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Abstract In this work we consider a dipole asymmetry in
tensor modes and study the effects of this asymmetry on the
angular power spectra of CMB. We derive analytical expres-
sions for the CTT

l and CBB
l in the presence of such dipole

modulation in tensor modes for l < 100. We also discuss on
the amplitude of modulation term and show that the CBB

l is
considerably modified due to this term.

1 Introduction

The anomalies such as power asymmetry in the CMB map
reported by Planck [1] and WMAP [2,3] teams have gained
a great deal of attention to the anisotropic inflationary mod-
els in recent years [4–21]. The planck team has revisited
the phenomenological well studied model of dipole modula-
tion [22,23], originally proposed by Gordon et al. [24] and
parameterizing as

δT (n) = δTiso(n)(1 + A n · p), (1)

where δTiso(n) is the isotropic temperature fluctuations
observed in a direction n, p is the preferred direction and
A is the dimensionless amplitude of the dipole asymmetry.
The planck team has found a dipole asymmetry at the direc-
tion (227,−15)±19 in galactic coordinates for large angular
scales with the amplitude A = 0.078+0.020

−0.021 at the 3.5 σ signif-
icance level [1]. Such observations have encouraged several
people to study the models which predict small primordial
anisotropy in power spectrum of perturbations. In the stan-
dard cosmological models the requirements of isotropy and
homogeneity can be regarded as the invariance of space under
rotation and translation at sufficiently large scales. Then the
FRW metric is manifestly written to be invariant under space
translations and rotations. The assumption of isotropy also
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implies that the energy-momentum tensor has to be diago-
nal with the equal spatial components. At the perturbation
level the two point correlation function for curvature per-
turbations calculated at two different positions x and x′ is
given as a function of x−x′ due to translation invariance. On
the other hand the rotational invariance means that the two
point correlation function is given as a function of |x − x′|
or equivalently in the momentum space the power spectrum
is not dependent on the direction of momentum. In order to
generate the anisotropy we have to break the rotation invari-
ance. A primordial vector field aligned in a preferred direc-
tion can break the SO(3) symmetry group down to the SO(2).
The anisotropic inflationary models with vector field impu-
rity has been studied with great interest during recent years
[25–28]. In these models the primordial vector fields violat-
ing the rotational symmetry at early times, leave anisotropic
effects on cosmological correlation functions. One can use
the remaining SO(2) symmetry to simplify the perturbation
calculations and derive a primordial power spectrum which
explicitly depends on momentum direction [25–28].

Another approach is the generation of dipole asymmetry in
the power spectrum using the long wavelength super-horizon
scalar modes [29]. It is shown that the local non-Gaussianity
in squeezed limit when one mode is super-horizon leads to
power spectrum with a dipole asymmetry correction term.
Hence, the amplitude of anisotropy is controlled by the local
non-Gaussianity parameter fN L [29] (see [30–38] for recent
developments). The dipole asymmetry in the power spectrum
is translated to the modulation in the curvature perturbation
ζk whereas for large scales it is equivalent to the dipole mod-
ulation in the CMB temperature anisotropy, �T (n), studied
by Planck and WMAP teams [1–3]. Following the same logic
one can show that the super-horizon scalar modes can also
modulate the power spectrum of tensor perturbations though
with smaller amplitude [33].

In this paper, we consider the modulation in the ampli-
tude of tensor modes originally applied to scalar perturba-
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tions in [39]. The dipole modulation in the tensor modes is
the implementation of a preferred direction in the amplitude
which makes changes in the value of amplitude from one
side of the sky to the other side. It is worth to note that the
dipole asymmetry is produce by a spatially-dependent ten-
sor power spectrum and a momentum direction-dependent
power spectrum cannot produce a CMB dipole asymmetry.
Here we study the effects of such modulation on the CMB
correlations on large angular scales (see also [40] for the same
idea). Because tensor and scalar modes do not interfere, we
can deal with the contribution of scalar and tensor modes to
CMB angular power spectrum separately. Hence, we write
CXY
l = CXY (ζ )

l + CXY (t)
l where we are including labels t

and ζ to distinguish the angular power spectrum due to ten-
sor modes, CXY (t)

l , from the curvature perturbations CXY (ζ )
l .

