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Abstract The quantum dynamics of scalar bosons embed-
ded in the background of a cosmic string is considered. In this
work, scalar bosons are described by the Duffin–Kemmer–
Petiau (DKP) formalism. In particular, the effects of this
topological defect in the equation of motion, energy spec-
trum, and DKP spinor are analyzed and discussed in detail.
The exact solutions for the DKP oscillator in this background
are presented in closed form.

1 Introduction

The first-order Duffin–Kemmer–Petiau (DKP) formalism
[1–4] describes spin-zero and spin-one particles and has been
used to analyze relativistic interactions of spin-zero and spin-
one hadrons with nuclei as an alternative to their conventional
second-order Klein–Gordon (KG) and Proca counterparts.
Although the formalisms are equivalent in the case of mini-
mally coupled vector interactions [5–7], the DKP formalism
enjoys a richness of couplings not capable of being expressed
in the KG and Proca theories [8,9]. Recently, there has been
increasing interest in the so-called DKP oscillator [10–19].
The DKP oscillator considering minimal length [20,21] and
noncommutative phase space [22–25] have also appeared in
the literature. The DKP oscillator is a kind of tensor coupling
with a linear potential which leads to the harmonic oscillator
problem in the weak-coupling limit. Also, a sort of vector
DKP oscillator (non-minimal vector coupling with a linear
potential [26–30] has been a topic of recent investigation.
Vector DKP oscillator is the name given to the system with
a Lorentz vector coupling which exhibits an equally spaced
energy spectrum in the weak-coupling limit. The name dis-
tinguishes it from the system called a DKP oscillator with
Lorentz tensor couplings of Ref. [10–25].

The DKP oscillator is an analogous to Dirac oscilla-
tor [31]. The Dirac oscillator is a natural model for study-
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ing properties of physical systems, it is an exactly solvable
model, several research have been developed in the context of
this theoretical framework in recent years. A detailed descrip-
tion for the Dirac oscillator is given in Ref. [32] and for other
contributions see Refs. [33–39]. The Dirac oscillator embed-
ded in a cosmic string background has inspired a great deal
of research in last years [40–46]. A cosmic string is a lin-
ear defect that change the topology of the medium when
viewed globally. The influence of this topological defect in
the dynamics of spin-1/2 particles has been widely discussed
in the literature. However, the same problem involves bosons
via DKP formalism has not been established. Therefore, we
believe that this problem deserves to be explored.

The main motivation of this work is inspired by the results
obtained in Ref. [46]. As a natural extension, we address the
quantum dynamics of scalar bosons (via DKP formalism)
embedded in the background of a cosmic string. The influ-
ence of this topological defect in the equation of motion,
energy spectrum and DKP spinor are analyzed and discussed
in detail. The case of DKP oscillator in this background is
also considered. In this case, the problem is mapped into a
Schrödinger-like equation embedded in a three-dimensional
harmonic oscillator for the first component of the DKP spinor
and the remaining components are expressed in terms of the
first one in a simple way. Our results are very similar to
Dirac oscillator in a cosmic string background, except by the
absence of terms that depend on the spin projection parame-
ter.

This work is organized as follows. In Sect. 2, we con-
sider the DKP equation in a curved space-time. We discuss
conditions on the interactions which lead to a conserved cur-
rent in a curved space-time (Sect. 2.1). In Sect. 3, we give
a brief review on a cosmic string background and we also
analyze the curved-space beta matrices and spin connection
in this background. In Sect. 4, we concentrate our efforts in
the interaction called DKP oscillator embedded in the back-
ground of a cosmic string. In particular, we focus the case
of scalar bosons and obtain the equation of motion, energy
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spectrum and DKP spinor (Sect. 4.1). Finally, in Sect. 5 we
present our conclusions.

2 Duffin–Kemmer–Petiau equation in a curved
space-time

The Duffin–Kemmer–Petiau (DKP) equation for a free boson
in curved space-time is given by [47,48] (h̄ = c = 1)

[iβμ∇μ − M]Ψ = 0 (1)

where the covariant derivative is

∇μ = ∂μ − �μ. (2)

The affine connection is defined by

�μ = 1

2
ωμāb̄[β ā, β b̄]. (3)

The curved-space beta matrices are

βμ = eμ
ā β ā (4)

and satisfy the algebra

βμβνβλ + βλβνβμ = gμνβλ + gλνβμ. (5)

Here gμν is the metric tensor. The algebra expressed by
(5) generates a set of 126 independent matrices whose irre-
ducible representations are a trivial representation, a five-
dimensional representation describing the spin-zero particles
(scalar sector) and a ten-dimensional representation associ-
ated to spin-one particles (vector sector). The DKP spinor
has an excess of components and the theory has to be sup-
plemented by an equation which allows one to eliminate the
superfluous components. That constraint equation is obtained
by multiplying Eq. (1) by 1 − β0β0 from the left, namely

iβ jβ0β0∇ jΨ = M(1 − β0β0)Ψ. (6)

This constraint equation expresses three (four) components
of the spinor by the other two (six) components and their
space covariant derivate in the scalar (vector) sector so that
the redundant components disappear and there only remain
the physical components of the DKP theory.

