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Abstract Massive QED, in contrast with its massless coun-
terpart, possesses two conserved charges; one is a screened
(vanishing) Maxwell charge which is directly associated with
the massive vector mesons through the identically conserved
Maxwell current, while the presence of a particle-antiparticle
counting charge depends on the matter. A somewhat pecu-
liar situation arises for couplings of Hermitian matter fields
to massive vector potentials; in that case the only current is
the screened Maxwell current and the coupling disappears
in the massless limit. In the case of self-interacting massive
vector mesons the situation becomes even more peculiar in
that the usually renormalizability guaranteeing validity of the
first order power-counting criterion breaks down in second
order and requires the compensatory presence of additional
Hermitian H-fields. Some aspect of these observation have
already been noticed in the BRST gauge theoretic formu-
lation, but here we use a new setting based on string-local
vector mesons which is required by Hilbert space positivity
(“off-shell unitarity”). This new formulation explains why
spontaneous symmetry breaking cannot occur in the presence
of higher spin s ≥ 1 fields. The coupling to H -fields induces
Mexican hat-like self-interactions; they are not imposed and
bear no relation with spontaneous symmetry breaking; they
are rather consequences of the foundational causal localiza-
tion properties realized in a Hilbert space setting. In the case
of self-interacting massive vector mesons their presence is
required in order to maintain the first order power-counting
restriction of renormalizability also in second order. The pre-
sentation of the new Hilbert space setting for vector mesons
which replaces gauge theory and extends on-shell unitarity to
its off-shell counterpart is the main motivation for this work.
The new Hilbert space setting also shows that the second
order Lie-algebra structure of self-interacting vector mesons
is a consequence of the principles of QFT and promises a
deeper understanding of the origin of confinement.

a e-mail: schroer@zedat.fu-berlin.de

1 Introduction

The theoretical interest in massive vector mesons can be
traced back to Schwinger’s conjecture [1], which states that
“massive QED” leads to “charge screening”. The analogy to
the quantum mechanical theory of superconductivity, where
the long-range vector potentials of electromagnetism become
short ranged, lends plausibility to Schwinger’s quantum field
theoretical conjecture. This idea was made precise in a theo-
rem by Swieca [2,3], who showed that the Maxwell current
of a massive vector meson, independent of whether it inter-
acts with complex or Hermitian matter fields (in the sequel
referred to a H -matter), always leads to a vanishing charge
of the identically conserved Maxwell current.

The proof uses analytic properties of matrix elements
(form factors) of identically conserved currents associated
with a field strength tensor of a massive vector meson. We
will refer to this phenomenon as “Schwinger–Swieca screen-
ing”. The global particle-antiparticle number conservation
remains unaffected by the vanishing of the Maxwell charge.
In the case of a coupling to H -matter (the abelian Higgs
model) there is only the screened Maxwell charge.

Massive QED does not require the presence of H -particles
and massive vector mesons do not owe their mass to spon-
taneous symmetry breaking (SSB). As will be shown in the
present work, the mass of vector mesons bears no intrinsic
(physically meaningful) relation with a spontaneous sym-
metry breaking “Higgs mechanism”. As in the case of quan-
tum mechanical superconductivity, where long-range vector
potentials become short ranged without adding new degrees
of freedom, massive QED does not require the presence of
additional H -matter.

The situation changes in the presence of self-couplings
between massive vector mesons as will be explained in the
sequel. A necessary restriction on first order couplings from
the requirement of renormalizability is the power-counting
restriction for the short distance scale dimension of the first
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order interaction density d int
sd ≤ 4. In all known renormaliz-

able models, except those involving self-interacting massive
vector mesons, this bound secures the preservation of renor-
malizability to all orders. This “golden rule” of renormaliza-
tion theory is satisfied in first order self-interactions between
massive vector mesons, but is lost in second order; although
there exists a unique first order gauge invariant density for
massive self-interacting vector mesons with d int

sd = 4, the
implementation of second order gauge invariance for the
S-matrix induces terms which violate the power-counting
restriction.

It turns out that this second order violation can only be
prevented by a compensation in which an additional field
couples to the vector mesons in compliance with the first
order power-counting restriction but a violation in second
order. This coupling must be such that the contributions from
both second order terms cancel. The charge neutrality of vec-
tor mesons requires the new fields to be Hermitian; it turns
out that the compensation can only be achieved with scalar
H -fields. Such a cancelation is reminiscent of short-distance
improvements from compensations between different spin
components in supersymmetric interactions, but it is well
known that they did not suffice in order to remain within the
power-counting restriction.

However, for the case at hand the compensation works;
Aμ self-couplings and A–H coupling collaborate in such a
way that renormalizability is preserved in second order. This
scenario was first elaborated in the setting of BRST gauge
theory by Scharf [4] and Collaborators [5], for a more recent
account see also [6]. They start from the perturbative formal
representation of the S-matrix1 in terms of the adiabatic limit
of time-ordered products of the first order interaction density
and impose BRST gauge invariance in the form sS = 0,

where s denotes the nilpotent BRST s-operation.
This turns out to be very restrictive; in the case of only

one H field all couplings are determined. As expected, in
the limit of zero mass vector mesons the H decouples from
the Aμ and becomes a free field, whereas the massless self-
interacting vector mesons take the form of a (massless) Yang–
Mills (YM) interaction.

Besides the BRST gauge formalism, needed for the defi-
nition of the gauge invariant S-matrix, no other property has
been used to derive this result. In particular there is no ref-
erence to SSB which starts with the Mexican hat potential,
whereas in the present setting it is induced from the imposi-
tion of second order gauge invariance.

What is meant by “induction” is best explained in the sim-
pler abelian Higgs model. The starting point of any perturba-
tion theory is a set of interaction-defining free fields and a first
order coupling strength; in the present case these are three

1 The physical S-matrix is the adiabatic limit of the Bogoliubov gen-
erating operator S-functional.

parameters, namely the masses of the vector meson and the
H, and the first order coupling strength in g Aμ Aμ H. Among
the terms which the imposition of gauge invariance (BRST
s-invariance) on the S-matrix induces in second order one
finds the tri- and quadri-linear terms, which can be written in
the form of a Mexican hat potential which only depends on g
and the ratios of the two masses [4]. This kind of induction,
which generates new interactions without enlarging the num-
ber of coupling parameters, is a consequence of the gauge
invariance of S.

The construction of the (abelian) Higgs model in terms
of a SSB prescription is very different. It starts with the
Lagrangian of two-parametric scalar QED and breaks gauge
invariance in terms of a shift in field space. A subsequent
gauge transformation converts the resulting expression, apart
from the unphysical parametrization, into the same expres-
sion as that obtained by imposing gauge invariance. An easy
test, which shows that the shift prescription has no relation
to a physical SSB, is to pass to the limit of a vanishing shift
parameter. In a genuine SSB the model would return to its
unbroken form which was 2-parametric scalar QED. This
does not happen, the physically meaningless application of
a gauge transformation after breaking of gauge invariance
prevents this return.

A more profound argument results from the observation
that the Maxwell current of the Higgs model, as any Maxwell
current of a massive vector meson, leads to a screened charge
Q = 0, whereas the conserved current of a genuine SSB
model implies Q = ∞. A conserved current whose “would
be” symmetry-generating charge diverges is actually the def-
inition of a SSB, whereas the shift in field space is a device
which prepares such a current.

It is well known that such situations can be generated from
quartic interactions between scalar particles which are invari-
ant under the action of compact groups. The shift in field
space is a convenient tool to construct a first order interac-
tion whose renormalized perturbation theory preserves cur-
rent conservation but leads to the divergence of some of the
charges. It does not create masses but rather prepares the kind
of special interaction between massive and massless (“Gold-
stone bosons”) free fields which maintains current conserva-
tion but causes the long-distance divergence of some charges.

This construction is limited to interactions to interactions
involving low spins s < 1. The coupling of vector mesons to
scalar fields prevent the latter from causing a SSB. The usual
argument is that the scalar particles become gauge-dependent
and local gauge invariance is not really a physical symmetry
which can be broken. This argument involves formal steps
with unclear physical content; gauge “symmetries” are not
physical symmetries and it is not clear what one is breaking.

A less formal more physical argument is to look directly
at the gauge invariant conserved current which the cou-
pling to the vector meson has transformed into an identi-

123



Eur. Phys. J. C (2015) 75 :365 Page 3 of 19 365

cally conserved Maxwell current. The charge of Maxwell
currents of massive vector mesons vanish as a conse-
quence of the Schwinger–Swieca charge screening; this
is a gauge-invariant phenomenon (it involves only gauge-
invariant observables). A screened charge Q = 0 is very
different from a SSB charge Q = ∞; between the two is the
nontrivial charge Q < ∞, which is the generator of a sym-
metry. As soon as higher spin fields couple to scalar fields,
the latter are prevented to undergo SSB; the scalar particles
have to follow the more restrictive nature of higher spin inter-
actions places the vector mesons into the driver’s seat. In this
way those scalar fields which couple to s = 1 fields are
prevented from transforming into their SSB mode.

In the string-local field (SLF) Hilbert spaces setting,
whose presentation is the main purpose of the present paper,
the interaction with string-local vector mesons converts the
scalar fields into interacting string-local fields. In this set-
ting there is simply no gauge symmetry which could undergo
spontaneous breaking; rather all point-local fields which cou-
ple to string-local vector potentials lose their point-local
nature and become string-local. Such fields are not local
observables. But in contrast to their gauge-theoretic coun-
terparts they are physical, since they act in a Hilbert space.

The Higgs mechanism leads to the correct coupling of
H with massive vector mesons but it fails to reveal the raison
d’être of the H -field which has nothing to do with symmetry
breaking and mass generation. The vector mesons in massive
QED do not need the presence of a mass-generating H, it is
a renormalizable theory by itself. As pointed out before, the
situation changes radically in the presence of self-interacting
massive vector mesons. In that case the theoretical reason for
its existence is the second order preservation of renormaliza-
tion. As a result of the connection between renormalizability
and causal localizability, the H plays a fundamental role for
the consistency of the W ±, Z interactions in the Standard
Model.

The preservation of second order reormalizability with the
help of an H -particle is vaguely reminiscent of the introduc-
tion of vector mesons to convert the first order nonrenormal-
izable 4-Fermi interaction into a renormalizable coupling,
except that a second order compensation mechanism is much
more sophisticated. The fundamental nature of the LHC dis-
covery is in no way affected by this new role assigned to
the H, but in particle theory it is important to distinguish
between prescriptions for construction of models and their
intrinsic properties.