The spectrum CTT (t)
l decays rapidly for l > 50. For l ∼ 10

where the contribution of Sachs-Wolf effect is dominant we
haveCTT (t)

l /CTT (ζ )
l ∼ r with r denoting the tensor-to-scalar

ratio. The E-mode correlation CEE(t)
l has a maximum at l ∼

100 and decays after l > 100 [41]. For this spectrum we have
CEE(t)
l /CEE(ζ )

l ∼ 0.1 r . As well as for the TE cross correla-

tion we find CT E(t)
l /CT E(ζ )

l ∼ 0.1 r . Therefore, we expect
that the modulation in tensor modes leads to larger imprints
onCTT (t)

l . However, the contribution of tensor modes is sub-
dominant in CTT

l . Consequently, we do not expect to see a
significant effect on CTT

l due to the modulation in tensor
modes . On the other hand, the B-mode polarization is directly
related to the amplitude of tensor modes. Hence, CBB

l will
be more sensitive to the dipole modulation in tensor modes.
In this work we first analytically calculate the CBB

l and show
that it is in good agreement with results of CAMB [42] for
10 < l < 100. Then we derive the modulated CBB

l and
investigate the effects of dipole modulation on the CBB

l . The
tensor modulation would not produce an asymmetry in large
scale structure. This is consistent with the null detection of a
dipole modulation in large scales [43,44]. We also anticipate
that the tensor anomalies considered here must not also pro-
duce strong intrinsic asymmetry on small angular scales [45].

The paper is organized as follows: In the next section we
first obtain the transfer function for the tensor modes. In Sect.
3 we discuss the effects of modulation in tensor modes on
the CTT

l . Finally in section IV we compute the CBB
l in the

presence of dipole asymmetry in the tensor modes.

2 Transfer function of tensor modes

We write down the perturbed FRW metric in the following
form

ds2 = a2(η)[−(1 + 2�)dη2 − 2Bidηdxi

+(δi j + hi j )dx
idx j ], (2)

where η is the conformal time, a(η) is the scale factor and
�, Bi and hi j are the scalar, vector and tensor perturbations
of the metric. The tensor perturbations are characterized by
the transverse traceless tensor hTTi j and using the Einstein
equations is governed by the following equation

h
′′T T
i j (η, x) + 2

a′

a
h

′T T
i j (η, x) − ∂i∂

i hT Ti j (η, x) = 0, (3)

where the prime denotes derivative with respect to conformal
time. We apply the decomposition technique to the tensor
modes and write hTTi j (η, x) = hTTi j (η,k) e−ik·x where x =
(η0 −η)n will be the distance from the last scattering surface
and n is the direction of photon propagation. In order to
calculate the CMB power spectra it is convenient to rotate
the coordinate system so that the wave vector k is aligned
along z axis. Hence one can write k ·n = k cos θ . The tensor
perturbations hTTi j (η,k) are separated into the fourier modes
of two polarization states,

hTTi j (η,k) =
∑

A=+,×
e(A)
i j H(k, η)h(A)

(i) (k), (4)

where h(A)
(i) is the primordial gravity wave amplitude, H(k, η)

is the transfer function and e(+)
i j and e(×)

i j are the two symmet-
ric transverse traceless basis tensors. The transfer function
H(k, η) is governed by the following equation

H ′′ + 2
a′

a
H ′ + k2H = 0, (5)

where we have ignored the source term due to neutrino
anisotropic stress [46]. Here and elsewhere we do not include
the neutrino perturbations in our calculations. One can show
that for a mixture of radiation and matter fluid the Friedmann
equation gives the scale factor as [47]

a(η) = aeq

[(
η

η1

)2

+ 2
η

η1

]
, (6)

where aeq is the value of scale factor at the time of equality
and η1 � 78.8 
−1

m with the parameter 
m denoting the cur-
rent abundance of matter. The Eq. (5) can be solved numer-
ically using the scale factor (6). The results are presented
in Fig. 1. As we can see in Fig. 1a, for those modes with
k � keq(≈ 0.01 Mpc−1), the numerical results are in good
agreement with the analytic solution H(k, η) = sin(kη)/kη
in radiation dominated era. As well as for those long wave-
length modes which enter the horizon after equality the
numerical solution is in agreement with the analytic solu-
tion 3 j1(kη)/kη where j1(x) ≡ (sin x − x cos x)/x2 is the
spherical Bessel function. For reasons that will become clear
later on when we will calculate the CBB