The tetrads eμ
ā(x) satisfy the relations

ηāb̄ = eμ
ā eν

b̄ gμν, (7)

gμν = eμ
ā eν

b̄ ηāb̄, (8)

and

eμ
ā eμ

b̄ = δā
b̄
, (9)

the Latin indices being raised and lowered by the Minkowski
metric tensor ηāb̄ with signature (−,+,+,+) and the Greek
ones by the metric tensor gμν .

The spin connection ωμāb̄ is given by

ωμ
āb̄ = eα

ā eνb̄ �α
μν − eνb̄∂μeν

ā (10)

with ωμ
āb̄ = −ωμ

b̄ā , and �α
μν are the Christoffel symbols

given by

�α
μν = gαβ

2
(∂μgβν + ∂νgβμ − ∂βgμν). (11)

In this stage, it is useful to consider the current. The con-
servation law for Jμ follows from the standard procedure of
multiplying (1) and its complex conjugate by Ψ̄ from the left
and by η0Ψ from the right, respectively. The sum of those
resulting equations leads to

∇μ J
μ = 1

2
Ψ̄ (∇μβμ)Ψ (12)

where Jμ = 1
2 Ψ̄ βμΨ . The factor 1/2 multiplying Ψ̄ βμΨ ,

of no importance regarding the conservation law, is in order
to hand over a charge density conformable to that one used in
the KG theory and its nonrelativistic limit [27]. The adjoint
spinor Ψ̄ is given by Ψ̄ = Ψ †η0 with η0 = 2β0β0 − 1
in such a way that (η0βμ)† = η0βμ (the matrices βμ are
Hermitian with respect to η0). Despite the similarity to the
Dirac equation, the DKP equation involves singular matri-
ces, the time component of Jμ is not positive definite and
the case of massless bosons cannot be obtained by a limit-
ing process [49]. Nevertheless, the matrices βμ plus the unit
operator generate a ring consistent with the integer-spin alge-
bra and J 0 may be interpreted as a charge density. Thus, if

∇μβμ = 0 (13)

then the four-current will be conserved. The condition (13)
is the purely geometrical assertion that the curved-space beta
matrices are covariantly constant.

The normalization condition
∫

dτ J 0 = ±1 can be
expressed as

∫
dτ Ψ̄ β0Ψ = ±2, (14)

where the plus (minus) sign must be used for a positive (neg-
ative) charge.
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2.1 Interaction in the Duffin–Kemmer–Petiau equation

With the introduction of interactions, the DKP equation in a
curved space-time can be written as

(iβμ∇μ − m −U )Ψ = 0 (15)

where the more general potential matrixU is written in terms
of 25 (100) linearly independent matrices pertinent to the
five- (ten)-dimensional irreducible representation associated
to the scalar (vector) sector. In the presence of interaction,
Jμ satisfies the equation

∇μ J
μ + i

2
Ψ̄ (U − η0U †η0)Ψ = 1

2
Ψ̄ (∇μβμ)Ψ. (16)

Thus, if U is Hermitian with respect to η0 and the curved-
space beta matrices are covariantly constant then the four-
current will be conserved. The potential matrix U can be
written in terms of well-defined Lorentz structures. For the
spin-zero sector there are two scalar, two vector, and two
tensor terms [8], whereas for the spin-one sector there are
two scalar, two vector, a pseudoscalar, two pseudovector,
and eight tensor terms [9]. The condition (16) for the case
of Minkowski space-time has been used to point out a mis-
leading treatment in the recent literature regarding analytical
solutions for non-minimal vector interactions [30,50–52].

3 Cosmic string background

The cosmic string space-time is an object described by the
line element

ds2 = −dt2 + dr2 + α2r2dϕ2 + dz2 (17)

in cylindrical coordinates (t, r, ϕ, z), where −∞ < z <

+∞, r ≥ 0, and 0 ≤ ϕ ≤ 2π . The parameter α is associated
with the linear mass density m̃ of the string by α = 1 − 4m̃
and runs in the interval (0, 1] and corresponds to a deficit
angle γ = 2π(1 − α). In the geometric context, the line
element (17) is related to a Minkowski space-time with a
conical singularity [53]. Note that, in the limit as α → 1, we
obtain the line element of cylindrical coordinates.