It is an interesting question why this was not seen in the
standard BRST formulation in terms of Feynman rules. The
answer is that in an off-shell gauge formalism one usually
presents the perturbative rules, but one does not focus on the
explicit construction of a gauge-invariant on-shell unitary S-
matrix. In [4,5] the BRST formalism was especially adjusted

to that problem by what the authors called the “causal gauge
invariance” (CGI) setting which is based on the Epstein–
Glaser operator formulation. This leads to a rather clear dis-
tinction between quasiclassical pictures of symmetry break-
ing and gauge-induced H -self-interactions.

This CGI setting permits a direct perturbative construc-
tion of a unitary gauge-invariant S-matrix for a g A · AH
coupling of a massive vector meson with a Hermitian field;
in this way it highlights the second order induction mecha-
nism which leads to the Mexican hat H self-interaction. It
bears no relation with generating masses of vector mesons;
whereas massive QED does not need the presence of H fields
in order to generate the mass of the vector meson, their pres-
ence is necessary in all interaction involving self-interacting
massive vector mesons and the CGI formulation reveals the
correct reasons.

Interactions in QFT cannot generate masses in any mate-
rial sense; masses of interacting-defining elementary fields
(i.e. those in terms of which the first order interaction is
defined) must be put in, and higher order renormalization
theory preserves them. What one expects from the theory is
that the mass of possible bound states, which correspond to
composites of the elementary fields, can be computed within
the theory; but this does not seem to be possible within a
perturbative setting.

The main concern in the present work is to replace the
“ghostly” gauge theory by a new ghost-free Hilbert space
formulation of interactions for s = 1 fields.

Gauge theory is not a substitute of a Hilbert space formu-
lation, but it is a rather successful placeholder. The awareness
about its makeshift status was much stronger in the past than
it is now. There were several valiant attempts to avoid the use
of indefinite metric by Mandelstam [7] and also DeWitt [8];
their failure also revealed that a description which is con-
sistent with positivity (“off-shell unitarity”) requires major
new conceptual investments beyond what was known at that
time.

As a result of impressive observational successes of gauge
theory in its applications to the Standard Model, this prob-
lem moved gradually into the background. Physicists of the
older generation sometimes express their surprise that the
conceptual incomplete gauge theory works much better than
expected; occasionally they think of this success in terms of
as a results of unmerited luck (I thank Raymond Stora for
sharing his views on this problem).

The new Hilbert space setting reveals what can be cor-
rectly described within the perturbative gauge theory setting
and what problems remain outside its physical range. The
vacuum sector, generated by the application of gauge invari-
ant observables to the vacuum state, and the gauge-invariant
S-matrix in the presence of a mass gap are within its physical
range, whereas the construction of causally localized fields
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and their asymptotically related particles states remain out-
side.

This is a serious limitation in particular in zero mass lim-
its when the construction of the gauge-invariant S-matrix
fails and one has to take recourse to calculational recipes
without understanding their connection with the foundational
spacetime localization properties. Such problems related to
the long-distance behavior of fields (infrared problems in
momentum space) are outside the range of gauge theory.

Local gauge symmetry is a well-defined concept in classi-
cal field theory, but it clashes with the Hilbert space positivity
of quantum theory. Instead of representing a physical sym-
metry, it is a formal device for extracting a physical subthe-
ory. This is a consequence of the fact that locality in a Krein
space, in contrast to Einstein causality in Hilbert space, has
only a formal but no physical motivation. Its become partic-
ularly annoying in the massless limit, when scattering ampli-
tudes suffer from infrared divergencies and one is forced to
describe collisions in terms of momentum-space prescrip-
tions instead of spacetime localization properties of phys-
ical fields. Such problems can only be solved in a Hilbert
space setting; the operators in QFT which corresponds to
long-range (Coulomb) potentials in quantum mechanics are
string-local fields [9].

The new SLF theory should explain why self-interacting
vector mesons lead to a Lie-algebra structure with only one
coupling strength. In the BRST gauge setting this arises as a
consistency condition of the formalism [4]. This is not sur-
prising, since the BRST formalism is the result of an adapta-
tion of classical gauge theory to the exigencies of QFT.2 The
physically more relevant question is whether the Lie-algebra
structure can be derived solely from the causal localization
principles of QFT in a Hilbert space setting without referring
to the classical mathematics of fiber bundles. In Sect. 6 it will
be shown that this is indeed the case.

A somewhat surprising result is that the use of covariant
string-local potentials permits a simple and amusing descrip-
tion of topological effects which are present in the zero mass
limit, as the breakdown of Haag duality and the closely
related Aharonov–Bohm effect (Sect. 3).

The interest in string-local fields, as they are used in the
present work, started with the solution of an old problem
which goes back to Wigner. In his famous 1939 paper, which
contains the classification of all positive energy representa-
tions of the Poincaré group, Wigner found besides the mas-
sive and the zero mass finite helicity representation a third
massless representation class which he referred to as “infinite
spin”. Whereas there was no problem to associate point-local
covariant fields with the first two classes, the problem of a
field theoretic description of the third class remained for a
long time open. In [10] it was shown that this class cannot

2 I thank Raymond Stora for his critical remarks about such derivations.

be described in terms of point-local Wightman fields. Using
methods of modular localization3 Brunetti et al. [11] showed
that these representations permit causal localization in arbi-
trary narrow space-like cone regions in Minkowski space (for
historical remarks on modular localization see [12,13]).

This suggested that it should be possible to associate
covariant fields localized on space-like semi-infinite strings
(the “core” of arbitrary narrow space-like cones) with such a
situation; such fields were then explicitly constructed in [14].
In that work arguments were given which suggested that such
models do not admit composite point-local fields; they were
significantly extended in forthcoming work by Ch. Köhler.
An elegant proof of their absence was recently given in [15].

In [14] also string-local fields for the massive and zero
mass finite helicity Wigner representations were constructed
in the hope that they could be useful in perturbation theory
and may lead to a ghost-free Hilbert space formulation of
s = 1 interactions which replaces gauge theory. These ideas
were further pursued in [12,16–20]. The present work is a
continuation of these ideas in the context of explicit second
order calculations in the presence of string-local massive vec-
tor potentials. The presentation of the general formalism in
the presence of string-crossings will be contained a forth-
coming paper by Jens Mund; further details as regards appli-
cations to interacting string-local fields will be addressed in
joint work by Mund and the present author.

It had been known for a long time [21,22] that within the
setting of algebraic QFT the field-particle relation in the pres-
ence of a mass gap can always be described in terms of oper-
ators localized in arbitrary narrow space-like cones (whose
cores are semi-infinite space-like strings). It is interesting to
note that the ideas which led to these results arose from a
previous publication of the authors in which they removed a
remaining loophole in the proof of Swieca‘s screening theo-
rem [23].

The approach presented in this paper may be seen as
an adaptation of those structural results to the requirements
of renormalized perturbation theory in terms of string-local
fields.

This work is organized as follows.
The next section presents conceptual aspects of the Hilbert

space setting and compares them with the formalism of oper-
ator gauge theory.

The third section contains a simple but somewhat surpris-
ing application of free string-local fields.

The problem of their role in interactions is taken up in
Sect. 4.

Section 5 presents second order perturbative results which
includes in particular the interaction of massive vector
mesons with Hermitian matter (the Higgs model).

3 Modular localization is an intrinsic formulation of causal localization
which does not rely on the use of particular field “coordinatizations”.
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In Sect. 6 it is shown that the Lie-algebra structure of
self-interacting vector mesons is a consequence of causal
localization in Hilbert space.

The concluding remarks present an outlook about what
can be expected from this new setting concerning unsolved
problems of infrared divergencies such as “infraparticles” in
QED and confinement in QCD.

2 Formal analogies and conceptual differences between
CGI and SSB

For the convenience of the reader we start with a compilation
of formulas as they are used in the CGI formulation of BRST
gauge theory for the construction of the gauge-invariant S-
matrix [4].

sAK
μ = ∂μuK , sφK = uK , sûK = −(∂ AK + m2φK )

sB := i[Q, B], Q =
∫

d3x(∂ν AK
ν + m2φ)

←→
∂ 0u. (1)

Here the superscript K refers to the Krein space in which
these operators are realized, Q is the so-called ghost charge,
whose properties ensure the nilpotency (s2 = 0) of the BRS
s-operation. The AK

μ is a massive vector meson in the Feyn-
man gauge and φ is a free scalar field of the same mass but
with a two-point function of opposite sign (a kind of negative
metric Stückelberg field); these two fields carry the indefi-
nite metric which requires to replace the Hilbert space by a
Krein space (iteratively created by iterative application of the
operators to the vacuum). The “ghosts” u, û are free “scalar
fermions” whose presence is necessary in order to recover
the vacuum sector of the local observables acting in a Hilbert
space and the unitary S-matrix in the form of s-invariant
operators.

These rules in terms of free fields suffices for the con-
struction of the gauge-invariant S-matrix; the extension to
(gauge-variant) interacting fields follows similar formal rules
as those for interacting fields with lower spin s < 1. The
Q-charge and the s participate in the perturbation theory of
interacting fields.

The BRST formalism is a pure perturbative tool; structural
properties (TCP, spin and statistics,…) as well as the physi-
cal causal locality properties of which they are consequences
require the Hilbert space positivity. The tools one needs for
non-perturbative constructions and the derivation of struc-
tural theorems (Schwartz inequality,…) are not available in
a Krein space setting. Quantum gauge theory is limited to the
combinatorial manipulations of perturbation theory.

It should not come as a surprise that the ghost formalism
(the s-cohomology), unlike the later SLF Hilbert space for-
mulation (differential forms on the d = 1 + 2 unit de Sitter
space of space-like directions), has no relation with space-

time. The BRST rules were not derived from localization
principles of QFT but they were found in the course of trying
to recover unitarity of the S-matrix (“on-shell unitarity”) in
a Krein space setting. In order to arrive at the BRST oper-
ational formulation it needed several improvements of the
original unitarity arguments of ’t Hooft–Veltman (Faddeev–
Poppov, Slavnov) in order to reach the formally elegant ghost
formalism of Becchi–Rouet–Stora–Tyutin.

Although the use of these prescriptions turned out to be
essential for the success of the Standard Model, their con-
ceptual relation with the foundational principles remained
unclear. QFT is the realization of causal localization in a
Hilbert space; without positivity (“unitarity”) there is no
probability interpretation and hence the relation with quan-
tum theories foundational property is lost in gauge theory; it
can only be recovered in special (gauge-invariant) situations.
It needs to be emphasized that classical gauge theory is not
affected by these shortcomings since the foundational Hilbert
space structure is characteristic of quantum theory. Hence it
is not surprising that the SLF Hilbert space description is
outside Lagrangian quantization (but not outside perturba-
tion theory).

