition that the electromagnetic back-reaction on
inflation is negligible, expressed by Eqs. (102) and (103),
becomes

n5|ϒ1| � 1011, (115)

n5|ϒ2| � 1011. (116)

Let us now analyze, separately, the three cases in Eq. (95),
namely ξ1 = 0, ξ2 = 0, and ξ1/ξ2 ∈ X.

(i) ξ1 = 0. This corresponds, looking at Lagrangian den-
sity (23), to the case where the electromagnetic field is cou-
pled only to the traceless part of the background tensor (kF )

μ
ν .

From Eqs. (93), (94), (98), and (99), we get ρK = −1/2ξ2,
pK = −ρK , n = 1, ϒ1 = 0, and ϒ2 = 0, respectively.
This gives, in turns, 〈(Tem)

μ
ν 〉 = 0, so that the electromag-

netic back-reaction on inflation is absent. The actual, scaling-
invariant magnetic field is of order of B0 ∼ 10−12 G and it
can directly account for the presently observed cosmic mag-
netic fields.

(ii) ξ2 = 0. This case corresponds to an electromagnetic
field coupled only to the scalar part (trace) of (kF )

μ
ν . We

have ρK = 1/2ξ1, pK = ρK /3, n = 1, ϒ1 = 1, and
ϒ2 = 0 (which gives Tem = 0). The electromagnetic back-
reaction on inflation is, then, completely negligible and, also
in this case, the inflation-produced magnetic field can directly
explain cosmic magnetization.

(iii) ξ1/ξ2 ∈ X. In Fig. 1, we plot the function n5/2,
entering in the expression of B0 in Eq. (114), at the vary-
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Fig. 1 The quantities n5/2 (continuous lines), n5ϒ1 (dashed lines), and n5ϒ2 (dotted lines) [which appear in Eqs. (114), (115), and (116),
respectively], as a function of ξ1/ξ2

ing of ξ1/ξ2. Remembering the discussion in Sect. 2 [see,
in particular, Eq. (2)], we find that, in order to explain cos-
mic magnetization, the quantity n5/2 should be in the range
[ 0.1, few]. This is realized for all values of ξ1/ξ2 ∈ X, with
the exclusion of those values very close to the boundary
∂X = {−1/3} ∪ {1 − 2/

√
3} ∪ {1} ∪ {1 + 2/

√
3}. In fact, n

diverges for ξ1/ξ2 → −1/3 and ξ1/ξ2 → 1 + 2/
√

3, while
it goes to zero for ξ1/ξ2 → 1−2/

√
3 and ξ1/ξ2 → 1. When

ξ1/ξ2 is not so close to the above boundary values, the condi-
tions (115) and (116), which assure that the electromagnetic
field does not back-react on the inflationary dynamics, are
fulfilled. This is clear from Fig. 1, where we show n5ϒ1 and
n5ϒ2 with varying ξ1/ξ2. We conclude that, apart from some
particular values of ξ1/ξ2, the inflation-produced magnetic
field can be, also in this case, at the origin of cosmic mag-
netic fields.

8 Additional conditions on (Tem)
μ
ν

Let us now impose some physically “reasonable” con-
ditions on the inflation-produced electromagnetic energy-
momentum tensor. Some of these conditions, as the positivity
of the energy, are often assumed to be “necessary” in the liter-
ature. It is worth noticing, however, that there exist examples
of physically “reasonable” matter that violate some or of all
of them. For example, all the conditions that we are going
to discuss are violated in particular setups of the Casimir
effect [13], and even the inflaton violates the strong energy
condition (discussed below) when it drives de Sitter inflation.

Weak energy condition. Looking at the left panel of Fig. 1,
we see that the quantity n5ϒ1 is negative for ξ1/ξ2 < −1/3.
This corresponds to have a negative electromagnetic energy
density on large superhorizon scales during inflation [see
Eq. (98)]. On these scales, we expect that the electromag-

netic field behaves classically, so that one could wonder if
having classical negative energies is reasonable physically.
Let us then impose the condition of positivity of the energy.
In a general-covariant formulation, this condition is known
as “weak energy condition” and it is, indeed, a condition on
the energy-momentum tensor. In our specific case, the elec-
tromagnetic energy-momentum tensor can be written as

〈(Tem)μν 〉 = diag(ρem,−pem,−pem,−pem). (117)

This is the energy-momentum tensor of a (isotropic) perfect
fluid of type I (according to the Hawking–Ellis classifica-
tion [139]) with energy density ρem and pressure density
pem = −〈(Tem)i

i 〉 (no sum on i). For perfect fluids, the weak
energy condition states that [139]

ρem ≥ 0, ρem + pem ≥ 0. (118)

These supplementary conditions, if applied to Eq. (117),
would narrow the domain (96) to X = (−∞,−1/3) ∪
(0, 1/3) ∪ (1 + 2/

√
3,+∞).