l , we are interested
in the modes which enter the horizon at the time of recom-
bination ηr � 288 Mpc. Usually, at this time the analytical
solution 3 j1(kη)/kη is approximated as the transfer function
[48–50]. Interestingly, as we can see in Fig. 1b the numerical
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Fig. 1 Comparison of numerical results for the transfer function with the analytic solutions

solution of Eq. (5) for transfer function has a closer agrement
with the analytical result sin(kη)/kη at η = ηr . Moreover,
our later calculations in section IV derivingCBB

l , suggest that
the sin(kη)/kη solution is an appropriate transfer function at
the time η = ηr .

A gravitational wave carrier can be modulated similar to
what occurs in wave mechanics. In a simplified picture the
modulation may be due to a superhorizon long wave tensor
mode. The long wavelength mode can change the amplitude
of gravity wave in an especial direction from one side of the
sky to the other. Adopting a dipole asymmetry term to the
position dependent part of the tensor mode we obtain

hTTi j (η, x)

=
∑

A=+,×
e(A)
i j H(k, η)h(A)

(i) (k) e−ik·x[ 1 + (k · x)lss ], (7)

where xlss is assumed to be preferred direction at the last scat-
tering surface (lss). Similar to what is done in scalar pertur-
bation case, a spatially-dependent dipole asymmetry power
spectrum of the tensor perturbation can be represented in the
form

P1/2
t = [1 + At nk · x̂lss ]P1/2

iso,t (8)

where At = (k x)lss and Piso,t is the isotropic tensor power
spectrum that is set by the amplitude of scalar amplitude As

as Piso,t = r As . As a result, an observer sees a dipole asym-
metry in the direction x̂lss corresponding to the amplitude
At . In order to track the impact of such dipole asymme-
try on the CMB temperature and polarization power spectra
we first assume that nk is directed along the z direction and
nk · x̂lss = cos θ . Then we use (7) and analytically recalcu-
late the tensor part of CMB multipoles by considering the
following replacement

e−ik(η0−η) cos θ → e−ik(η0−η) cos θ [ 1 + At cos θ ] (9)

where the angular integration over the θ will contribute cor-
rections to the CMB power spectra.

3 Dipole modulation in CMB temperature power
spectrum

In the absence of the modulation, the contribution of tensor
perturbations to the CMB temperature anisotropy is param-
eterized as [49,51]

�t (n) = 1

2

∫ η0

ηr

dη ni h
′T T
i j (η,−x)n j . (10)

Here �t is the brightness function where the superscript t
indicates that the CMB temperature anisotropy is due to ten-
sor modes. The ni and n j coefficients are also the unit vectors
along the photon momentum and the integral in Eq. (10) is
computed along the photon trajectory from the the recombi-
nation time, ηr to the present time η0. In Fourier space the
�t (n) is represented in the following form

�t (n)

= 1

2

∫
d3k

∫ η0

ηr

dη
∂H

∂η
ei(η0−η)k·n ∑

A

nin j e
(A)
i j h(A)

(i) (k)

= 1

2

∫
d3k

∫ η0

ηr

dη
∂H

∂η

∑

A

nin j e
(A)
i j h(A)

(i) (k)

×
∞∑

l ′=0

(2l ′ + 1)i l
′
Pl ′(cos θ) jl ′ [(η0 − η)k], (11)

where we have made use of the expansion of the exponential
in terms of Legendre polynomials Pl

ei(η0−η)k·n =
∞∑

l ′=0

(2l ′ + 1)i l
′
Pl ′(cos θ) jl ′ [(η0 − η)k]. (12)
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One can expand the brightness function �t into multipoles
atlm

�t (n) =
∞∑

l=2

m=l∑

m=−l

atlmYlm(n), (13)

with Ylm(n) the spherical harmonic functions. Using the
orthogonality of spherical harmonics and the convolutions
nin j e

(+)
i j = sin θ cos 2φ and nin j e

(×)
i j = sin θ sin 2φ in

spherical frame (θ, φ) we arrive at

atlm = 1

4

∫
dnY ∗

lm(n) sin2 θ
[
e2iφ

(
h(+)

(i) − ih(×)
(i)

)

+ e−2iφ
(
h(+)

(i) + ih(×)
(i)

)]