As already mentioned in the introduction, massless s ≥
1 covariant tensor potentials are necessarily string-local.
Massive point-like potentials exist, but as a result of their
short-distance dimension ds

sd(point) = s + 1 their interac-
tions are nonrenormalizable since interactions formed with
them violate the power-counting limit d int

sd ≤ 4. The fact that
the smallest possible short-distance dimension of string-local
fields is ds

sd(string) = 1 suggests that there may be renormal-
izable string-local interactions. But the power-counting limit
is not the only restriction, physics demands the existence
of sufficiently many local observables generated by point-
local fields and the preservation of string-localization. Fur-
thermore the S-matrix in models with a mass gap should be
independent of the string directions e; although fields may be
string-local, the particles which they interpolate remain those
string-independent objects whose wave-function spaces were
classified by Wigner. In the following we will show how these
requirements can be met for massive vector mesons.

We start from a massive vector potential (the Proca field)
and define its associated string-local potential in terms of the
Proca field strength

Fμν(x) = ∂μ AP
ν (x) − ∂ν AP

μ(x),

Aμ(x, e) =
∫ ∞

0
Fμν(x + λe)eνdλ,

φ(x, e) =
∫ ∞

0
AP

μ(x + λe)eμdλ, e2 = −1. (2)

Whereas the short-distance dimension of the Proca poten-
tial and its field strength is d P

sd = 2, the string-local vector
potential and its scalar “escort” φ have dsd = 1. We could of
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course change the “population density” of degrees of free-
dom on the semi-infinite line from p(λ) ≡ 1 (as above) to
any other smooth function which approaches 1 asymptoti-
cally without leaving the local equivalence (Borchers) class;
but if we want in addition to uphold a linear relation, which
follows from (2),

Aμ(x, e) = AP
μ(x) + ∂μφ(x, e), (3)

we must use the same p(λ). Formally this corresponds to the
possibility of gauge changes in (1); p(λ) changes preserve
relative localization and a fortiori do not change the particle
content in the presence of interactions.

In contrast to the “virtual” strings of anyons/plektons [24],
which, similar to cuts in complex function theory, may be
displaced as long as crossings are prevented, the strings of
string-local fields are “real”. Needless to mention that the
string-local potentials are the only vector potentials which
permit a m → 0 limit.

For the following it turns out to be convenient to express
(2) as linear relations between v-intertwiners

AP
μ(x) = 1

(2π)3/2

∫ ⎛
⎝eipx

∑
s3=−1,0,1

v(p)μ,s3 a∗(p, s3) + h.c.

⎞
⎠

vA
μ,s3

(p, e) = vμ,s3 (p) + i pμv
φ
s3 , v

φ
s3(p) = ivs3 · e

p · e + iε

(4)

where the second line is the relation (3) rewritten as a lin-
ear relation between the three intertwiners. Here v refers
to the intertwiner between the 3-component unitary Wigner
representation and the covariant vector-components of the
Proca potential. Using the differential form calculus on the
d = 1 + 2 de Sitter space of space-like directions, we define
exact 1- and 2-forms,

u = deφ = ∂eαφdeα, vu
s3

= i

(
vα,s3

p · e
− v · e

(p · e)2 pα

)
deα,

û = de(Aadeα) =
∫ ∞

0
dλFαβ(x + λe)deα ∧ deβ,

vû = pα

vβ,s3

p · e
deα ∧ deβ. (5)

They are field-valued differential forms with dsd =
1 which in a certain sense represent the Hilbert space coun-
terpart of the cohomological BRST ghost formalism in Krein
space. To maintain the simplicity of the covariant formalism,
the differential forms on the unit d = 1 + 2 de Sitter space
are viewed as restrictions of the four-dimensional directional
e-formalism. The notation u, û suggests that they may play
the role of the differential form analog of the ghost in the
BRST formalism.

These field-valued differential forms are natural exten-
sions of string-local fields; together with Aμ(x, e) and

φ(x, e) they are the only covariant string-local members of
the linear part of the local equivalence class of the free Proca
field with dsd = 1. Their ghost counterparts are important
in the off-shell BRST formalism, but (apart from the appear-
ance of u(K )-terms in the Qμ formalism) they disappear in
the formula for S.

The 2-point Wightman functions of string-local objects
can be calculated from their intertwiners or directly in terms
of the line integral representation of the string-local A, φ

fields. One obtains4

〈
Aμ(x, e)Aν(x ′, e′)

〉 = 1

(2π)3

∫
e−i(x−x ′)p M A

μν(p)
d3 p

2p0

M A
μμ′(p; e, e′) = −gμμ′ − pμ pμ′(e · e′)

(p · e − iε)(p · e′ + iε)

+ pμeμ′

(p · e − iε)
+ pμe′

μ′

(p · e′ + iε)
(6)

and similar expressions for Mφ and mixed vacuum expec-
tations M A,φ

μ . The occurrence of the latter (which vanish
in the gauge setting) is the price to pay for maintaining
off-shell positivity. Only point-like (generally composite)
local observables and the S-matrix are independent of e;
but their perturbative computation requires the use of string-
local fields. The p · e ± iε terms in the denominator are the
momentum-space expressions which correspond to the line
integrals in the creation, respectively, annihilation compo-
nents.

The time-ordered propagators are formally obtained in
terms of the substitution

d3 p

2p0
→ 1

2π

1

p2 − m2 + iε
d4 p, (7)

together with the Epstein–Glaser minimal scaling rule which
allows the appearance of undetermined counterterms in the
case the scale dimension of the propagator is d ≥ 4. For later
use (Sect. 3) we also note

∂μ

∫
e−iξ ·p pμ pν

(p2 − m2 + iε)(p · ε + iε)

= ∂v

∫ ∞

0
δ(ξ + se)ds =: ∂vδe(ξ). (8)

Whereas in the SLF Hilbert space formalism the particle
creation and annihilation operators are directly associated
to Wigner-particle states, the Krein space substitute of the
Proca potential

AP,K
μ := AK

μ − ∂μφK , sAP,K
μ = 0 (9)

4 More details will be contained in forthcoming work by Mund.
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only “emulates” such states inside matrix elements of gauge-
invariant operators. For the S-matrix one has

〈
q K

1 ..q K
m

∣∣∣SK
∣∣∣ pK

1 , ..pK
n

〉
= 〈q1..qm |S| p1, ..pn〉 (10)

where the Krein space vector meson states are obtained by
successive application of AP.K

μ to the vacuum state. The
gauge formalism can generally not prevent “leakage” of
physical states defined by s |ψ〉 = 0 into unphysical regions
of Krein space.

Besides the local observables, the only known shared
global operator is the S-matrix. A considerable conceptual
difference is that in SLF in addition to the perturbative def-
inition of S there also exists a non-perturbative derivation
in terms of large time asymptotic properties of interpolat-
ing fields in Hilbert space (on-shell unitarity from a mass-
shell restriction of off-shell unitarity). In that case the e-
independence of the S-matrix is a result of the extension
of scattering theory to space-like cone localized operators
(strings as limits of space-like cones) [22].

In both perturbative settings the perturbative calculations
impose the requirement of s or de invariance on the formal
time-ordered expression of the Bogoliubov formalism. In
the SLF setting one expects that the perturbative S-matrix
formalism can be extended to string-local physical fields
whose perturbative correlation functions are independent
of the e-directions of internal propagators. Such a distinc-
tion between the string dependence of interacting fields,
whose vacuum expectation values one wants to calculate,
and e′s, which appear in internal propagators of their pertur-
bative expansion, has no counterpart in gauge theory. Despite
some formal analogies, the conceptual differences between
the global BRST cohomology of the s and the geometric
d differential form calculus acting on the spacetime string
directions remain formidable.

3 The breakdown of Haag duality and a new look at the
Aharonov–Bohm effect

An example of an effect which cannot be described in the
Krein space setting of point-like vector potentials, but that
is correctly accounted for in the string-local Hilbert space
formalism, is the breakdown of Haag duality and the closely
related Aharonov–Bohm effect. It is instructive to illustrate
this in some detail in terms of Wilson loops.

For the following calculations it turns out to be convenient
to work with regularized electric and magnetic field strengths.
Let B be a small ball centered at the origin and ρ, σ functions
with suppρ ⊂ B. Then we define regularized field strengths
in terms of convolutions with ρ

�Eρ(�x) =
∫

�E(�x − �x ′)ρ(�x ′)d3 �x ′, �Hσ (�x) = · · · (11)

The corresponding regularized fluxes through a surface D
are

Eρ(D) =
∫

D

�Eρ(�x)d �D, Hσ (D) =
∫

D

�Hσ (�x)d �D.

Using the equal time commutation relation between the elec-
tric and magnetic field strengths, one obtains for regularized
electric and magnetic surface fluxes through D, respectively,
D̂

4π i
[

Eρ(D), Hσ (D̂)
]

=
∫

�gD,ρ(�x) curl �gD̂,σ
(�x)d3 �x

�gD,ρ(�x) =
∫

�gD(�x − �x ′)ρ(�x ′), �gD( �f )

=
∫

D

�f d �D; �gD̂,σ
(x) = ...,

where the vector-valued functions �gD,ρ(�x), �gD̂,σ
(�x) are

obtained by regularizing the vector-valued surface distribu-
tions �gD(�x) as define in the second line. Since the diver-
gence of �Eρ(�x) and �Hσ (�x) vanishes, the corresponding flux
Hρ(D̂) depends only on ∂ D̂; hence it can be localized on
any surface spanning ∂ D̂.

Thinking in pure geometric terms, one would expect that
the fluxes are localized on the tori T = ∂D + B, T̂ = ∂ D̂ +
B, so that in the case they interpenetrate but do not touch the
commutator vanishes. But an explicit calculation for such a
situation shows that this is not true.

Taking for D and D̂ the discs

D =
{
�x ∈ R

3; x3 = 0, x2
1 + x2

2 = 1
}

,

D̂ =
{
�x ∈ R

3; x1 = 0, (x2 − 1)2 + x2
3 = 1

}
, (12)

whose associated interpenetrating tori T = ∂ D + B, T̂ =
∂ D̂ + B do not intersect for a sufficiently small B, one finds

4π i
[

Eρ(D), Hσ (D̂)
]

=
∫

ρ(�x)d3x ·
∫

σ(�x)d3x . (13)

This result for this straightforward but somewhat lengthy cal-
culation has been taken from old (unfortunately unpublished)
manuscript by Leyland et al. [25]. It is what one expects from
the picture of a magnetic flux through a torus which passes
through the regularized electric surface. It is independent of
the electric and magnetic surfaces D and D̂ as long as one
does not change their boundaries.