Trace condition. It is well known that the trace of the
energy-momentum tensor for a system of point-like, elec-
tromagnetic interacting particles is non-negative [140]. This
condition is sometimes assumed to be valid also for other
interacting systems in Nature [140]. If we require that

Tem ≥ 0, (119)

the domain (96) would reduce to X = (1 − 2/
√

3, 0) ∪ (1 +
2/

√
3,+∞).

There are other restrictions on the energy-momentum ten-
sor conjectured to hold for all physically reasonable matter.
Those are the strong and dominant energy conditions. (The
physical significance of these conditions is, respectively, and
roughly speaking, that matter must gravitate toward matter,
and that energy must either be non-negative and not flow
faster than light [139].)
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Fig. 2 Regions in the parameter space (ξ1, ξ2), with ξ1/ξ2 ∈ X [see
Eq. (96)], where 10−13 G ≤ B0 ≤ 5 × 10−12 G and electromagnetic
back-reaction on inflation is completely negligible (light gray areas).
In the shrunk dark gray regions, a specific supplementary condition

on the electromagnetic energy-momentum has been imposed (from up
to down and from left to right: strong energy condition, weak energy
condition, dominant energy condition, and trace condition)

Strong energy condition. This condition requires that [139]

ρem ≥ 0, ρem + 3pem ≥ 0, (120)

and would reduce the domain (96) to X = (−∞,−1/3) ∪
(0, 2/3) ∪ (1 + 2/

√
3,+∞).

Dominant energy condition. This condition imposes [139]

ρem ≥ |pem| (121)

and, if applied, it would shrink the domain (96) to X =
(−∞,−1/3) ∪ (1 + 2/

√
3,+∞).

If we impose simultaneously all the above conditions, we
would reduce the domain (96) to X = (1 + 2/

√
3,+∞).

This means that the only “surviving” part of Fig. 1 would be
the right branch in its right panel.

The light gray areas in Fig. 2 show the regions in the
parameter space (ξ1, ξ2) where 10−13 G ≤ B0 ≤ 5×10−12 G
and electromagnetic back-reaction on inflation is completely
negligible. The dark gray areas represent, instead, the shrunk
regions where a specific supplementary condition on the elec-
tromagnetic energy-momentum has been imposed (from up
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to down and from left to right: strong energy condition, weak
energy condition, dominant energy condition, and trace con-
dition).

9 Curvature perturbations

Recently enough, it has been pointed out in the literature that
the production of electromagnetic fields during inflation may
significantly affect the primordial spectrum of both scalar and
tensor curvature perturbations (see, e.g., [80,141–143]). In
order to have a self-consistent model of inflationary magneto-
genesis, then, we have to check that the curvature perturba-
tions introduced by the inflation-produced electromagnetic
field are compatible with CMB results.

9.1 Scalar curvature perturbation

In order to find how a primordial magnetic field can gen-
erate curvature perturbations, let us consider the curvature
perturbation ζ(t, x) on the uniform energy density hypersur-
face [144] on which δρ(t, x) = 0, where δρ is the energy
density perturbation, and t is the cosmic time. The curvature
perturbation, as a function of the scale factor a(t, x), is [144]

ζ(t, x) = ln a(t, x) − ln a(t), (122)

where a(t) is the global scale factor, namely the one intro-
duced in the unperturbed metric (8). On super-Hubble scales,
the curvature perturbation evolves according to [143]

ζ ′(t, x) = − δprel(t, x)
ρ(t) + p(t)

H(t), (123)

where a prime denotes differentiation with respect to the cos-
mic time. Here, ρ(t) and p(t) are the total energy and pres-
sure densities, H(t) the Hubble parameter, and δprel(t, x)
is the so-called nonadiabatic pressure density perturbation
defined by δprel(t, x) = δp(t, x) − δρ(t, x)p′/ρ′, with δp
being the pressure density perturbation. Assuming that the
electromagnetic field is just a small perturbation with respect
to the background (which is dominated by the inflaton field),
we can write ρ = ρinf and p = pinf . The evolution equation
for the curvature perturbation introduced by the electromag-
netic field, ζ em(t, x), is then

