Eur. Phys. J. C (2015) 75:252
DOI 10.1140/epjc/s10052-015-3479-5

THE EUROPEAN

) CrossMark
PHYSICAL JOURNAL C

Regular Article - Theoretical Physics

A principal possibility for computer investigation of evolution
of dynamical systems independent on time accuracy

V. G. Gurzadyan'2, V. V. Harutyunyan?, A. A. Kocharyan?-

1 S1A, Sapienza University of Rome, Rome, Italy

2 Center for Cosmology and Astrophysics, Alikhanian National Laboratory and Yerevan State University, Yerevan, Armenia

3 School of Mathematical Sciences, Monash University, Clayton, Australia

Received: 17 May 2015 / Accepted: 23 May 2015 / Published online: 9 June 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Extensive N-body simulations are among the key
means for the study of numerous astrophysical and cosmo-
logical phenomena, so various schemes are developed for
possibly higher accuracy computations. We demonstrate the
principal possibility for revealing the evolution of a perturbed
Hamiltonian system with an accuracy independent on time.
The method is based on the Laplace transform and the deriva-
tion and analytical solution of an evolution equation in the
phase space for the resolvent and using computer algebra.

1 Introduction

The appearance of powerful computers has made the N-body
simulations among efficient tools [1] for the study of various
astrophysical and cosmological problems. The N-body gravi-
tating systems cover a broad class of astrophysical problems,
from the evolution of the Solar system as of a nearly inte-
grable problem, up to the dynamics of star clusters, galaxies,
and galaxy clusters as non-integrable problems. The cosmo-
logical simulations include from the evolution of primor-
dial density perturbations up to the formation of dark matter
galaxy halos, etc.

The N-body simulation activities have been developed in
two conventional directions:

1. Numerical integration of N equations of motion in order
to follow the evolution of the system. The main diffi-
culty of these investigations based on standard iterative
methods of numerical integration of differential equa-
tions (Runge—Kutta, etc.) is the inevitable storage of
errors with the increasing of the number of steps. This
leads to rapid loss of the reliability of the results derived,
the faster, the larger is the number of equations (i.e. the
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number of particles) and/or the longer is the duration of
the calculations.

2. Investigation of the character of motion in the systems,
which includes the finding out of integrals of motion,
analysis of appearing stochastic regions, etc. The main
feature of this direction is the application of methods of
dynamical systems, e.g. of Kolmogorov—Arnold—-Moser
(KAM) theory, Lyapunov exponents, KS-entropy, etc [2].
N-body gravitating systems, for example, do reveal vari-
ety of complex, chaotic properties which play a crucial
role in their evolution and structure; see e.g. [3-8].

Speaking of numerical investigations of dynamical sys-
tems, both, smooth and discrete, one may note that the second
direction seems to be particularly fruitful. Beginning from the
pioneer study by Fermi, Pasta and Ulam in the early 1950s,
it has led to unexpected and profound results such as the
strange attractors, the Feigenbaum sequence of bifurcations,
etc. As compared to those remarkable results, the numerical
(iterative) study of the evolution of Hamiltonian systems, due
to the reasons mentioned, looks moderately successful and
reliable. The latter is equally true for such an important class
of Hamiltonian systems as the so-called nearly integrable
systems [2],

H(I,9, ) = Hy(I) + BH (I, D), ey

where 1, ¥ are the action-angle coordinates and g is the small
parameter defining the non-integrable part of the Hamilto-
nian H;.

The well-known Hénon—Heiles system [9] modeling the
stellar motion in a spiral galaxy is of this type; the same
class of Hamiltonians can be attributed also to various aspects
of planetary dynamics. The unique role of the system (1.1)
in the Hamiltonian mechanics is determined undoubtedly
by the proof of the KAM theorem, according to which,
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when distinct conditions are satisfied, there exist invariant
tori,

1= 1Io+u(®. p), @)
Y =0 + ot +v(J, B), 3

where u, v are periodic functions [2].