The purpose of their calculation was to show the break-
down of Haag duality for the system of localized opera-
tor algebras generated by a free field QED field strength
Fμν(x). The terminology will be explained in the sequel.
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Causal localization properties of QFT are best described
in the setting of algebraic QFT in which models are defined
in terms of their net of algebras of causally localized observ-
ables. Denoting such algebras localized in the compact space-
time region O as A(O), the causality properties of QFT are
expressed in terms of two independent relations,

A(O) = A(O′′), A(O) ⊆ A(O′)′. (14)

Here the first equation is the causal completeness property
(the causal completion O′′ is the two times applied causal
complement O → O′) and the second relation (in which the
dash on the algebra denotes its commutant) is the algebraic
formulation of Einstein causality.

The causal completeness property is a physically indis-
pensable part of causality, although it often does not receive
the same attention as Einstein causality.5 It corresponds to
the classical causal hyperbolic propagation. The standard sit-
uation is that the two algebras in the definition of Einstein
causality are equal; this situation is referred to as “Haag dual-
ity” [22].

But there exist models in which both causality require-
ments are fulfilled although Haag duality for algebras local-
ized in multiply connected spacetime regions is violated; the
simplest such regions are tori. The above calculation shows
that this occurs for the operator algebras A generated by the
free field strength Fμν(x) of QED. The tori and the regular-
ized surfaces were constructed at a fixed time, but using the
causal completeness property, the relation (13) continues to
hold for their causal completion T ′′, T̂ ′′ in spacetime when
the separation in space passes to a space-like separation in
spacetime.

The above observation about the existence of observables,
which can be localized on arbitrary (regularized) surfaces
which share the same boundary tori, can then be expressed
as

�H( ��D̂,ρ
) ⊂ A′(T̂ ′) but not in A(T̂ ). (15)

The magnetic flux commutes with all operators in A(O),

with O a bounded contractible spacetime region which does
not intersect T̂ . One can always change the surface, while
keeping its boundary in such a way that it is outside O, but
the previous calculation shows that this is not possible if O is
a interpenetrating torus.

An Aharonov–Bohm-like situation arises if one replaces
T̂ by a two-sided infinitely extended tube (which can be
viewed as a torus which closes at conformal infinity).

5 Isomorphisms between localized algebras in different spacetime
dimensions violate the causal completeness properties on one side of
the isomorphsim. This is the reason why the Maldacena conjecture
(the claim that the mathematical AdS–CFT isomorphism relates two
causally localizable QFTs) is incompatible with causality [12,26,27].

The use of string-local vector potentials in Hilbert space
permits an elegant explicit construction of such duality-
violating operators. For this purpose one starts from the
relation (3). In the massive case the loop integral over the
string-local vector potential is equal to that of its point-like
counterpart. In the zero mass limit the Proca potential and
φ do not exist; but since the differences φ(x, e) − φ(x, e′)
remains infrared finite6, the difference between two identical
Wilson loop but with different string directions vanishes,

∮
Aμ(x, e)dxμ −

∮
Aμ(x, e′)dxμ = 0.

This leads to a kind of topological e-dependence; the loop
integral still “remembers” that there was a directional depen-
dence, but “it forgets” the concrete space-like direction into
which the e pointed. This “topological memory” corresponds
to the breakdown of Haag duality in QED.

One may picture this situation in terms of a semi-infinite
cylinder formed by parallel space-like lines in the e direc-
tion which emanate from the points on the Wilson loop and
extend to infinity. By ρ-regularization one can convert the
circle into a torus, in which case the wall of the cylinder has
a finite thickness and the Wilson loop integral represents a
well-defined operator to be used in localization arguments.
The semi-infinite cylinder is the covariant substitute of the
surface and the deformation of the latter corresponds to the
Lorentz transformation of the former. A magnetic loop which
passes through the electric Wilson loop has to penetrate the
cylinder wall somewhere. As before, an infinite extended
magnetic flux corresponds to a loop which closes at infinity.

This constructions of a regularized Wilson loop, using a
massless string-local vector potential in Hilbert space, leads
to an elegant concrete realization of an operator which is in
A(T ′)′ but not in A(T ). Whereas the perturbation theory of
the gauge invariant S-matrix and the local observables are
correctly described, the gauge-invariant Wilson loop defined
in terms of the point-like vector potential of gauge theory fails
to account for the breakdown of Haag duality and the closely
related Aharonov–Bohm effect (see below); the topological
property is lost in gauge theory. This was well known to the
authors of [25]. In the present formalism the vector potentials
“live” in the same Hilbert space as the field strengths.

There exists another interesting scalar potential φ(x, e, e′)
≡ ∫ ∞

0 e′μ Aμ(x + λe, e′)dλ′, which depends on two string
directions and vanishes on the diagonal e = e′; hence it is
localized on the space-like wedge region spanned by the two
space-like half-lines R+e, R+e′. The important observation
is that the zero mass limit of suitable normalized exponen-
tial correlation functions of φ remain finite for m → 0.

6 I am indebted to Jens Mund for calling attention to this difference
between the massive case and its massless limit.
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This is reminiscent of the two-dimensional situation which
one encounters with conserved currents. The curl of the
related pseudo-current j̃μ = εμν jν vanishes so that it per-
mits a representation in terms of a derivative of a scalar
field j̃μ = ∂μχ(x). Again its zero mass limit diverges and
the exponential functions create new sectors in the massless
limit.

The analogy may be described as follows:

χ(x, e) =
∫ ∞

0
j̃μ(x + λe)eμdλ ∼ φ(x, e, e′)

=
∫ ∞

0
Aμ(x + λe, e′)eμdλ

exp igχ(x, e) ∼ exp igφ(x, e, e′). (16)

In both cases the zero mass limit of the exponentials gener-
ates new sectors of the operator algebras generated by jμ,
respectively, Aμ(x, e). The exponentials of χ play an impor-
tant role in creating “anyonic” sectors and “fermionization”
in d = 1 + 1. The exponential functions of φ on the other
hand are expected to be important in a future theory of “infra-
particles”.7 Another related shortcoming of the gauge theory
in Krein space had been noticed in [28] namely that it leads
to a vanishing Maxwell charge; something which one does
not expect in the Hilbert space setting. We hope to return to
this interesting problem.

Calculation in quantum mechanics are generally done in
the Coulomb (or radiation) gauge. It is interesting to note
that this non-covariant and non-local but rotation-invariant
potential in Hilbert space results from the string-local poten-
tial by averaging over string directions e in a space-like
hypersurface. It plays no role in covariant renormalization
theory, but most calculations in quantum mechanics (includ-
ing those of the A–B effect) use it. The string-local vector
potential is its local covariant counterpart.

The quantum string-local vector potential has a classical
analog. It can be obtained in terms of the expectation value of
the quantum string-local potential in coherent states. In this
way the above operator calculations pass to their classical
counterpart; as argued in the sequel this shows that the break-
down of Haag duality for free fields is basically a classical
phenomenon in which the localized subalgebras are replaced
by modular localized subspaces of the (s = 1, m = 0)

Wigner-particle space [11].
In the classical setting the algebraA(T ) corresponds toT -

localized modular subspace K (T ) of the Wigner space; the
dash on the localization region retains its geometric meaning,
and the commutant of the algebra passes to the symplectic
complement of the subspace K (T ) (which is defined in terms
of the imaginary part of the inner product in Hilbert space

7 The infraparticle Dirac field is similar to the incoming free field,
except that it has the softening of the electron mass-shell already built
in.

[11]). The classical analog of the breakdown of Haag dual-
ity is a topological phenomenon in classical field theory. In
this setting the T of the Aharonov–Bohm effect is described
in terms of a classical magnetic flux through an infinitely
extended solenoid which closes at conformal infinity. The
role of quantum mechanics in the A–B effect is the creation
of the electric Wilson loop by splitting an electron beam.
Note that the topological semi-infinite cylinder attached to
the Wilson loop maintains a causal connection with the mag-
netic flux whereas the point-local vector potential has none.

The breakdown of the Haag duality and its classical ana-
log disappears in case of massive vector mesons. Whereas the
infrared properties are characteristic for interacting massless
vector potentials, the duality violation is a pure kinematic
effect. Such a topological duality violation occurs for all
massless s ≥ 1 tensor potentials.

The conformal invariance of the field strength raises the
question whether instead of space-like strings it would not
be more appropriate to work with light-like covariant string-
local vector potentials; in this case the de Sitter differen-
tial geometry would be replaced by that of the boundary of
the light-cone. Actually this could also lead to conceptual
and computational simplifications. Basic relations, as those
between point-local potentials and their string-local counter-
parts (the string-local potential and its scalar escort φ) seem
to be preserved. We hope to return to this interesting problem
in a future publication.

Finally, it is worthwhile to mention that the use of string-
local potentials also removes that “quirky feeling” about a
missing causal relation between the Wilson loop formed and
the magnetic field passing through it. This feeling disappears
once one realizes that it is caused by the use of point-like vec-
tor potentials of gauge theory. This may be bad news for the
popular literature, but it is certainly helpful for demonstrat-
ing the power of Hilbert space positivity (which, as shown
before, even leaves its imprint in the form of topological
properties on the classical limit).

4 Perturbation theory in terms of string-local vector
potentials

More important for particle physics is the improvement of
renormalizability through the use of the string-local formal-
ism. The simplest illustration of this idea is provided by for
massive QED. One rewrites the point-local nonrenormaliz-
able interaction density into its string-local counterpart as
follows:

L P = AP
μ jμ = (Aμ − ∂μφ) jμ = L − ∂μ( jμφ) = L − ∂μVμ,

(17)∫
L P =

∫
L ←→ L P AE� L , adiabatic equiv. (18)
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Here we have used the conservation of the free current
(all fields are non-interacting) and the notation L for the
string-local interaction density. The power-counting violat-
ing point-like interactions have been written in terms of a
L with d int

sd ≤ 1 and a dsd = 5 derivative ∂V term which,
at least in models with a mass gap, can be disposed of in
the adiabatic limit of the first order S-matrix (second line).
The nontrivial step of generalizing this idea to higher order
time-ordered products will be undertaken in the next section.