(ζ em)′(t, x) = − δprel,em(t, x)
ρinf(t) + pinf(t)

H(t), (124)

where δprel,em(t, x) = δpem(t, x)−δρem(t, x)p′
inf/ρ

′
inf is the

nonadiabatic pressure perturbation due to the relative entropy
perturbation between the electromagnetic and the inflaton
fields. Here, δρem and δpem are the electromagnetic energy
and pressure density perturbations, respectively, and they are
the same quantities defined in Eq. (117), to wit, δρem = ρem

and δpem = pem.

Assuming a quasi-de Sitter inflation characterized by the
slow-roll parameter ε � 1, pinf = (1 − 2ε/3)ρinf , and
introducing the electromagnetic equation-of-state wem =
ρem/pem = δρem/δpem, the solution of Eq. (124) reads

ζ em(t, x) = −3(1 + wem)
H

2ερinf

∫ t

ti
dt ′δρem(t ′, x), (125)

where ti is the time when electromagnetic fluctuations begin
to develop, ζ em(ti , x) = 0, and

wem = 3ξ1 − 5ξ2

3(3ξ1 − ξ2)
. (126)

In obtaining Eq. (125), we assumed, as in Ref. [143], that H ,
ε, and ρinf are constant during inflation, and that p′

inf � ρ′
inf .

Equation (126), instead, comes from Eqs. (98) and (99). In
the case wem = 1/3, we recover the result of Ref. [143].
The curvature perturbation in Eq. (125) is the key quantity
from which observable quantities can be constructed and then
compared to CMB results.

In Ref. [143], the standard kinetically coupled scenario
for magnetogenesis was studied. In this case, the electromag-
netic energy density is dominated by the electric part, so that,
working in Fourier space, the electromagnetic energy spec-
trum can be approximated by δρem(k, η) = 1

2 f (φ)PE (k, η).
The expression of the electric power spectrum (in the stan-
dard kinetically coupled scenario) can be obtained by using
Eqs. (88) and (89), and taking Z = 1/ f (φ) and n = 1. It is
PE(k, η) = (ν2|cν |2/π)(−kη)3+2ν H4/ f (φ). The scaling-
invariant case corresponds to taking ν = −3/2, and it gives
PE(k, η) = (9/2π2)H4/ f (φ). Accordingly, we have

δρem,∗(k, η) = 9

4π2 H4, (127)

where, as below, a star indicates that the corresponding result
is obtained in the standard kinetically coupled scenario for
the case of a scaling-invariant electric power spectrum.

In our case, instead, the electric part does not make any
contribution to the electromagnetic energy which is then
dominated by the magnetic part (see discussion in Sect. 6).
The expression for δρem(k, η) is given in Eqs. (98), which
we rewrite here for the sake of convenience,

δρem(k, η) = 9n5ϒ1

2π2 H4. (128)

Comparing Eqs. (127) and (128), and taking into account
Eq. (125), we see that the curvature perturbation in our case
can be obtained by multiplying the result of Ref. [143] (for
the scaling-invariant case) by a constant factor ϑ ,

ζ em = ϑ(ξ1, ξ2)ζ
em∗ , (129)

where

ϑ(ξ1, ξ2) = 3(1 + wem)

2
n5ϒ1 = n5(2ϒ1 − ϒ2), (130)
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and where, in the last equality of the above equation, we used
Eqs. (100), (101), and (126).

9.2 Scalar modes: spectrum, bispectrum, and trispectrum

The observable quantities that can be constructed starting
from the curvature perturbation ζ(t, x), are the correspond-
ing n-points correlation functions in Fourier space. In par-
ticular, the actual sensitivity of CMB experiments allows us
to put constraints on the 2-points correlator, the power spec-
trum of curvature perturbations, on the 3-point correlator, the
bispectrum, and on the 4-points correlator, the trispectrum,
defined via

〈ζk1ζk2〉 = (2π)3δ(k1 + k2)
2π2

k3
1

Pζ , (131)

〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3)(2π2Pζ )
2

×6

5
f local
NL

∑3
i=1 k3

i∏3
i=1 k3

i

, (132)