×
∞∑

l ′=0

(2l ′ + 1)i l
′
Pl ′(n · nk)

×
∫ η0

ηr

dη
∂H

∂η
jl ′ [(η0 − η)k] (14)

To reduce this expression we use the recursion and orthogo-
nality relations for Legendre polynomials

(1 − x2)
dPn
dx

= nPn−1 − nx Pn,

(2n + 1)x Pn = nPn−1 + (n + 1)Pn+1

and
∫ 1

−1
d x Pn(x)Pm(x) = 2δnm

2n + 1
, (15)

and after some straightforward calculations we find the mul-
tipoles as

atl±2 = [h(+)
(i) ∓ ih(×)

(i) ]π i l
√

2l + 1

4π

(l + 2)!
(l − 2)!

×
∫ η0

ηr

dη
∂H

∂η

[
jl [(η0 − η)k]
(η0 − η)2k2

]
. (16)

where the m = ±2 is appeared as a result of integration over
the azimuthal angle φ. After calculating the atl±2 coefficients,
one can also take into account the angular power spectrum
CTT
l . Here we must distinguish between the anisotropies

from scalar and tensor modes. The total angular power spec-
trum in general is written as CTT

l = CTT (ζ )
l + CTT (t)

l . The

spectrum due to tensors, CTT (t)
l , is given in the following

manner

CTT (t)
l = 1

2l + 1

∫
d3k

l∑

m=−l

〈| atlm(k) |2〉

= 1

2l + 1

∫
d3k〈| atl2(k) |2 + | atl−2(k) |2〉. (17)

Using the two point correlation function of the primordial
tensor perturbation hA

(i) with polarization A = +, × one can
write

〈| h(+)
(i) ∓ ih(×)

(i) |2〉 = 1

8πk3 Piso,t , (18)

After changing the variables of integration from kη0 to u and
η/η0 to ξ and using the fact that H(k, η) = 3 j1(kη)/(kη),
the CTT (t)

l becomes

CTT (t)
l = π r As

4

(l + 2)!
(l − 2)!

×
∫ ∞

0

du

u

(∫ 1

ξr

dξ
∂

∂ξ

(
3 j1(uξ)

uξ

)
jl [(1 − ξ)u]
(1 − ξ)2u2

)2

. (19)

With r = 0.1 and As = 2.2×10−9 we numerically integrate
(19) and compare it with the results of CAMB CMB code
[42]. Here we set the Planck 2013 best fit parameters [52] in
CAMB. We also do not consider the effects of reionization on
the temperature and polarization anisotropies and the effects
of neutrino on the amplitude of tensor perturbations. There-
fore we switch off both effects in the CAMB program. From
Fig. 2a, we see a fair agreement between results of CAMB
and the analytical results of (19) for l < 50.

We want to extend the calculations leading to Eq. (19)
to the case in which the tensor modes are modulated. To
proceed, we first replace hTTi j with hTTi j (1 + At cos θ) and
then divide the multipoles into two parts atlm + δatlm such
that the second part contains the At hT Ti j cos θ . The method
of calculation of δatlm is the same as described above for
the atlm but rather more complex, so we do not present all
details. After some straightforward calculations we arrive at
the following expression for δatlm

δatl±2 = At

[
h(+)

(i) ∓ ih(×)
(i)

] π

2

√
2l + 1

4π

(l − 2)!
(l + 2)!

×
∫ 1

−1
dxx

∞∑

l ′=0

(2l ′ + 1)i l
′
(2lx Pl−1 − l(l + 1)Pl

+l(l − 1)x2Pl)Pl ′(x)

×
∫ η0

ηr

dη
∂H

∂η
jl ′ [(η0 − η)k], (20)

where x = cos θ . The integration over the x variable can be
performed by using again the recurrence and orthogonality
relations of Legendre polynomials (15). We find

δatl±2 = At
π i l+1

2l + 1
[h(+)

(i) ∓ ih(×)
(i) ]

√
2l + 1

4π

(l + 2)!
(l − 2)!