Not all models are that simple. An interaction of a massive
vector meson with a Hermitian field L P = AP · AP H leads
to a L , V pair L −∂μVμ = L P (omitting the shared coupling
strength g)

L = m

{
A · (AH + φ

←→
∂ H) − m2

H

2
φ2 H

}
,

Vμ = m

{
AμφH + 1

2
φ2←→∂ μ H

}

Qμ = deVμ = mu(AμH + φ
←→
∂ μ H). (19)

In this case the string-local interaction density (and not only
Vμ as in massive QED) depends on φ. There are other terms
within the power-counting restriction which we could have
added namely cH3 + d H4 with initially independent cou-
pling strengths c, d. But it turns out that the second and third
order e-independence of the S-matrix induces these cou-
plings anyhow, as well as additional H–φ couplings. The
basic difference of this kind of induction as compared to the
standard counterterm formalism is that it does not increase
the number of parameters. In fact the first and second order
induced H -self-couplings and H–φ couplings taken together
will turn out to have the form of a Mexican hat potential. Its
appearance has nothing to do with SSB; it is fully explained
in terms of the e-independence of the S-matrix (next
section).

Here the terminology induced refers to contributions
whose presence is required for the e-independence of scat-
tering amplitudes. This is a consequence of scattering theory
in the presence of a mass gap; we refer again to a general the-
orem in [21,22], which states that the LSZ scattering theory
permits an extension to string-local fields and that the dif-
ference between point- and string-localized fields disappears
on the level of incoming/outgoing particle states. In the con-
text of the gauge theoretical formalism in Krein space there
are no physically localized fields in Hilbert space to which
this theorem can be applied; hence the imposition of gauge
invariance on the perturbative representation of the scattering
amplitude remains a perturbative prescription.

The Krein space of gauge theory does not contain multi-
particle Wigner states; the best one can do is to view the free
fields AP,K as the substitute for the generating fields AP of

the Wigner particles in the sense of (10).8 The field-particle
connection resulting from scattering theory and problems
concerning the relation of the elementary (model-defining)
fields with the (generally composite) local observables and
their associated bound states remain outside its physical
range.

A useful reformulation for the construction of e-
independent first order interaction densities in terms of a
given number of string-local fields is to look directly for
L , Vμ or L , Qμ pairs with

de(L−∂μVμ) = 0 or de L−∂μQμ = 0, d L
sd ≤ 4, (20)

instead of starting from an L P . The L of such a pair is
then determined up to exact forms deC and the Vμ up to a
divergence-free current. The definition of point-like interac-
tion densities in terms of such pairs is particularly useful for
the generalization to higher order time-ordered point-local
interaction densities.

Whereas for theories with a mass gap the construction of a
L , Vμ pair and the extension to e-independent time-ordered
higher order densities has a clear motivation, this is lost in the
massless limit when φ and Vμ and the S-matrix cease to exist
(become infrared divergent). This, as well as the appearance
of unexpected new phenomena, as those presented in the
previous section, leaves only one way to construct massless
s = 1 interacting fields. It consists in taking the m → 0 limit
of the correlation functions of the associated massive theory
and construct the massless operator theory in Hilbert space
from its correlation functions.

In this way one avoids the intermediate use of infrared-
divergent operators as Vμ, Qμ and one also bypasses a con-
frontation with the (futile) problem of describing the zero
mass Hilbert space in terms of limits of Wigner–Fock spaces.
Wightman’s reconstruction theorem ensures that a Hilbert
space and quantum fields can be constructed from (positivity-
obeying) correlation functions [30]. To implement these
ideas one must first extend the present formalism so that
in addition to the S-matrix it also includes the construction
of interacting fields.

The use of string-local charge-carrying matter fields is
supported by rigorous results in QED [9]. Whereas in the
presence of a mass gap point-local matter fields may still exist
as singular fields with unbounded short-distance dimensions
(and therefore outside the setting of localizable Wightman
fields), these non-perturbative results excludes such possi-
bilities in the massless limit.

The BRST gauge formalism uses charge-carrying unphys-
ical point-like fields. This limits its physical range to the

8 The speculative remarks in [29] on the gauge-theoretic substitutes of
Wigner particles acquire a concrete meaning in the present setting.
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construction of the perturbative S-matrix.9 Its perturbative
construction has been presented in [4]. It can be formulated
in a setting which parallels the L , Q pairs,

sL K − ∂μQK
μ = 0, (21)

S =
∫

L K (x)d4x, sS = 0 (22)

where K refers to Krein space. Integration over Minkowski
spacetime removes the Q contribution in the adiabatic limit
so that the S-matrix only depends on L K . The formal expres-
sions in the case of coupling to a Hermitian matter field H
parallel those of (19) with the fields replaced by their Krein
space counterparts.

The BRST formalism, apart from the vacuum sector gen-
erated by gauge invariant observables, implements only on-
shell unitarity. Gauge theory can describe scattering, but it
does not permit to extend on-shell unitarity to off-shell pos-
itivity; properties abstracted from gauge-dependent fields
have no physical content. In most applications of QFT to
particle physics the S-matrix covers all problems of inter-
ests. But in massless s = 1 theories as QED, for which the
S-matrix ceases to exist, one is forced to use momentum-
space recipes for the scattering of charge-carrying particles
in terms of photon-inclusive cross sections.

A full spacetime understanding of “infraparticles” in QED
does not yet exist, not to mention the much harder problem
of confinement of gluons and quarks in QCD. Such prob-
lems are outside the range of gauge theory. They require the
understanding of large-distance properties of fields. For this
one needs to extend the unitarity of the S-matrix (“on-shell
unitarity”) to the Hilbert space description (“off-shell uni-
tarity”) of fields. This cannot be achieved within the setting
of point-local fields since for interactions involving vector
mesons such a description is incompatible with the Hilbert
space positivity.

As described before, the way out is to use the structural
simplicity of a Wigner–Fock Hilbert space description in the
presence of a mass gap and to define the massless theory in
terms of the m → 0 limit of the correlation functions. In this
way one maintains the positivity in the massless limit so that
one can study the long-distance behavior in terms of physical
string-local fields.

A particularly interesting case arises if confinement in
QCD is realized in terms of the vanishing of those corre-
lation functions which contain besides point-like composites
and “string-bridged” qq̄ pairs also string-local gluons and
quarks. In that case one obtains a QFT in which the basic
fields, used in the definition of the perturbative first order
interaction density, have disappeared and only their point-

9 In the present paper this terminology refers to the physical on-shell
scattering operator and not to Bogoliubov’s generating off-shell S func-
tional (from which the S-matrix arises in the adiabatic limit).

local composites (gluonium, hadrons) remain. The only way
to describe such a situation within our present understanding
of QFT is to view it as a massless limit (see the last section).

An analog of (3) for arbitrary spin exists for all s ≥ 1;
instead of string-local scalar φ one obtains a linear relation
involving derivatives of string-local escort fields φ of spin
<s with short-distance dimension dsd < s + 1. It is not clear
whether this can be used to generalize the idea of obtain-
ing short-distance improving L , ∂V pairs to higher spin. A
particularly interesting case is s = 2.

5 Induced higher order contributions and the Higgs
model

The construction of a string-local renormalizable first order
interaction density in terms of a L , Vμ pair permits an exten-
sion to higher orders. The second order relation (L ′ stands
for L(x ′, e′))

(de+de′)(T L L ′−∂μT VμL ′−∂ ′νT LV ′
ν+∂μ∂ ′νT VμV ′

ν) = 0

(23)

would automatically follow from the first order relation (17)
if it would not be for the singularities coming from time-
ordering of distributions.10 If this renormalization condition
can be implemented, the first order definition (20) of the
point-like interaction density permits a second order gener-
alization,

T L P L P ′ := (T L L ′−∂μT VμL ′−∂ ′νT LV ′
ν+∂μ∂ ′νT VμV ′

ν),

(24)

and one could hope to be able to generalize this idea to higher
orders.

It is instructive to recall how the CGI gauge-theoretic pro-
cedure [4] deals with this problem. In that case one uses the
weaker “Q-version”

sT L K L K ′ − ∂μT QK
μ L K ′ − ∂ ′μT L K QK ′

μ = 0. (25)

Replacing the BRS s by d = de + de′ and omitting the
superscript K , one obtains the corresponding SLF relation.
Although this Q-relation is weaker than the V -relation, it
suffices to define a second order gauge-invariant (sS = 0) or
string-independent (d S = 0) S-matrix, since the derivative
terms drop out in the adiabatic limit.

Starting from a time-ordering T0 in which all derivatives
of fields are taken outside, one can use the Epstein–Glaser

10 A systematic presentation of the differential form calculus will be
contained in forthcoming work by Mund.
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minimal scaling restriction to define renormalized parameter-
dependent T -products. For a scalar free field of scale dimen-
sion dsd = 1 the T -ordering is〈
T0∂μϕ(x)∂ ′

νϕ
∗(x ′)

〉 = ∂μ∂ ′
ν

〈
T0ϕ(x)ϕ∗(x ′)

〉
〈
T ∂μϕ(x)∂ ′

νϕ
∗(x ′)

〉= 〈
T0∂μϕ(x)∂ ′

νϕ
∗(x ′)

〉+cgμνδ(x − x ′),
(26)

and the second line is the definition of a one-parametric T -
ordering according to the E–G minimal scaling rule. It turns
out that this freedom can be used to absorb certain “anomaly”
contributions into a redefinition of time-ordering. The strat-
egy is to use the freedom in the definition of T in such a way
that (25) is fulfilled.

One defines an anomaly as a measure of the violation of
(23) or (25) if one uses T0 instead of the still unknown T . We
have

AV := (de + de′)(T0L L ′ − ∂μT0VμL ′ − ∂ ′νT0 LV ′
ν

+∂μ∂ ′νT0VμV ′
ν), (27)

AQ := (de + de′)T0L L ′ − ∂μT0 QμL ′ − ∂ ′μT0 L Q′
μ = 0.

(28)

For the calculation of two-particle scattering we only need the
1-particle contraction component (the “tree” approximation).