〈ζk1ζk2ζk3ζk4〉 = (2π)3δ(k1 + k2 + k3 + k4)(2π2Pζ )
3

×τNL

[
1

(k1k2k13)3 + 11 permutations

]
,

(133)

respectively, where a scaling-invariant power spectrumPζ (k)

is assumed, and all quantities are evaluated at the end of
inflation η = ηend. Here, ζk is the Fourier-transformed cur-
vature perturbation, 〈. . .〉 indicates an ensemble average,
ki = |ki |, and ki j = |ki + k j |. The observable quantities,
besides Pζ (k), are the local-type non-linearity (dimension-
less) parameters f local

NL and τNL, which parameterize the non-
Gaussian features of the primordial spectrum of curvature
perturbations.

Let us observe that the 3-points correlator can be generally
written as 〈ζk1ζk2ζk3〉 = (2π)3δ(k1 + k2 + k3) fNL Pζ (k1,

k2, k3), where the bispectrum Pζ (k1, k2, k3) measures the
correlation among three perturbation modes [145]. The bis-
pectrum can assume different forms which depend on the type
of triangle formed by the three wave numbers k1, k2, and k3.
Local-type non-linearities are characterized by a bispectrum
that is maximal for “squeezed” triangles with k1 � k2 � k3

(or permutations). Other types of configurations are possible,
such as the equilateral and the orthogonal. They are, how-
ever, inessential for our discussion since a scaling-invariant
electromagnetic field produces (under appropriate approxi-
mations [143]) only local-type shapes for the bispectrum and
trispectrum.

Using the results of Ref. [143], appropriately re-scaled by
using Eq. (129), we find for the electromagnetic part of the
power spectrum of curvature perturbations, Pem

ζ , and for the
electromagnetic part of the local-type non-linearity parame-
ters, f em

NL and τ em
NL,

Pem
ζ = 192 ϑ2 N 2

cmb�N (P inf
ζ )2, (134)

f em
NL = 20

3
ϑ Ncmb

Pem
ζ

P inf
ζ

, (135)

τ em
NL = 72 ϑ2 N 2

cmb

Pem
ζ

P inf
ζ

, (136)

respectively. Here, it has been assumed that the dominant
component of the power spectrum of curvature perturbations
is generated by the inflaton,

Pem
ζ � P inf

ζ , (137)

where the power spectrum of curvature perturbations in slow-
roll inflation is [143]

P inf
ζ = 1

24π2ε

(
M

mPl

)4

. (138)

Moreover, it has been assumed that �N > 1, where

�N = Ntot − Ncmb, (139)

with Ntot = − ln |kminηend| and Ncmb = − ln |kcmbηend|.
Here, kmin is the wave numbers of the mode that crosses the
horizon when magnetogenesis begins, and kcmb, referred to
as the CMB scale, is the wave number of the largest scale
CMB mode. We have assumed, in the previous sections, that
magnetogenesis begins simultaneously with inflation, so that
kmin = −1/ηi , and in turns Ntot is the total number of e-fold
of inflation. On the other hand, Ncmb is the number of e-
folds between the moment at which the CMB mode leaves
the horizon and the end of inflation. Assuming for simplicity
an instantaneous reheating, we have [137]

Ncmb � 61 + ln
λcmb

4000 Mpc
+ ln

M

1016 GeV
, (140)

where λcmb = 2π/kcmb. Taking M = 1016 GeV and the
CMB scale as large as the present Hubble radius, λcmb =
H−1

0 � 4000 Mpc, we get Ncmb � 61.
We use the experimental results derived from Planck

data [146–148],

P inf
ζ = 2.2 × 10−9 (best-fit), (141)

f local
NL = 2.5 ± 5.7 (68 % C.L.), (142)

τNL = (0.3 ± 0.9) × 104 (68 % C.L.), (143)

whereP inf
ζ (k) is evaluated at the pivot scale k0 =0.05 Mpc−1.