The basis tetrad eμ
ā from the line element (17) is chosen

to be

eμ
ā =

⎛

⎜
⎜
⎝

1 0 0 0
0 cos ϕ sin ϕ 0
0 − sin ϕ

αr
cos ϕ
αr 0

0 0 0 1

⎞

⎟
⎟
⎠ . (18)

For the specific basis tetrad (18) the curved-space beta matri-
ces read

β0 = β 0̄, (19)

βr = β 1̄ cos ϕ + β 2̄ sin ϕ, (20)

βϕ = −β 1̄ sin ϕ + β 2̄ cos ϕ

αr
, (21)

βz = β 3̄, (22)

and the spin connection is given by

�ϕ = (1 − α)[β 1̄, β 2̄]. (23)

Thereby, the covariant derivative becomes

∇0 = ∂0, (24)

∇r = ∂r , (25)

∇ϕ = ∂ϕ − (1 − α)[β 1̄, β 2̄], (26)

∇z = ∂z . (27)

Now we focus attention on the condition (13) for a cos-
mic string background. Using the line element (17) and the
representation for the curved-space beta matrices (19), (20),
(21), and (22) the condition (13) is satisfied and therefore the
current is conserved for this background. Having set up the
DKP equation in a cosmic string background, we are now
in a position to use the machinery developed above in order
to solve the DKP equation in this background with some
specific forms for the external interactions.

4 DKP oscillator in a cosmic string background

In this section, we concentrate our efforts in the interaction
called a DKP oscillator embedded in the background of a
cosmic string. For this external interaction we use the non-
minimal substitution [11]

p → p − iMωη0r (28)

where ω is the oscillator frequency. This interaction is a
Lorentz tensor type and is Hermitian with respect to η0, so
it furnishes a conserved four-current. Considering only the
radial component the non-minimal substitution gets

p → p − iMωη0rr̂ . (29)

As the interaction is time-independent one can write Ψ (r, t)
= �(r)exp (−i Et), where E is the energy of the scalar
boson, in such a way that the time-independent DKP equation
becomes

[β 0̄E + iβr (∂r + Mωη0r) + iβϕ∇ϕ + iβ 3̄∂z − M]� = 0

(30)
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where βr , βϕ , and ∇ϕ are given by (20), (21), and (26),
respectively.

4.1 Scalar sector

For the case of scalar bosons (scalar sector), we use the stan-
dard representation for the beta matrices given by [54]

β 0̄ =
(

θ 0

0
T

0

)

,
−→
β =

(
0̃ −→ρ

−−→ρ T 0

)

(31)

where

θ =
(

0 1
1 0

)

, ρ1 =
(−1 0 0

0 0 0

)

ρ2 =
(

0 −1 0
0 0 0

)

, ρ3 =
(

0 0 −1
0 0 0

)

(32)

0, 0̃, and 0 are 2×3, 2×2 and 3×3 zero matrices, respectively,
while the superscript T designates matrix transposition. The
five-component spinor can be written as �T = (�1, . . . , �5)

and the DKP equation for scalar bosons becomes

E�2 − M�1 − i (∂− − δα cos ϕ) �3

−i (∂+ − δα sin ϕ) �4 − i∂z�5 = 0, (33)

�2 = E

M
�1, (34)

�3 = i

M
(∂− + Mωr cos ϕ) �1, (35)

�4 = i

M
(∂+ + Mωr sin ϕ) �1, (36)

�5 = i

M
∂z�1, (37)

where

∂− = cos ϕ∂r − sin ϕ

αr
∂ϕ, (38)

∂+ = sin ϕ∂r + cos ϕ

αr
∂ϕ, (39)

and

δα = 1 − α

αr
+ Mωr. (40)

Meanwhile,

J 0 = Re(�∗
2�1) = E

M
|�1|2. (41)

Combining these results we obtain an equation of motion
for the first component of the DKP spinor:

[∇2
α − M2ω2r2 + E2 − M2 + 2Mω]�1 = 0 (42)

where ∇2
α is the Laplace–Beltrami operator in the conical

space, given by

∇2
α = 1

r

∂

∂r

(

r
∂

∂r

)

+ 1

α2r2

∂2

∂ϕ2 + ∂2

∂z2 . (43)

At this stage, we can use the invariance under boosts along
the z-direction and adopt the usual decomposition