The simplest nontrivial illustration is provided by massive
scalar QED.11 In that case the presence of a derivative in the
current (17) leads to delta function contributions from the
divergence of the two-point function of the charged field ϕ,

∂μ
〈
T0∂μϕ(x)(∂ ′

ν)ϕ
∗(x ′)

〉 = (∂ν)δ(x − x ′) + reg. (29)

where the regular part comes from the use of the free field
equation inside the T0. This. together with de(∂φ · A) =
1
2 de(A · A), which results from the application of de to (3),
yields [19]

AQ = deT0 L L ′−de Nsym + ∂μNμ
sym,

Nsym = N + N ′, Nμ
sym = Nμ + Nμ′, (30)

N = δ(x − x ′)ϕ∗ϕ A · A′, Nμ =δ(x − x ′)ϕ∗ϕφ A′
μ. (31)

The N ′ and N ′
μ are obtained by symmetrization x, e ←→

x ′, e′. Using the freedom (26), N and Nμ can be absorbed
into a redefinition of the time-ordering,

TLL′ = T0 L L ′ + Nsym, T QμL ′ + T L Q′
μ

= T0 QμL ′ + T0 L Q′
μ + Nμ,sym, (32)

S(2) = −g2

2

∫ ∫
T L L ′d4xd4x ′. (33)

In this way the SLF counterpart d S = 0 of (25) has been
established. The derivation of the second order point-like
density (24) is more involved but it does not change T L L ′.

11 The renormalization theory of massive spinor QED has no anomalies.

The result is hardly surprising, since the presence of a
quadratic term in the vector potential from Nsym to the second
order is well known from gauge theory. But there is a sub-
tle point of fundamental significance which should be men-
tioned. In general it is not possible to set e = e′. The reason is
that string-local fields �(x, e) fluctuate in both x and e, and
hence products of fields with the same e do not make sense.
Fortunately, Wick-ordered products do not only permit the x
to coincide, but they also allow e′s to coalesce. Such e′s will
be called “mute”. But the expansion of time-ordered products
into Wick-products also involves time-ordered contractions
for which the e-fluctuations prevent e′s from coinciding.

Consider the propagator of a string-local vector meson:

1

p2 − m2

(
−gμν + pμ pν

(p · e − iε)(p · e′ + iε)
+ · · ·

)
. (34)

As a result of the different iε-prescriptions, the distributional
boundary values are ill-defined for e = e′. This is a problem
which cannot be solved by renormalization theory. It explains
why the axial gauge (which treats the e as a rigid gauge
parameter) had to fail.

In the present context the e′s are fluctuation spacetime
variables of a string-local covariant field. The implementa-
tion of the independence of the S-matrix of the string direc-
tions d S = 0 based on the differential calculus of the 1 + 2-
dimensional de Sitter space guarantees that this problem dis-
appears after adding sufficiently many on-shell contributions.
The simplest illustration is that of second order scattering
of charged particles. In that case the dangerous contribution
comes from the vector meson propagator (34). But the contri-
bution containing both e′s disappears after the use of the on-
shell current conservation12 and the remaining e-dependence
is then canceled by the contribution from Nsym.

It is not necessary to go into the details of these cance-
lations, since the relation d S = 0, which follows in the
adiabatic limit from (32), guaranties e-independence. But
as individual perturbative contributions to gauge-invariant
scattering amplitudes in gauge theories are generally not
gauge-invariant, it is hardly surprising that individual con-
tributions in the SLF setting still depend on e. What is, how-
ever, somewhat unexpected is that such contributions may
diverge for coalescent e′s. The differential calculus in the
1 + 2-dimensional de Sitter space of string directions only
guaranties that the sum of perturbative contributions in a par-
ticular order converges. A formal off-shell continuation by
hand would destroy this result; only the extension of pertur-
bation theory to fields can preserve the independence from
e-fluctuations resulting from inner propagators.

12 The argument parallels that of second order gauge invariance in
gauge theories.
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This observation contains an important message. The posi-
tivity of Hilbert space, which required the use of string-local
fields in order to preserve renormalizability, can be imple-
mented in such a way that the scattering matrix remains
string-independent. But in contrast to gauge theory individ-
ual contributions to S may depend on the e′s in such a way
that equating different e′s causes infinite fluctuations.

On the basis of these observations one anticipates that an
extension of this formalism to interacting string-local fields
will lead to perturbative contributions which depend on the
individual string directions of inner propagators after all p-
integration have been carried out. But one expects that in
suitable sums over the contributions the dependence on the
inner e′s disappears so that only the possible string depen-
dence of the interacting fields remains. This is very different
from gauge theory; the BRST s is a global operation which
cannot distinguish between internal and external propagators.

The Hilbert space setting, which requires the use of the
differential calculus in the directional de Sitter space, is cer-
tainly more elaborate than the gauge formalism, but unlike
the latter it is not limited to the construction of local observ-
ables and the S-matrix but it promises the construction of all
fields.

After this interlude of conceptual difference of the SLF
setting with operator gauge theories presented in the contest
of second order scalar massive QED, we now turn to the
problem of the second order calculation of the A–H coupling
(19). Up to H self-interactions the L , V pair is uniquely
determined by first order power-counting d int

sd ≤ 4 and the
requirement de(L − ∂V ) = 0.

Our aim is to highlight differences between the gauge-
theoretic second order calculations as it was presented in
[4,5] and the SLF setting. In that work the calculation of the
second order gauge-invariant for the Higgs model S-matrix
starts with a first order L K , QK

μ pair which is identical to (19),
except that L , Aμ, φ and Qμ now have the superscript K and
instead of the geometric differential calculus one now has the
abstract s-operation. The renormalizable cH3 + d H4 terms,
which were already mentioned after (19), turn out to be nec-
essary in order to keep the third order tree contributions free
of anomalies; beyond the third order there are no tree anoma-
lies.

The result is [4]

T0 L K L K ′ + iδ(x − x ′)(AK · AK H2 + AK · AK φ2)

−iδ(x − x ′)RK

RK = − m2
H

4m2 (φK ,2 + H2)2,

V K = g2 m2
H

8m2

(
H2 + φK ,2 + 2m

g
φK

)2

− m2
H

2
H2 (35)

where V K is the contribution to the second order S-matrix
which results from combining the second order RK with the

first order H -self-interactions. The appearance of a 1/g term
shows that this way of writing is somewhat artificial, but it
permits us to relate the physical parameters m, m H , g to those
which result from applying a shift in field space (the abelian
SSB Higgs mechanism) to the gauge-dependent scalar field
of QED.

All interactions which involve point-like vector mesons
require the setting of gauge theory, including those in which
the vector meson interacts with Hermitian fields. The result
(35) shows that there is no place for SSB. Whereas this is
possible for self-interacting scalar fields, it is ruled out when
scalar fields also couple to vector mesons. In that case the vec-
tor mesons require the implementation of the rules of gauge
theory, which leaves no room for SSB. The coupling to string-
local vector potentials in the SLF Hilbert space formulation
converts the point-local scalar fields into interacting string-
local fields whereas SSB is limited to point-local scalar fields.

This is confirmed by the second order ghost-free SLF
Hilbert space setting which only uses the causal localiza-
tion principles of QFT. Instead the abstract cohomological
BRST formalism it is based on the geometric differential
form calculus in the de Sitter space applied to string-local
fields with fluctuating space-like directions. The calculation
of a e-independent S-matrix follows similar steps; the details
will be presented elsewhere.

There is, however, one difference between the gauge-
theoretic calculation and its SLF analog which is worthwhile
mentioning. In addition to the induced potential R, there is a
second order term of the form

δ(x − x ′)AP
μ Aμ′u(φ′ − φ) + (e ←→ e′). (36)

Since the short-distance dimension of the point-local Proca
field is d P

sd = 2, this contribution has dsd = 5 and hence
violates the power counting bound. But since it vanishes for
e = e′ it causes no problem for the e-independent S-matrix.

The Schwinger–Swieca screening effect, which asserts
that any interaction which involves massive vector mesons
(independent of whether it couples to charged or Hermitian
matter) leads to a vanishing Maxwell charge, is a rigorous
argument against any form of SSB. It generalizes the screen-
ing of the Maxwell current of a free massive field strength,

jν := ∂μFμν = m2 AP
ν , QMax =

∫
AP

0 (x)d3x = 0, (37)

which can easily be checked by looking at the form of the
two-point function of the free Proca field. Higher order con-
tributions to Fμν require an extension of the S-matrix formal-
ism to interacting fields, but thanks to the Schwinger–Swieca
theorem, this is not needed if one only wants to exclude a SSB
mechanism.

If the Higgs model would be the result from a SSB,
the charge would diverge Q = ∞ instead of vanishing.
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This is part of the definition of SSB. A symmetry is called
“spontaneously broken” if the Noether theorem cannot be
inverted, i.e. when a conserved current ∂μ jμ = 0 leads to
a divergent charge (the generator of a symmetry), formally
Q = ∫

j0(x)d3x = ∞.

A SSB model is closely related to a symmetric theory,
in fact both are unitarily inequivalent representations (“dif-
ferent vacua”) of the same local observables algebras [31].
The shift in field space is a quasiclassic trick which prepares
the first order interaction of a SSB theory starting from a
symmetric interaction. Only field shifts which lead to large-
distance diverging charges implement SSB. If the charge is
screened, as in the Higgs model, the field shift manipula-
tion has no relation to the intrinsic properties of the model
and if the resulting model turns out to be consistent one is
required to look for a different explanation of its physical
properties.

The most interesting situation is that of massive self-
interacting vector mesons. A first order L K , QK

μ pair within
the power-counting limit is easily found, but it is not possi-
ble to maintain this renormalizability restriction in the cal-
culation of the second order gauge-invariant S-matrix. As
already mentioned in the introduction, one can only com-
pensate the “bad” terms by introducing a first order coupling
with scalar H -fields which in second order produces a com-
pensating bad terms. The calculations have been carried out
in the CGI setting of gauge theory in [4,5]; these authors
also showed that in the case of just one H the model contains
no additional parameters besides one coupling strength and
the masses of H and the vector mesons. In [6] this situation
was reviewed and compared with the actual situation of the
Standard Model.

This result is confirmed in the SLF Hilbert space setting.
The details require more extensive calculations and will be
presented in a joint paper with Jens Mund. There is one dif-
ference with the CGI calculation which is worth mentioning.
The calculation of the second order S-matrix from the first
order A–H coupling

L H =
∑
a,b

da,b(AP
μ,a Aμ

b H + Aμ
a φb∂μ H − 1

2
m2

H φaφb)

(38)

parallels that of the abelian coupling, but instead of the term
(36), which has short-distance dimension dsd = 5 instead of
4 (but fortunately vanishes on the e-diagonal e′ = e), one
now finds

δ(x − x ′)
∑

a,b;a′b′
da,bda,′b′ua Aμ

b′(AP
μ,bφ

′
a′ − AP

μ,a′φb)

+(e ←→ e′), (39)

which does not vanish on the e-diagonal. Hence the second
order contribution to the e-independent S-matrix contains a

power-counting-violating term which can only be compen-
sated by a similar term from the second order self-interaction
between the massive vector mesons. The full calculation in
the new Hilbert space setting will be contained in a forth-
coming work.