×
∫ η0

ηr

dη
∂H

∂η

[
l − 2

(2l − 1)(2l − 3)
jl−3[(η0 − η)k]

+ l − 3

(2l − 3)(2l + 3)
jl−1[(η0 − η)k]

− l + 4

(2l − 1)(2l + 5)
jl+1[(η0 − η)k]

− l + 3

(2l + 3)(2l + 5)
jl+3[(η0 − η)k]

]
. (21)
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Fig. 2 The comparison of the full numerical results of CAMB and the analytical results derived in the text for (a) CTT (t)
l and (b) total angular

power spectrum CTT
l . Points show the Planck 2013 data

Using (17) one can also define

δCTT (t)
l = 1

2l + 1

∫
d3k〈| δatl2(k) |2 + | δatl−2(k) |2〉,

(22)

where this expresses the contribution of dipole modulation
in the tensor angular power spectrum. Therefore, using (21)
we get

δCTT (t)
l = A2

t δ
(1)
l , (23)

where

δ
(1)
l = π r As

4

(l + 2)!
(l − 2)!

∫ ∞

0

du

u

{∫ 1

ξr

dξ
∂

∂ξ

(
3 j1(uξ)

uξ

)

×
[

l − 2

(2l + 1)(2l − 1)(2l − 3)
jl−3[(1 − ξ)u]

+ l − 3

(2l + 1)(2l − 3)(2l + 3)
jl−1[(1 − ξ)u]

− l + 4

(2l + 1)(2l − 1)(2l + 5)
jl+1[(1 − ξ)u]

− l + 3

(2l + 1)(2l + 3)(2l + 5)
jl+3[(1 − ξ)u]

]}2

, (24)

so that the tensor angular spectrum is given by CTT (t)
l +

A2
t δ

(1)
l . Setting At = 0 gives rise to the unmodulated case.

Here, we have not considered the dipole modulation in the
scalar perturbations. Hence the total angular power spectrum
is

CTT
l = CTT (ζ )

l + CTT (t)
l + A2

t δ
(1)
l (25)

We keep the curvature perturbation ζ unmodulated hence
the CTT (ζ )

l spectrum is calculated using the CAMB code.

The CTT (t)
l and the A2

t δ
(1)
l factors are also given by numer-

ically integrating the Eqs. (19) and (23). Then we combine
the CTT (ζ )

l given by CAMB with the CTT (t)
l + A2

t δ
(1)
l given

by equations (19) and (23) and obtain the total angular power
spectrum CTT

l . In Fig. 2b we have shown the resulting CTT
l

with At = 1 and 2. They have been compared with the total
angular power spectrum derived by CAMB. As the curves
depicted in Fig 2b clearly manifest the dipole modulation in
tensor perturbations with At ∼ 1 does not make a consid-
erable contribution to the CTT

l . For l ∼ 10 we see a small
deviation from the non modulated case which falls down for
l > 10. Note that these effects are one order of magnitude
smaller in the CEE

l and CT E
l spectra. As briefly discussed in

the introduction, the amplitude of the modulation measured
by Planck is A = 0.078. For small l, we find the corre-
sponding value of At required to produce this amplitude as
At ∼ A/

√
r ∼ 0.1 for r ∼ 0.1.

We can also calculate the general two point correlator
CTT (t)
l1m1l2m2

[53–56]. In order to find the nonzero elements of
correlator we use the approach of [55]. In this method we
assume that k makes the angle θ with the preferred direc-
tion. The transfer function is denoted by �l(k, η) that can
be calculated in terms of H(k, η) and the spherical Bessel
functions jl(k, η). After some straightforward calculations
the multipoles atlm are generally given by [55]

atlm =
∫

d3k�l(k, η)[h+2
(i) −2Y

∗
lm(nk) + h−2

(i) 2Y
∗
lm(nk)],

(26)

where h±2
(i) = h+

(i) ∓ ih×
(i) and sYlm are the spin-weighted

spherical harmonics. The correlator CTT (t)
l1m1l2m2

is defined as

CTT (t)
l1m1l2m2

= 〈atl1m1
at∗l2m2

〉. (27)

We now assume that the preferred direction to be coincided
with the z direction and using (8), we find
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δCTT (t)
l1m1l2m2

∝ r As A2
t

15

√
4π

(2l1 + 1)(2l2 + 1)

×
∫

dk

k
�l1(k, η)�l2(k, η)

×
∫

dnk[Y20(nk) −2Y
∗
l1m1

(nk) −2Yl2m2(nk)

+Y20(nk) 2Y
∗
l1m1

(nk) 2Yl2m2(nk)], (28)

and using the properties of the spin-weighted spherical har-
monics one can write