Taking into account Eq. (141), we can conveniently rewrite
Eqs. (134), (135), and (136) as

Pem
ζ

P inf
ζ

� 1.6 × 10−3 ϑ2
(

Ncmb

61

)2

�N , (144)

f em
NL � 0.6 ϑ3

(
Ncmb

61

)3

�N , (145)
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τ em
NL � 0.4 × 103 ϑ4

(
Ncmb

61

)4

�N , (146)

respectively. Taking into account Eqs. (137), (141), (142),
(144), and (145), we see that inflationary magnetogenesis is
compatible with current CMB data if

|ϑ | � 25

(Ncmb/61)(�N )1/2 , (147)

|ϑ | � 2

(Ncmb/61)(�N )1/3 , (148)

|ϑ | � 2

(Ncmb/61)(�N )1/4 , (149)

where the above three constraints come from the spectrum,
bispectrum, and trispectrum of the curvature perturbation,
respectively. Since �N is a quantity greater than unity, we
obtain that the stringent constraint on |ϑ | comes either from
the bispectrum if �N � (25/2)6 � 4 × 106, or from the
spectrum otherwise.

Let us analyze the three cases in Eq. (95), by assuming,
for the sake of simplicity, that the stringent constraint on |ϑ |
comes from the bispectrum.

(i) ξ1 = 0. In this case (see Sect. 6), 〈(Tem)
μ
ν 〉 = 0, so

that no curvature perturbations are generated by the inflation-
produced electromagnetic field.

(ii) ξ2 = 0. In this case (see Sect. 6.3), n = 1, ϒ1 = 1,
and ϒ2 = 0, which give wem = 1/3 and ϑ = 2. For
(Ncmb/61)(�N )1/3 of order unity, the case ξ2 = 0 is then
compatible with current CMB data on curvature perturba-
tions, while for greater values it is excluded.

(iii) ξ1/ξ2 ∈ X. If (Ncmb/61)(�N )1/3 is of order unity, we
have n5|2ϒ1 −ϒ2| = |ϑ | � 2. In this case, looking at Fig. 1
and remembering the discussion at the end of section VIc, we
conclude that, with the exclusion of those values very close to
the boundary ∂X = {−1/3}∪{1−2/

√
3}∪{1}∪{1+2/

√
3},

the inflation-produced electromagnetic field (whose mag-
netic component directly accounts for cosmic magnetic
fields) generates curvature perturbations compatible with
CMB data. The regions in the parameter space (ξ1, ξ2)

with acceptable curvature perturbations, instead, progres-
sively shrink for increasing values of (Ncmb/61)(�N )1/3,
as it appears from Fig. 3. Here, in the light gray regions
the strength of the actual, scale-invariant magnetic field is in
the range 10−13 G ≤ B0 ≤ 5 × 10−12 G with no constraints
on curvature perturbations imposed, while in the shrunk dark
gray regions the constraint (149) has been imposed, [the dark-
ness increases as (Ncmb/61)(�N )1/3 increases].

9.3 Tensor modes

The inflation-produced electromagnetic field affects, besides
the scalar part of metric perturbation, also its tensor part,
namely, it produces gravitational waves. However, we expect

10 13 G B0 5 10 12 G

unconstrained
Ncmb N 1 3 61

Ncmb N 1 3 250
Ncmb N 1 3 500

4 2 0 2 4

4

2

0

2

4

1

2
Fig. 3 Regions in the parameter space (ξ1, ξ2), with ξ1/ξ2 ∈ X [see
Eq. (96)], where 10−13 G ≤ B0 ≤ 5 × 10−12 G and the electro-
magnetic back-reaction on inflation is completely negligible, with no
constraints on curvature perturbations imposed (light gray areas). The
dark gray regions represent the same regions after imposing the con-
straint (148) which assures that scalar curvature perturbations gener-
ated by the inflation-produced electromagnetic field are compatible
with CMB observations [the darkness increases as (Ncmb/61)(�N )1/3

increases]

that if Pem
ζ � P inf

ζ , then the same it is true for the grav-

itational wave spectra, Pem
GW � P inf

GW. This is because, as
discussed in [80], the tensor modes are only produced grav-
itationally, while the dominant source of the scalar modes is
the direct coupling between the inflaton and the electromag-
netic field. In particular, the latter is enhanced with respect
to the gravitational one by a factor inversely proportional to
the slow-roll parameter. Therefore, we expect that

Pem
GW

P inf
GW

∼ ε
Pem

ζ

P inf
ζ

(150)

on physical grounds. Accordingly, due to the assump-
tion (137), we can safely neglect the possible constraints on
ξ1 and ξ2 coming from the production of gravitational waves
in our model of inflationary magnetogenesis.