As long as one considers the shift in field space and the
subsequent gauge transformation as formal device which
relates the well-known Lagrangian of scalar QED with a new
Lagrangian in which a massive vector meson interacts with
a H-field, no harm is being done. The problem only starts
if one attributes a physical interpretation with this recipe.
In this case one misses a new physical mechanism namely
the loss of second order renormalizability of self-interacting
massive vector mesons which can only be saved by extend-
ing the first order interaction by an additional coupling with
a H -field which produces second order compensating terms.

Such a compensatory mechanism between fields with dif-
ferent spin which preserves renormalizability was hoped for
to occur in models with supersymmetric couplings. Whereas
such a requirements played no role in the definition of super-
symmetry, it is the raison d’être for the H -particle. Formal
manipulations of Lagrangians contain generally no physical
information; the physical content of a model in QFT is always
related to intrinsic properties of the model independent of the
way in which it was constructed.

Terminologies as “fattening” or “being eaten” should have
served as a warning that one is entering metaphoric swamp-
land and reminded particle theorists that understanding of
properties of QFT means connecting them with the founda-
tional causal localization principle of QFT. We leave it to
the historians to explain why, despite the correct terminol-
ogy “Schwinger–Higgs screening” in some publications at
the time of the Higgs paper the related ideas where lost in
the maelstrom of time.

One of the reasons which contributed to its popularity
may be related to the fact that the Higgs mechanism was
discovered in at least three independent papers with identi-
cal metaphors about the Goldstone boson “being eaten by
the massless vector meson”. The problem here is not that
important discoveries have been made by metaphoric ideas;
this happened many times in the history of physics. What is,
however, a bit embarrassing is that even 40 years later these
reasonings appear in important documents.

For the sustentation of the impressive experimental effort,
which after decades of search finally led to the discovery of
H at LHC, the narrative about particles, which in addition
of generating masses of vector mesons also create their own
mass, may have been a blessing; it would have been much
harder to convince experimentalists that the fate of the Stan-
dard Model depends on the need to find an additional particle
in order to uphold second order renormalization. The funda-
mental aspect of such an observation is more concealed since
it is related to the not yet sufficient understood connection
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between renormalizability with the causal localization prin-
ciple in a Hilbert space setting.

6 Spacetime origin of the Lie structure of
self-interacting vector mesons

One of the unsolved problems of s = 1 interaction is the
understanding of the conceptual origin of the quantum Lie
structure in models of self-interacting vector mesons. The
answer cannot be given by referring to gauge theory. In clas-
sical gauge theory the Lie-algebra structure is part of the
fiber bundle formalism whereas the only principle of QFT is
causal localizability. The BRST gauge setting is a compro-
mise between the ideas underlying classical gauge invariance
and the quantum requirements. A derivation of the quantum
Lie structure within the BRST gauge setting, as can be found
in [4], is hardly surprising. It should rather be understood as
a consequence of the foundational causal localization prop-
erties for self-interacting s = 1 fields.

Quantum gauge symmetry cannot be realized in a Hilbert
space; the preservation of the classical gauge structure
requires the use of an indefinite metric Krein space and hence
the gauge-theoretic derivation of the Lie-algebraic structure
in a BRST gauge setting involves the use of a circular argu-
ment.

The understanding of the physical concepts behind local
gauge symmetry turned out to be one of the hardest prob-
lems of local quantum physics. The origin of global gauge
symmetries (inner symmetries) had already been well under-
stood during the 1970s in terms of the DHR and the more
general later DR superselection theory [22]. These construc-
tions show that observable algebras, which typically arise as
invariant subalgebras of field algebras under the action of
a global symmetry group, contain sufficient information for
reconstructing the symmetry group and the field algebra on
which it acts.

This construction is somewhat astonishing since at first
glance the causal localization properties of local observables
seem to have no connection with group representation theory;
the net of localized observable algebras is covariant under
the Poincaré group (including the TCP operation) but it is no
relation to gauge symmetry, be it global or local. Yet the clas-
sification of unitarily inequivalent local representations of the
spacetime-indexed set of local algebras (the local superselec-
tion sectors of the observable algebra) leads indeed to a field
algebra and a compact groups acting on it. The construction
uses only the spacetime causal localization properties; the
group theory is hidden in the composition structure (“fusion
rules”) of the localization-preserving inequivalent represen-
tations (endomorphisms) of the observable algebra [22]. In
this way the origin of global gauge symmetries (inner sym-
metries) is fully accounted for.

These methods work in the presence of a mass gap but fail
for interacting theories involving massless vector potentials.
Local gauge symmetry tries to imitate global gauge symmetry
at the price of losing the Hilbert space. There have been
attempts to classify representation sectors of the algebra of
local observables of QED [32]. They require the introduction
of new concepts and their results are presently incomplete and
far from being useful for the understanding of the problems
of interacting massless vector mesons.

An understanding of the Lie group structure of self-
interaction vector mesons would be a useful step in this
direction. Self-couplings between s < 1 fields are not sub-
ject to such restrictions. Forming renormalizable trilinear and
quadrilinear couplings between a finite set of low spin fields
allows a very large number of independent coupling param-
eters. For any symmetric low spin s < 1 model with one
coupling parameter there exists a large number of less sym-
metric models with many independent couplings between the
same free fields. So why is this not possible for s = 1? The
answer is that for s ≥ 1 the Hilbert space positivity together
with renormalizability is more restrictive.

Instead of an interaction density L one has to find an e-
dependent L , Vμ pair which satisfies a differential relation
in e. The local counterterms of the inductive Epstein–Glaser
formalism, which for s < 1 interactions between point-
local fields are only subject to the the appearance of point-
like counterterms at coalescent x restricted by the minimal
scaling requirement, have now to fulfill additional differen-
tial relations from string-crossings. These additional restric-
tions originate from maintaining causality in the presence
of string-local field; they are not imposed symmetries. This
more restrictive setting accounts for the appearance of Lie-
algebraic structures in interactions involving s = 1.

The formalism of local gauge theory on the other hand
results from trying to emulate this new structure within a
point-local setting. The price is the loss of the Hilbert pos-
itivity and the “gain” is the promotion of the Lie-algebra
structure of the coupling of fields to a full “local gauge sym-
metry”. In this way the formalism is formally reunited with
that for s < 1 interactions at the price of its smaller physical
range. Important problems of QED and QCD, which require
the understanding of long-distance behavior of fields, remain
outside the physical range of local gauge theory.

These new ideas are presently limited to perturbation the-
ory. But they suggest that the non-perturbative construction
of appropriately defined string-local field algebras, which
are uniquely associated with the local observable algebras
of massless s = 1 interactions, may be a realistic goal of a
project as that in [32]. This requires one to extend the point-
local Wightman setting to string-local fields �(x .e) which
are tempered distributions in both x and e.

As in previous second order calculations one expects that
the formal similarity with the gauge formalism in [4] extends
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to the model of self-interacting vector mesons. The following
calculations show that this is indeed the case.

For simplicity we restrict our calculation to the massless
first order interaction. The starting point is the renormalizable
L , Qμ pair

L =
∑

fabc Fa.μν Ab
μ Ac

ν, f antisymmetric

Qμ = 2
∑

fabcua
μFb,μν Ac

ν . (40)

As in all previous calculations operator products of free fields
are always Wick-ordered. One expects that the Lie-algebra
restriction for the f -couplings results from the imposition of
second order e-independence.

Asym = A + A((x, e) ←→ (x ′, e′)),
A = deT0 L L ′ − ∂μT0 QμL ′

= 2
∑

fabcub Ac
ν{ fde f δ

ν
κ,λδ

ad A′d,κ A′e,λ

+ fda f δ
ν
λ F ′d,κλ A′ f

κ + fdeaδν
κ F ′d,κλ Ae′

λ }. (41)

Here the deltas are the singular parts (s.p.) which result from
derivatives applied to T0 propagators,

δν
κ,λ(ξ) = s.p.∂μ

〈
To Fb,μν(x)Fd,κλ(x ′)

〉

= −i(gνλ∂ ′κ − gνκ∂ ′λ)δ(ξ))δbd ,

δν
λ(ξ) = s.p.∂μ

〈
T0 Fb,μν(x)Aaλ(x ′)

〉

= −igν
λδ(ξ) − ie′ν∂ ′

λ

∫ ∞

0
dsδ(ξ − se′). (42)

The second line contains a contribution from string cross-
ing; the s-integral results from the Fourier transformation of
the integrands (8),

1

p2 − m2

e′ν pλ

pe′ − iε
(43)

in the
〈
T F A′〉 propagators. In writing the first line we fol-

lowed Scharf (page 113 in [4]) by using the freedom of a
normalization term (according to the Epstein–Glaser scaling
rules) in the various 2-derivative contributions to the time-
ordered two-point functions in

〈
T F F ′〉 e.g.

∂μ∂ν D(x − x ′) → ∂μ∂ν D(x − x ′) + αgμνδ(x − x ′).
(44)

At the end of the calculation the remaining anomaly must of
course be independent of α.

Symmetrizing in order to obtain Asym one notices that
for e = e′ the string-local delta contributions cancel and one
arrives at

Asym = fabcua Ac,ν

×[ fbe f Ae,σ ∂σ Aν
f + fdb f Ad,ρ∂ν Aρ

f ]2δ(x − x ′)

+ fabc fdeb[(α + 1)(∂σ ua Ac,ν + ua∂σ Ac,ν)Aν
d Ae,σ

+(α − 1)ua Ac,ν(∂
σ Aν

d Ae,σ + Aν
d Ae,σ ]δ(x − x ′). (45)

The cancelation of the anomalies leads to α = 1 and the term
∂σ ua Ac,ν Aν

d Ae,σ has the form

de N2, N2 = 1

4
fabc fdec Aa,μ Aμ

d Ab,ν Aν
eδ(x − x ′). (46)

The validity of the Jacobi identity is then a consequence of
the remaining cancelation.

Another more systematic bookkeeping (following the
logic of Asym in Sect. 3) would consist in converting deriva-
tives of delta functions ∂μδ . . . into ∂μ(δ . . .) − δ∂μ(. . .).13

But here we followed Scharf in order to emphasize the for-
mal proximity to the gauge formalism despite the conceptual
differences between CGI and SLF.