δCTT (t)
l1m1l2m2

∝ 2r As A2
t

15

√
4π

(2l1 + 1)(2l2 + 1)

×
∫

dk

k
�l1(k, η)�l2(k, η)

×
∫

dnkY20(nk) 2Yl1m1(nk) 2Yl2m2(nk). (29)

The integral over nk is calculated using the Gaunt integral
formula and the solution is given in terms of the Wigner 3j-
symbols

δCTT (t)
l1m1l2m2

∝ 2
√

3r As A2
t

15

×
∫

dk

k
�l1(k, η)�l2(k, η)

(
2 l1 l2
0 m1 m2

) (
2 l1 l2
0 2 2

)
. (30)

By taking into account the selection rules, the last Wigner
3j-symbol is zero unless l1 + l2 + 2 = even and |l1 − 2| ≤
l2 ≤ l1 + 2. These conditions allows the nonzero δCTT (t)

l1m1l2m2
for l2 = l1, l1 ± 2.

4 The effects of dipole modulation on CBB
l

The polarization of CMB is quantified by Stokes parameters
Q(n) andU (n) measured as a function of position on the sky.
It is known that the combination Q(n) ± i U (n) transforms
like a spin-2 variable under rotation. Hence expanding this
combination in spin weighted spherical harmonics, ±2Ylm ,
gives

(Q ± i U )(n) =
∞∑

l=2

+l∑

m=−l

a±2
lm ±2Ylm(n). (31)

This help us to define two E- and B-modes by linear combi-
nations of coefficients a±2

lm

aElm = −1

2
(a+2

lm + a−2
lm ) and aB

lm = i

2
(a+2

lm − a−2
lm ), (32)

where E-modes are invariant under the parity transformations
while B-modes change sign. Usually the full sky polariza-
tion map of CMB is decomposed into E-mode and B-mode
[57,58]. Physically the E-mode polarization is generated by
scalar and tensor perturbations. It can be shown that the B-
mode is just generated by the tensor perturbation. Therefore,
the B-mode can probe the primordial gravitational wave. Any
dipole modulation in tensor modes can imprint on both E
mode and B-mode. However, we expect larger effects on the
B-mode. In order to calculate the aE,B

lm multipoles as it is con-
venient we define the polarization matrix in terms of Stokes
Parameters

Pab(n) =
∫

d3kPab(k,n)

= 1

2

(
Q(n) −U (n) sin θ

−U (n) sin θ −Q(n) sin2 θ

)
. (33)

Hence the coefficient aE,B
lm are given by

aE,B
lm = −

∫
dnY (E,B)∗

lm,ab (n)Pab(n), (34)

where

Y (B)
lm,ab(n) =

√
(l − 2)!

2(l + 2)!
( −Xlm(n) Wlm(n) sin θ

Wlm(n) sin θ Xlm(n) sin2 θ

)
,

(35)

with the auxiliary functions Xlm and Wlm constructed as

Wlm(n) =
(

2
∂2

∂θ2 + l(l + 1)

)
Ylm(n), (36)

Xlm(n) = 2im

sin θ

(
∂

∂θ
− cos θ

sin θ

)
Ylm(n). (37)

The parameters of polarization matrix and also the
CMB angular spectra are mostly derived by a hierarchy of
Boltzmann equations [58,59]. Instead, we take an analytic
approach proposed in [49,57] to study the CMB polarization.
We compare our results with the methods implemented in the
Boltzmann code CAMB to check the analytical method. We
then extend the analytical calculation to include the mod-
ulation in the tensor modes. The Fourier transformation of
polarization matrixPab(k,n) for tensor perturbations is ana-
lytically given by the following matrix [49]