10 Discussion

So far, we have not distinguished between explicit (not
dynamical) and spontaneous (dynamical) Lorentz violation.
In the model at hand (described by a background rank-2 ten-
sor), the simplest realization of spontaneous Lorentz viola-
tion is realized when a dynamical tensor operator (KF )μν
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is coupled to the electromagnetic field and it acquires a
vacuum expectation value different from zero, (kF )μν =
〈0|(KF )μν |0〉. In this case, the coupling between the rank-2
tensor field and the electromagnetic field would be described
by Lagrangian (25) with (kF )μν replaced by (KF )μν .

Decomposing (KF )μν in a classical part, (kF )μν , and a
quantum part, δ(kF )μν , to wit, writing

(KF )μν = (kF )μν + δ(kF )μν, (151)

all the above analysis remains valid only if the quantum
fluctuations δ(kF )μν are dynamically negligible. Assum-
ing homogeneity and isotropy, we can write δ(kF )

μ
ν =

diag(δρK ,−δpK ,−δpK ,−δpK ). All the arguments and
results in Sect. 6 are then preserved if, roughly speaking,

|δρK | , |δpK | � (−kη)2
(mPl

M

)4
. (152)

In this case, in fact, the contribution of the quantum fluctua-
tions of (KF )μν to the electromagnetic energy-momentum
tensor are negligible in the scaling-invariant case [see
Eqs. (82)–(83) and Eqs. (90)–(91)]. Although the condi-
tion (152) seems to be very restrictive, it could be realized if,
for example, δ(kF )

μ
ν ∼ (−kη)α , with α � 2.

Finally, let us observe that the dynamics of the field
(KF )μν is described by a Lagrangian of the type LK =
LK,kin + LK,int, where LK,kin is the kinetic term (whose
involved expression, for the case of de Sitter spacetime, can
be found in [149]), while the interaction term LK,int con-
tains, besides self-coupling terms, all the couplings to other
fields, included those with the photon and the inflaton. In a
complete and self-consistent model, which is beyond the aim
of this paper, one should also consider such a dynamics and
consistently check that the field (KF )μν does not apprecia-
bly back-react on the dynamics of inflation and it generates
curvature perturbations in agreement with CMB results.

11 Conclusions

Astrophysical observations definitely indicate the presence
of microgauss magnetic fields in any type of galaxies, and
they give compelling indications of the existence of strong,
large-scale magnetic fields in galaxy clusters and cosmic
voids.

A plausible hypothesis about their nature is that they have a
primordial origin. In particular, presently observed magnetic
fields could be nothing but primordial quantum electromag-
netic fluctuations excited during an inflationary epoch of the
universe which have survived until today.

However, since standard electrodynamics is conformally
invariant, large-scale magnetic fields cannot be generated in
a conformally invariant background spacetime, as a result
of the Parker theorem. Accordingly, whatever is the mecha-

nism responsible for generation of quantum electromagnetic
fluctuations it must break conformal invariance of Maxwell
theory.

In this paper, we have analyzed the generation of cos-
mic magnetic fields during (de-Sitter) inflation in a non-
conformally invariant, Lorentz-violating effective model of
electrodynamics. We have considered a Lorentz-violating
extension of the kinetically coupled scenario for magneto-
genesis, where the latter is described by a Lagrangian of the
form Lem = f (φ)LM. Here, LM is the Maxwell Lagrangian
and f (φ) is a generic coupling function between the pho-
ton and the inflaton φ. Lorentz violation is introduced in our
model by considering the Lagrangian Lem = f (φ)(LM +
LLV), where LLV incorporates all possible Lorentz-violating
renormalizable operators.

We have restricted our analysis to the case where Lorentz
symmetry breaking is implemented by the presence of a
classical, homogeneous, and time-independent rank-2 sym-
metric background tensor. Working in the weak-coupling
regime, we have shown that the creation of inflationary mag-
netic fields in this model proceeds similarly to the case of
magnetogenesis in the standard kinetically coupled scenario.
The key difference is that the new degrees of freedom rep-
resented by the components of the background tensor can
be tuned in such a way to suppress the electric part of
the inflation-produced electromagnetic energy-momentum
tensor. This allows us to have, in de Sitter inflation with
scale ∼1016 GeV, a self-consistent model of magnetogenesis
where the inflation-produced electromagnetic field (i) does
not appreciably back-react on inflation, (ii) it does not signif-
icantly affect the primordial spectrum of both scalar (Gaus-
sian and non-Gaussian) and tensor curvature perturbations,
and (iii) it evolves after inflation to give a strong, scaling-
invariant magnetic field that directly accounts for galactic
magnetic fields.
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