Actually this derivation of the Lie-algebra structure of the
second order interaction density involved a bit of cheating,
since the operator Qμ, which was used in intermediate steps,
has no zero mass limit. Such perturbative infrared divergen-
cies are a warning against calculating directly in the massless
theory, instead of constructing it from the m → 0 limit of
massive correlation functions.

The analogous calculations in the massive model avoids
these problems. But as a consequence of the appearance of a
compensatory renormalization-preserving H -field it is more
involved. The verification of its Lie structure will be left to a
joint publication with Jens Mund.

7 Resumé and outlook

The SLF setting extends the Hilbert space description of
point-local s < 1 interaction to s ≥ 1 string-local inter-
actions in which only the local observables remain point-
local. Since it is a Hilbert space formalism, the powerful
non-perturbative tools of functional analysis and operator
algebras remain available. Gauge theory keeps the simpler
point-local formalism for s = 1 at the price of losing off-shell
unitarity. Since the functional and operator algebra tools are
not available in Krein space there is no non-perturbative con-
trol. The physical content is restricted to combinatorial per-
turbative constructions; conceptual and mathematical aspects
concerning the relation between particles and fields remain
outside its range.

The string-local fields �(x, e) are Wightman fields in
both variables; they have to be smeared with Schwartz test
functions both in Minkowski spacetime and in the de Sitter
space of space-like directions e. The differential geometry
and the associated differential form calculus of d = 1 + 2-
dimensional de Sitter space is a spacetime analog of the

13 This was pointed out to me by Jens Mund.
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abstract BRST cohomology of gauge theory defined in terms
of the nilpotent s operation (the ghost formalism).

The continued validity of the appropriately adjusted LSZ
or Haag–Ruelle scattering theory [21,22] in the presence of a
mass gap permits to identify the Hilbert space with a Wigner–
Fock space in which scattering theory relates the Wigner
particles to the interacting fields. For interactions involv-
ing massless vector mesons this field-particle relation breaks
down and the S-matrix is lost; the fields are no longer con-
nected with Wigner particles. In the perturbative SLF Hilbert
space setting this manifests itself right from the beginning.
A first order interaction L cannot be defined since a scalar
string-local φ escort field, and hence also Vμ and Qμ, have
no massless limit. In the following we will argue that this
loss is actually an asset, since it points into new directions
for solving problems which are outside the scope of gauge
theory.

The loss of the interaction density and a unitary S-matrix
in the massless limit is not the result of a shortcoming of
the formalism, but it rather points to a fundamental physical
change. Of all unsolved problems of QFT, the ones hidden
behind the infrared divergencies caused by massless vector
potentials have remained the hardest. Though particle physi-
cists have use recipes as e.g. photon-inclusive cross sections
in QED and string-bridged quark–antiquark pairs in order to
describe hadronic jets, there has been no spacetime under-
standing of these phenomena.

The message offered by the new SLF setting is that one
should not address problems of perturbative interacting zero
mass vector mesons directly, but rather treat them as limiting
cases of their massive counterpart. The first step consists in
computing the correlations functions in the massive theory.
The Hilbert space positivity remains encoded in the Wight-
man positivity of the vacuum expectation values in the mass-
less limit [30]. The massless operator theory and its Hilbert
space can be reconstructed from the massless limit of these
expectation values; in this way one avoids the futile attempt
of trying to understand its Hilbert space in terms of particle
concepts of the massive theory.

Such problems are outside the conceptual range of the
BRST gauge formalism; the locality of fields in Krein space
is not that of the physical Einstein causality even if it looks
the same. In contrast to the Hilbert space setting which, as
emphasized before, signals the problems of zero mass limits
already in first order perturbation theory, gauge theory masks
them. The BRST formalism continues to work in the massless
limit, but its physical range is limited to gauge-invariant local
observables and prescriptions for photon-inclusive cross sec-
tions (whose gauge invariance is not obvious). The success
of the gauge-theoretical description of the Standard Model
is based on the perturbative construction of the S-matrix for
interactions of massive vector mesons; a deeper understand-
ing of the physical content hidden behind infrared divergen-

cies requires the string-local setting; here the Hilbert space
positivity (off-shell unitarity) is indispensable.

In the present work the calculations within the SLF Hilbert
space setting were limited to the on-shell S-matrix. The
important task of extending the SLF setting to the construc-
tion of interacting string-local fields (off-shell unitarity) will
be addressed in future publications. The remainder of this
concluding section present an outlook about what one may
expect from such an extension for a better understanding of
the infrared problems.

The present picture based on perturbative calculations
in gauge theory is that, although the perturbative scatter-
ing amplitudes are logarithmically infrared-divergent, the
photon-inclusive cross section remains finite and gauge
invariant [33]. It is believed that the logarithmic on-shell
divergencies for scattering of charge-carrying particles result
from a perturbative expansion of the “infraparticle structure”.
The latter is based on the idea that the interaction with the
infrared photons “dissolves” the mass-shell of charged parti-
cles by converting the mass-shell poles into a milder cut-like
singularity with a coupling-dependent power behavior. Such
a “softened mass-shell singularity” would be too weak to
counteract the dissipation of wave packets in the large time
limits in LSZ scattering theory which then accounts for the
vanishing of the scattering amplitude. The logarithmic diver-
gencies of the perturbative scattering amplitude result from
the perturbative expansion of the softened mass-shell.

In order to reconcile the vanishing scattering amplitudes
with the photon-inclusive cross section one again replaces the
photons by massive vector mesons of a small mass m. The
number N (m) of contributing vector mesons below a given
invariant energy increases with m → 0, but the inclusive
cross section remains nontrivial while the individual ampli-
tudes approach zero [33]. In the SLF setting all objects which
enter this argument are physical.

The change of the mass-shell singularity in the infraparti-
cle picture is supported by soluble two-dimensional mod-
els, of which the simplest was already constructed in the
1960s [34]. The solution ψ(x) = ψ0(x) exp igϕ of the two-
dimensional derivative coupling gψ̄γμψ∂μϕ provides an
example in which the mass-shell of ψ0(x) changes into a
g-dependent power singularity in the massless limit of the
scalar field ϕ. The perturbative expansion of the exponential
function before taking the massless limit leads to the loga-
rithmic infrared divergencies. The simplicity of the model
permits to study infrared behavior without dynamical com-
plications (see the remarks at the end of Sect. 3).

The SLF Hilbert space setting is expected to lead to
an understanding of infrared phenomena in terms of large-
distance properties of string-local charge-carrying fields. For
this one would have to extend the S-matrix formalism to cor-
relation functions of string-local fields and define the mass-
less theory in terms of the massless limit of correspond-
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ing massive correlation. The important role of the differen-
tial calculus on de Sitter space of space-like directions is
to enable the implementation of the independence on inner
string directions. In the case of the S-matrix all e′s are inner,
whereas in the extension to vacuum expectation values one
has to distinguish between the string directions of those fields
whose correlation functions one wants to calculate and the
inner e′s of the perturbative internal propagators.

This is reminiscent of gauge invariance, except that the
BRST s-operation has no connection with spacetime and can-
not distinguish between “inner and outer” gauge invariance.
Without the local nature of the d calculus, in which the de dif-
ferentials acts on individual fluctuating e directions, it would
not be possible to differentiate between outer and inner direc-
tional fluctuations. Needless to add that string-localization
bears no relation to String Theory which, despite its name
and in spite of many attempts of its defenders to connect it to
QCD strings, bears no relation to localization in spacetime.

There is an important structural difference between inter-
acting strings in the presence of mass gaps and massless
strings. Whereas in the former case the correlation functions
of string-local fields decrease exponentially for large space-
like separations (linked cluster property) [21] and the string
directions can be freely changed by Lorentz transformation,
the strings of charge-carrying particles in QED are “rigid”.
This leads to the spontaneously breaking of Lorentz invari-
ance in charged sectors [28]. Needless to add that the correct
QFT analog of long-range interactions (Coulomb potentials)
in quantum mechanics are string-local charge-carrying fields
in the Hilbert space description of QED.

A more radical change is expected to occur in the mass-
less limit of massive self-interacting vector mesons. As
explained before, the logarithmic divergent perturbative scat-
tering amplitudes of charge-carrying particles are viewed as
resulting from an illegitimate interchange of the limit m → 0
with the perturbative expansion in a situation in which the
non-perturbative limit vanishes. This suggests to view log-
arithmic divergencies in off-shell correlation functions of
QCD containing gluon and quark fields as signaling con-
finement. In this case the only surviving vacuum expecta-
tion values would be those of point-local composites (glu-
onium, hadrons) and string-bridged compact localized qq̄
pairs. A situation in which the basic fields (in terms of which
one defines interactions) vanish cannot be directly described
within the known formulation of QFT; one needs to define
such interactions as massless limits.

This picture receives additional support by noticing a sig-
nificant structural difference between QED and QCD strings.
String-local vector potentials in QED are line integrals over
observable field strengths and hence can be viewed as global
limits of local observables. But interacting string-local fields
in QCD cannot be represented in this way; their localization
is inherently non-compact and their appearance in correlation

functions would cause problems with causality. Confinement
in the sense of vanishing of all vacuum expectation values
containing such inherent non-compact strings avoids such
causality problems.

It has been shown that perturbative QCD correlation func-
tions in covariant gauges remain finite [35]. But the gauge
which formally corresponds to the string-local Hilbert space
formulation is the non-covariant axial gauge. It was aban-
doned a long time ago because it leads to uncontrollable
(ultraviolet mixed with infrared) divergencies.

But what seems to be a curse in gauge theory turns out
to be a blessing in the SLF Hilbert space setting. The lat-
ter turns the ill-defined noncovariant axial gauge parame-
ter in Krein space into fluctuating directions of covariant
string-local fields which act in Hilbert space. In this way the
global on-shell unitarity of gauge theory is extended to local
correlation functions of fields. This extension is of special
importance in zero mass limits when the field-particle rela-
tion is lost. The SLF Hilbert space setting permits to address
structural changes in massless limits which remain outside
the reach of gauge theory, as they occur in the infraparticle
structure of QED and the expected QCD confinement.

To achieve this one must extend the SLF of the present
work to the perturbative calculation of correlation func-
tions for massive string-local fields. Only in this way will
one be able to understand phenomena as confinement in
which the fundamental fields disappear in the massless limit
and only their imprint on their composites (e.g. hadrons,
and gluonium) and the disintegration of string-bridged qq̄
pairs remains. Our present understanding of QFT permits no
description of fields which, although not present in the for-
malism, yet assert their presence in “what they leave behind”.
The only known way to deal with such a situation is to view
it as the massless limit of a massive model in a (necessarily
string-local) Hilbert space setting.
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