�1(r, ϕ, z) = φ1(r)√
r

eimϕ+ikz z (44)

with m ∈ Z. Inserting this into Eq. (42), we get

[
d2

dr2 − λ2r2 −
(
m2

α − 1
4

)

r2 + κ2

]

φ1 = 0 (45)

where mα = m/α, λ = Mω, and

κ =
√
E2 − M2 + 2Mω − k2

z . (46)

The equation of motion (45) describes the quantum dynam-
ics of a DKP oscillator in a cosmic string background. With
φ1(0) = 0 and

∫ ∞
0 dr |φ1|2 < ∞, the solution for (45)

with κ and λ real is precisely the well-known solution of
the Schrödinger equation for the harmonic oscillator. The
solution close to the origin valid for all values of mα can be

written as being proportional to r |mα |+ 1
2 . On the other hand,

for large r the square-integrable solution behaves as e−λr2/2,
and thereby the solution for all r can be expressed as

φ1(r) = r |mα |+ 1
2 e−λr2/2 f (r), (47)

subsequently, by introducing the following new variable and
parameters:

ρ = λr2, (48)

a = 1

2

(

|mα| + 1 − κ2

2λ

)

, (49)

b = |mα| + 1, (50)

one finds that f (ρ) can be expressed as a regular solution of
the confluent hypergeometric equation (Kummer’s function)
[55],

ρ
d2 f

dρ2 + (b − ρ)
d f

dρ
− a f = 0. (51)

The general solution of (51) is given by [55]

f (ρ) = AM (a, b, ρ) + Bρ1−bM (a − b + 1, 2 − b, ρ)

(52)
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where A and B are arbitrary constants. The second term in
(52) has a singular point at ρ = 0, so that we set B = 0. The
asymptotic behavior of Kummer’s function is dictated by

M (a, b, ρ) 
 �(b)

�(b − a)
e−iπaρ−a + �(b)

�(a)
eρρa−b. (53)

It is true that the presence of eρ in the asymptotic behavior of
M(a, b, ρ) perverts the normalizability of φ1(ρ). Neverthe-
less, this unfavorable behavior can be remedied by requiring
a = −n, where n is a nonnegative integer and b �= −ñ,
where ñ is also a nonnegative integer. In fact, M(−n, b, ρ)

with b > 0 is proportional to the generalized Laguerre poly-
nomial L(b−1)

n (ρ), a polynomial of degree n with n distinct
positive zeros in the range [0,∞). Therefore, the solution for
all r can be written as

φ1(r) = Nnr
|mα |+ 1

2 e−λr2/2L |mα |
n (λr2), (54)

where Nn is a normalization constant. The charge density J 0

(41) dictates that φ1 must be normalized as

|E |
M

∫ ∞

0
dr |φ1|2 = 1, (55)

so that the normalization constant can be written as

Nn =
√

2Mλ|mα |+1� (n + 1)

|E |� (|mα| + n + 1)
, (56)

with |E | �= 0. Moreover, the requirement a = −n (quanti-
zation condition) implies

E = ±
√

M2 + k2
z + 2Mω

(

2n + |m|
α

)

. (57)

This last result shows that the discrete set of DKP energies
are symmetrical about E = 0 and this is irrespective of the
sign of m. This fact is associated to the fact that the DKP
oscillator embedded in a cosmic string background does not
distinguish particles from antiparticles. At this stage, due to
invariance under rotation along the z-direction, without loss
of generality we can fix kz = 0. In general |E | > M , except
for ω = 0; then the spectrum acquiesces to |E | = M .

Now, let us consider the weak-coupling limit, ω � 1 and
|E | 
 M for small quantum numbers. Collecting all results,
Eq. (57) becomes

|E | 
 M

[

1 + ω

(

2n + |m|
α

)]

, (58)

note that due to the equally spaced energy spectrum we can
say that it describes a genuine DKP oscillator. But, as the

Fig. 1 Plots of the energy as a function of ω for |m| = 1 and different
values of n and α. For n = 0 (solid line), n = 1 (dotted line) and n = 3
(dashed line). For α = 1 (black), α = 0.8 (blue), and α = 0.5 (red)

weak-coupling limit does not correspond to the nonrelativis-
tic limit, we also can consider the nonrelativistic limit of (57).
Following the standard procedure, E = M+E with M 
 E ,
and after some calculations, one has

E 
 ω

(

2n + |m|
α

)

. (59)

This describes the energy of a traditional nonrelativistic har-
monic oscillator.