Itis well known that the KAM theorem with its roots goes
back to the main problem of celestial mechanics, the stability
and evolution of the Solar system. Although the KAM theo-
rem does not directly reveal the fate of the Solar system, its
ideas were used for efficient numerical studies of the Solar
system dynamics; see [7,8] and other studies by Laskar et al.
The KAM theorem itself does not determine the value of the
perturbation B, for which its statements are true, and regard-
ing the planetary dynamics there are also principal difficulties
in checking of the necessary conditions of the theorem with
respect to each consideration. Moreover, due to the Arnold
diffusion — a universal instability peculiar to non-linear sys-
tems of dimension N > 2 —irrespective of whether the Solar
system satisfies the conditions of the KAM theorem or not,
it still cannot remain stable. Finding itself after an accidental
perturbation in the stochastic region of phase space, the sys-
tem can remain in it for an infinitely long time and therefore,
the observed picture has to be destroyed anyway — the planets
must either fall onto the Sun or fly away. So, those funda-
mental results at least do predict that, strictly speaking, the
Solar system cannot last forever anyway, although the time
scale of the latter instability (Arnold diffusion), according to
estimates, far exceeds the Hubble time.

The example described above shows, on the one hand, the
universality of systems with a perturbed Hamiltonian; on the
other hand, the difficulties in direct application of the KAM
theorem for revealing of the evolution of real physical and
astrophysical systems.

Connecting certain hopes with computers and speaking
of their potentialities, one must mention the importance of
computer algebra methods, which, in our opinion, offer new
prospects for the investigation of complex dynamics.

Below, we will show that computer algebraic methods
along with those of dynamical systems enable the princi-
pal possibility of investigation of the evolution of a system
without the effect of the storage of errors, i.e. of an accuracy
independent on time. The search of error-free numerical inte-
gration schemes can be considered among the key problems
of stellar dynamics, Problem 5 in [10]; see also [11].

2 Evolution in the phase space
The convenience of the investigation of a Hamiltonian sys-

tem with small perturbation for action-angle variables is con-
nected with the following. As is well known, the Hamiltonian

@ Springer

of an n-dimensional integrable system with a phase space
R?" = {p, q}, e.g. in the case of free oscillators with pertur-
bation

n 2 k kN2
Hip.) =3 [% + %} +BU@), @
k=1

i.e. a system having n first integrals of motion in involution,
enables one to transit from the variables (p, g) to that of
action-angle variables (7, 9),

gk = QI J*)'/? cos Bk,

pr = L)1 /? sin 9%, )
Then, for 8 = 0, the equations of motion
j, — _0H
I 3ok ©)
Ok = k(1) + %
have a trivial solution,
I, = const,
9% = of + 8%, 8% = const. )

As follows from the Liouville theorem, in this case the
phase space of the system splits into compact manifolds dif-
feomorphic to n-tori,

Tor" = {¢' mod 27}. (8)

When B # 0, the Hamiltonian equations read

jk — _3HU.9.)
- vk ’ (9)

ok _ 0HWU,9,B)

= Iy ’

where
n

H(I.9.p) =Y oI+ BV D). (10)
k=1

However, instead of solving or analyzing these equations
as is done conventionally, we will proceed as follows.
One can observe that if (see [2, Section 39])

K= Ak (), (11)

then for any smooth function f(x) the following holds:

AR (x). (12)

d _0f(x) 4 Af(x)
Ef(x) T Toxk T Toxk
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Therefore,

z—f(x)—zAkUaf(x) 0 (13)
or

d

lEf(X)+LAf(X)=0 (14)
where

Ls = —iAX 0 15
a= =it @ (15)

Considering the function f (/, ©) in the phase space (I, )
and applying the above observation we find that the equation
describing the evolution of this function at (1, ©) = x chang-
ing according to (6) has the form

d
i/ + LB fx.1) =0, (16)

Lo=—-iff-5, (17)

B(V) =
By means of the Laplace transform
~ © .
Fen) =/ de f(x,1)e™, (18)
0

one can rewrite Eq. (16) as follows:

—Af(x,A) + Lf(x,x) = —if(x,0) (19)
or

fx, ) = iR (B)g(x),

g(x)= f(x,0), (20)

where the resolvent R, (8) is equal to

Ri(B) = (L — L))" 21)

One can show that the following expression is fulfilled:

Ri(B)g(x) = (A — Lo — BB) 'g(x)
= (- BR.B) 'Rig(x)

N
=Y a(BHIRBI Rig(x) + o(BY), (22)

k=0
i.e. at fixed B, by variation of N, we can reach a given accu-
racy.