P t
ab(k,n) = �ηr

10

∂H

∂η
eik(η0−ηr ) cos θ

×
(

−(1 + cos2 θ){cos 2φ h+
(i) + sin 2φ h×

(i)} sin 2θ{sin 2φ h+
(i) + cos 2φ h×

(i)}
sin 2θ{sin 2φ h+

(i) + cos 2φ h×
(i)} (1 + cos2 θ){cos 2φ h+

(i) + sin 2φ h×
(i)}

)
, (38)
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Fig. 3 The comparison of the BB angular power spectrum calculated
by CAMB with r = 0.1, As = 2.2 × 10−9, nt = 0 with the analytical
results derived in the text. Points show the BICEP2/Keck Array data

where H(k, η) is again the transfer function for tensor modes
and �ηr is the thickness of the last scattering sphere. Note
that in this expression we have not considered the gravita-
tional lensing and also the reionization effect. One can easily
show that in the scalar perturbations case the off diagonal
components of polarization tensor vanish. However, for the
tensor perturbations, the new terms supplied by gravity waves
result in non-vanishing values for the Stokes parameterU has
a principal role in generating the B mode polarization. Now
after computing the polarization matrix (38) one can find
the coefficients aB

lm by using the relation (34). We defer the
details of calculation to the “Appendix”. By using the results
presented in the “Appendix” we can evaluate the parity inde-
pendent angular power spectra CBB

l as follows

CBB
l = 2π

25
r As�η2

r

∫ ∞

0

dk

k

(
∂H(k, ηr )

∂η

)2

×
[
l + 2

2l + 1
jl−1(kη0) − l − 1

2l + 1
jl+1(kη0)

]2

, (39)

The transfer function is computed at the time η = ηr . As we
discussed in section II at this time one can approximate the
transfer function by H(k, ηr ) = sin(kηr )/(kηr ). Changing
the integration variables to ξ and u we find

CBB
l = 2π

25
r As�ξ2

r

∫ ∞

0

du

u

(
cos(uξr ) − sin(uξr )

uξr

)2

×
[
l + 2

2l + 1
jl−1(u) − l − 1

2l + 1
jl+1(u)

]2

, (40)

We have actually found that the analytical expression (40)
has a good agreement with the CBB

l calculated by CAMB
with �ξr = 0.028 at l < 100. In Fig. 3 we see this agree-
ment with r = 0.1 and As = 2.2 × 10−9. At l < 10 the
CBB
l curve grows up while the analytical curve displays an

opposite behavior. This is due to impact of reionization on
the CMB which we have not considered in this work.

We now consider the effects of the modulation in tensor
modes on the angular power spectra of CMB. Recall that
to derive the multipole coefficients we need to perform the
integration over all angles θ . As we discussed the modulation
contributes the new factor (1 + At cos θ) in front of the inte-
grand. We therefore separate the multipole coefficients into
aB
lm + δaB

lm where the δaB
lm are those containing the At cos θ

term. The details of the calculation of δaB
lm coefficients are

presented in Appendix. Using these results one can derive

δCBB
l = A2

t δ
B
l , (41)

where

δBl = 2π

25
r As�ξ2

r

∫ ∞

0

du

u

(
cos(uξr ) − sin(uξr )

uξr

)2

×
[

(l − 1)(l + 2)

(2l + 1)(2l − 3)
jl−2(u) − 2l2 + 2l + 1

(2l − 1)(2l + 3)
jl(u)

+ (l − 1)(l + 2)

(2l + 1)(2l + 5)
jl+2(u)

]2

, (42)

where we have changed the variables of integration to ξ and
u. By considering the modulation the total BB power spec-
trum will be

CBB
l = CBB

l + A2
t δ

B
l . (43)

In Fig. 3 we have also plotted the total predicted BB power
spectrum for At = 0.5 and At = 1. As we can see the CBB

l
is shifted above due to the modulation term in (43).

As well as, theCBB
l1m1l2m2

correlator can be calculated using
the method discussed in previous section. Similar to the TT
case, it can be shown that the BB correlation is nonzero for
l2 = l1, l1 ± 2.

5 Conclusion

In this work we have studied the imprints of dipole modula-
tion in tensor modes on theCXY

l with XY = T T and BB. The
modulation of tensor modes can be due to a long wavelength
scalar or tensor mode which is superhorizon during inflation.
Here we have modulated the tensor mode by multiplying its
amplitude by a modulated factor like (1 + sin(k · xlss)). The
angular power spectra of CMB have been analytically com-
puted in the presence of the modulation factor. With a mod-
ulation in tensor modes one can see a larger modification in
the CBB

l . We also showed that the TT and BB correlators are
allowed for the configurations l2 = l1, l±2. The future detec-
tion of gravitational waves can constraint the amplitude of
modulation. However this task needs a comprehensive study
of the effects of modulation in tensor modes on the CMB tem-
perature and polarization anisotropies. Here we have not con-
sidered the reionization and lensing effects. Either of these
phenomena can change the simplified picture studied in this
work.
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Appendix A: The calculation of CBB
l

Here we calculate analytical expression for the BB polariza-
tion spectra of tensor perturbations. To this purpose, we need
to know the contribution of tensor modes to the polarization
multipole coefficients aB

lm . Using the polarization matrix ele-
ments (38) one can write

aB
lm,(+)(k) = −�ηr

5

∂H

∂η
h+

(i)

√
(l − 2)!