Figures 1 and 2 illustrate the profiles of the energy as a
function of ω for |m| = 1 and |m| = 3, respectively. In both
figures we consider the three first quantum numbers and three
different values for α. From Figs. 1 and 2 one sees that all
the energy levels emerge from the positive (negative)-energy
continuum so that it is plausible to identify them with par-
ticle (antiparticle) levels. Furthermore, it is noticeable from
both of these figures that for positive-energy spectrum one
finds that the lowest quantum numbers correspond to the low-
est eigenenergies, as it should for particle energy levels. On
the other hand, for negative-energy spectrum this presents a
similar behavior but the highest energy levels are labeled by
the lowest quantum numbers and are to be identified with
antiparticle levels. Also, one can see that for fixed values of
n and |m|, the energy |E | increases as α decreases.

In Fig. 3, we illustrate the results of |φ1|2 for n = 0,
|m| = 1, and different values of α. From Fig. 3 one can
see that for fixed values of n and |m|, the distribution has a
maximum at r ≈ 1.7 for α = 1, and this maximum decreases
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Fig. 2 The same as Fig. 1, for |m| = 3

1 2 3 4 5
r

0.1

0.2

0.3

0.4

Fig. 3 Plots of |φ1|2 for n = 0, |m| = 1, and different values of α: for
α = 1 (black), α = 0.8 (blue) and α = 0.5 (red)

and moves to positive r-direction as α increases. In addition,
comparison with |φ1|2 shows that α = 1 tends to be better
localized than α < 1. From this, we can conclude that in the
limit α → 0 one has Nn → 0, so that the solutions φ1 tends
to disappear one after another as α → 0. The comparison
between the profiles of |φ1|2 for n = 0 and n = 2 are shown
in Fig. 4 for |m| = 1 and different values of α. Figure 4
clearly shows the effects of α on the excited modes, which
are qualitatively similar to n = 0. Finally, Fig. 5 illustrates
the behavior of |φ1|2 for n = 2, |m| = 1, and α = 0.5 in
polar coordinates. One can see that scalar bosons tend to be
better localized at the blue region.

1 2 3 4 5 6 7
r

0.1

0.2

0.3

0.4

Fig. 4 Plots of |φ1|2 for n = 0 (thick line) and n = 2 (dashed line),
|m| = 1, and different values of α: for α = 1 (black), α = 0.8 (blue),
and α = 0.5 (red)

6 4 2 0 2 4 6

6

4

2

0

2

4

6

0

0.16

0

Fig. 5 Plots of |φ1|2 for n = 2, |m| = 1, and α = 0.5

5 Conclusions

We studied the Duffin–Kemmer–Petiau (DKP) equation in a
curved space-time and we found the general condition on
the interactions which leads to a conserved current. This
result is a generalization of [27] (Minkowski space-time).
Furthermore, we showed that considering a cosmic string
background and a DKP oscillator interaction, they furnish a
conserved current.

Considering only scalar bosons, we showed that the
motion equation which describes the quantum dynamics
of a DKP oscillator in a cosmic string background was
mapped into a Schrödinger-like equation embedded in a
three-dimensional harmonic oscillator for the first compo-
nent of the DKP spinor; and the remaining components were
expressed in terms of the first one in a simple way. Our result
is very similar to a Dirac oscillator in a cosmic string back-

123



Eur. Phys. J. C (2015) 75 :287 Page 7 of 8 287

ground, except for the absence of some terms that depend on
the spin projection parameter [46].

We found the spectrum of energy for this background and
we showed that the energy |E | increases as α decreases. Both
particle and antiparticle energy levels are members of the
spectrum, and the particle and antiparticle spectra are sym-
metrical about E = 0. That fact implies that there is no
channel for spontaneous boson–antiboson creation. We also
found that both weak-coupling limit and nonrelativistic limit
furnish an equally spaced energy spectrum, so that we con-
cluded that this problem describes a genuine DKP oscillator.

The behavior of the solutions for this problem was dis-
cussed in detail. We showed that the cosmic string back-
ground influences the scalar bosons localization. As an
important result, we showed that α = 1 tends to be better
localized than α < 1 (see Fig. 3). Also, we showed that in
the limit α → 0 the solutions φ1 tend to disappear.

Beyond investigating the quantum dynamics of scalar
bosons in a cosmic string background, the results of this paper
could be used, in principle, in condensed matter physics,
owing to the analogy between cosmic strings and discli-
nations in solids [56]. Another physical application could
be associated to Bose–Einstein condensates (BEC) [57,58]
and neutral atoms. It is well known that condensates can
be exploited for building a coherent source of neutral atoms
[59], which in turn can be used to study entanglement and
quantum information processing [60].

Finally, it is worthwhile to mention that the natural exten-
sion of the present work is to consider more general back-
grounds, as for instance a global monopole [61] and a spin-
ning cosmic string [62,63], among others.
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