If

g, 9) =Y au(D)e'™", (23)
kezn

where

(k, ®) = k;9',

then

Rig(I,9) = (A — Lo) g, 1‘/‘) A+ i{w, dp)7! g(I 29)

=Y e +ilo,dp) tei*?) = > () ,m

keZ" keZ
(24)

i.e. Eq. (18) can he calculated relatively easily.
We choose the function g(x) in the form

g, v) = ——Z(Ik—IOk) +Zcos<ﬂ" 9p). (25

k=1

This choice is conditioned by two factors: first, it has a single
maximum on R" x Tor" and, hence, its evolution has the same
property; second, it allows an elementary representation in
the form of a Fourier expansion.

Having R) g, by means of the inverse Laplace transform
we get the desired function,

da s da
flx,1) = f > e M fx, ) =— / —e MRi(Bg(x),
C T CZJT

(26)
where the contour of integration is

={o+is, —o0 <0 <00, s =a >0} 27
Therefore, the evolution of the initial function of f(x,0) =
g(x) is found. Estimating after this the maximum of the func-
tion f(x,t) = f(I, 9, t)foreacht we find the time evolution
of 1,9, thus determining the evolution of the Hamiltonian
system for those time instances.

The principal difference between this and the standard
iteration methods of integration of Hamiltonian systems is
clear; here the time ¢ is a parameter of f(x, ) and does not
influence the accuracy of calculation of the latter.

3 Computations via the new scheme
Firstly, let us note the importance of application of the com-
puter algebra in our calculations. Due to the absence of errors

atan integration and differentiation operation, the final results
practically do not contain any errors. To demonstrate this,
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Fig. 1 The time evolution of
the surface determined by
Eq. (29) for I} = const,

I, = const

we consider a dynamical system given by a two-dimensional
Hamiltonian of two oscillators with small perturbations,

H=w Iy +wyI, + BI cos V. (28)

The initial function f(1, 9, 0) was chosen in the form of
Eq. (25). Then the evolution of that function by means of the
procedure described was obtained,

FUL . 1) = exp(id) (I — L(0)]
+% exp(—i91(0)[exp(—iwit) — 1]
+ exp(iv) (1) — [I(O) ]y
+% exp(3it) — 2wt — i1(0))
x [exp(ior) — 1wy B
L - n0 - L - by
2 2
+ % exp(iv] — iwt — i91(0))
+% exp(ivs — iwat — i92(0)). (29)

The evolution of the surface determined by the func-
tion f(I,¥,1t) at different instances of time and for I} =
const, Iy = const is shown in Fig. 1. In Figs. 2 and 3 the vari-
ations of ¥ and Iy by the time for different initial conditions
and values of § are shown. The trajectories are regular with a
period of 2. During computations, at the increase (decrease)
of B by an order of magnitude, the calculation time varied
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Fig. 2 The time variations of ¢ for initial conditions 7;(0) =
1.0, I;(0) = 2.0, and #;(0) = 3.0, ¥,(0) = 2.0, and several values

of B
proportionally, at the accuracy 10™*. The performed com-
putations were little time consuming (for i7, 2600 3.4 GHz
processor of 6 GB memory); we plan to apply the approach
to real physical systems and provide more results in forth-
coming papers.

Let us stress again that the accuracy of the computations
of the trajectory does not depend on time, since no iterations
are involved.

4 Conclusions

We demonstrated a principal way of finding out of the evo-
lution of a dynamical system independent on time accuracy;
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Fig. 3 The time variations of I; for different initial conditions and
values of B:a I1(0) = 1.0, I(0) = 2.0, and 91 (0) = 3.0, 92(0) = 2.0,
b I;(0) = 4.5, ,(0) = 2.0, and 91 (0) = 1.0, ¥2(0) = 2.0

namely, the phase space point 71(0), 12(0), 91(0), 12(0)
describing the initial state of the Hamiltonian system is trans-
ferred to an arbitrary ¢, without any storage of errors. The
key feature of this method is that we transfer the function
S, 9,0) and, therefore, solve an equation which is suffi-
ciently easier (linear), as compared to the Hamiltonian equa-
tions. Moreover, the former equation is solved analytically
and not by an iteration procedure.

Another remarkable advantage of this procedure is the
following: the initial state of a non-linear system during evo-
lution can find itself in the stochastic region of phase space.
The description of this is impossible by integration (even
numerical) of the Hamiltonian equations, while our method
allows us to investigate even this phenomenon. This aspect
is particularly important for the study of N-body gravitating
systems in view of their well-known chaotic properties. Then
this method can open new principal possibilities for cosmo-
logical and extensive astrophysical N-body simulations.
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