2(l + 2)!
×

∫
dn ei(η0−ηr )k cos θ [X∗

lm(1 + cos2 θ) cos 2φ

+2 W ∗
lm cos θ sin 2φ], (A1)

and

aB
lm,(×)(k) = −�ηr

5

∂H

∂η
h×

(i)

√
(l − 2)!

2(l + 2)!
×

∫
dn ei(η0−ηr )k cos θ [X∗

lm(1 + cos2 θ) sin 2φ

−2 W ∗
lm cos θ cos 2φ], (A2)

Inserting the (36) and (37) into equations (A1) and (A2),
changing the variable of integration from θ to x and integrat-
ing over the azimuthal angle φ we get

aB+
l2 = 2π i

5
√

2
h(+)

(i)
∂H

∂η

√
2l + 1

4π
�ηr

×
∫ 1

−1
dx eikx(η0−ηr )

[
l + 2

2l + 1
Pl−1(x) − l − 1

2l + 1
Pl+1(x)

]
,

(A3)

and as well as aB+
l2 = − aB+

l−2, aB×
l2 = i aB+

l2 and aB×
l−2 =

−i aB+
l−2. From the series expansion of plane wave in terms

of Legendre polynomials (12) one can find

aB+
l2 = 4π i l

5
√

2
h(+)

(i)
∂H

∂η

√
2l + 1

4π
�ηr

×
[
l + 2

2l + 1
jl−1(k(η0 − ηr )) − l − 1

2l + 1
jl+1(k(η0 − ηr ))

]
.

(A4)

The angular power spectrum CBB
l is given by

CBB
l = 1

2l + 1

∫
d3k〈aB+

l2 aB+∗
l2 + aB×

l2 aB×∗
l2 + aB+

l−2a
B+∗
l−2

+aB×
l−2a

B×∗
l−2 〉

= 4

2l + 1

∫
d3k〈aB+

l2 aB+∗
l2 〉. (A5)

Therefore by inserting the aB+
l2 we find

CBB
l = 2π

25
�η2

r

∫ ∞

0

dk

k
Pt

(
∂H(k, ηr )

∂η

)2

×
[
l + 2

2l + 1
jl−1(kη0) − l − 1

2l + 1
jl+1(kη0)

]2

. (A6)

In the case of modulation in tensor mode we have

δaB+
l2 = At

2π i

5
√

2
h(+)

(i)
∂H

∂η

√
2l + 1

4π
�ηr

×
∫ 1

−1
dx eikx(η0−ηr ) x

[
l + 2

2l+1
Pl−1(x)− l−1

2l+1
Pl+1(x)

]
,

(A7)

and some calculations yield

δaB+
l2 = −At

4π i l+1

5
√

2
h(+)

(i)
∂H

∂η

√
2l + 1

4π
�ηr

×
[

(l − 1)(l + 2)

(2l + 1)(2l − 3)
jl−2(k(η0 − ηr ))

− 2l2 + 2l + 1

(2l − 1)(2l + 3)
jl(k(η0 − ηr ))

+ (l − 1)(l + 2)

(2l + 1)(2l + 5)
jl+2(k(η0 − ηr ))

]
. (A8)

We define

δCBB
l = 4

2l + 1

∫
d3k〈δaB+

l2 δaB+∗
l2 〉. (A9)

Therefore the δCBB
l is found to be

δCBB
l = 2π

25
A2
t �η2

r

∫ ∞

0

dk

k
Pt

(
∂H(k, ηr )

∂η

)2

×
[

(l − 1)(l + 2)

(2l + 1)(2l − 3)
jl−2[k(η0)]

− 2l2 + 2l + 1

(2l − 1)(2l + 3)
jl [k(η0)]

+ (l − 1)(l + 2)

(2l + 1)(2l + 5)
jl+2[k(η0)]

]2

. (A10)
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