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Abstract In the present paper we obtain an anisotropic ana-
log of the Durgapal and Fuloria (Gen Relativ Gravit 17:671,
1985) perfect fluid solution. The methodology consists of
contraction of the anisotropic factor A with the help of both
metric potentials ¢ and e”. Here we consider ¢* the same
as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985)
did, whereas e" is as given by Lake (Phys Rev D 67:104015,
2003). The field equations are solved by the change of depen-
dent variable method. The solutions set mathematically thus
obtained are compared with the physical properties of some
of the compact stars, strange star as well as white dwarf. It is
observed that all the expected physical features are available
related to the stellar fluid distribution, which clearly indicates
the validity of the model.

1 Introduction

A few decades ago a new analytic relativistic model was
obtained by Durgapal and Fuloria [1] for superdense stars
in the framework of Einstein’s General Theory of Relativ-
ity. They showed that the model in connection to the neu-
tron star stands all physical tests with the maximum mass
4.17 M and the surface redshift 0.63. Very recently, Gupta
and Maurya [3] presented a class of charged analogs of the
superdense star model due to Durgapal and Fuloria [1] with
Einstein-Maxwell spacetimes. The members of this class
have been shown to satisfy various physical conditions and
exhibit these features: (a) a maximum mass 3.2860 Mg
and a radius 18.3990 km for a particular interval of the
parameter: 1 < K < 1.7300, and (b) a maximum mass
1.9672 M, and a radius 15.9755 km for another interval of
the parameter: | < K < 1.1021. Later on, a family of well
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behaved charged analogs of the Durgapal and Fuloria [1]
perfect fluid exact solution was also obtained by Murad and
Fatema [4] where they have studied the Crab pulsar with
radius 13.21 km.

In a similar way we have considered a generalization of
Durgapal and Fuloria [1] with an anisotropic fluid sphere such
that p, # pi, where p; and py, respectively, are the radial
and tangential pressures of the fluid distribution. The present
work is a sequel of the paper [5] where we have developed
a general algorithm in the form of the metric potential v for
all spherically symmetric charged anisotropic solutions in
connection to compact stars. However, in the present study
without considering any anisotropic function we can develop
an algorithm with the help of the metric potentials only and
herein lies the beauty of the investigation. Another point we
would like to add here is that, till now, to the best of our
knowledge, no alternative anisotropic analog of Duragapal
and Fuloria [1] solution is available in the literature.

In connection to anisotropy we note that it was Rud-
erman [6] who argued that the nuclear matter may have
anisotropic features at least in certain very high density
ranges (>10'% gm/cm?), and thus the nuclear interaction can
be treated under relativistic background. Later on Bowers and
Liang [7] specifically investigated the non-negligible effects
of anisotropy on the maximum equilibrium mass and sur-
face redshift. There is an exhaustive review on the subject
of anisotropic fluids by Herrera and Santos [8] which pro-
vides almost all references until 1997, as well as a detailed
discussion of some of the issues analyzed in this article.
More recently, a comprehensive work on the influence of
local anisotropy on the structure and evolution of compact
object has been published by Herrera et al. [9]. In this regard
several recently performed anisotropic compact star models
may be consulted for further reference [10-18]. We also note
some particular work concerned with the anisotropic aspect
in physical systems like Globular Clusters, Galactic Bulges,
and Dark Halos in Refs. [19,20].
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As a special feature of anisotropy we note that for a small
radial increase the anisotropic parameter increases. However,
after reaching a maximum in the interior of the star it becomes
a decreasing function of the radial distance as shown by Mak
and Harko [21,22]. Obviously at the center of the fluid sphere
the anisotropy is expected to vanish.

We would like to mention that an algorithm for a perfect
fluid and an anisotropic uncharged fluid is already available in
the literature [2,23,24]. For example, we note that in his work
Lake [2,23] has considered an algorithm based on the choice
of a single monotone function, which generates all regular
static spherically symmetric perfect as well as anisotropic
fluid solutions for the Einstein spacetimes. It is also observed
that Herrera et al. [24] have extended the algorithm to the case
of locally anisotropic fluids. Thus we opt for an algorithm
applied to the more general case with an anisotropic fluid
distribution. However, in this context it is to be noted that in
Ref. [5] we developed an algorithm in the Einstein—Maxwell
spacetimes.

The outline of the present paper is as follows: in Sect. 2
the Einstein field equations for an anisotropic stellar source
are given, whereas the general solutions are shown in Sect.
3 along with the necessary matching condition. In Sect. 4
we represent interesting features of the physical parameters,
which include density, pressure, stability, charge, anisotropy,
and redshift. As a special study we provide several data sheets
in connection to compact stars. Section 5 is used as a platform
for some discussions and conclusions.

2 The Einstein field equations

In this work we intend to study a static and spherically sym-
metric matter distribution whose interior metric is given in
Schwarzschild coordinates, x* = (r, 0, ¢, t) [25,26],

ds? = —e*Mdr? — r2(d6? + sin®0dg>) + " Pdr>. (1)

The functions v and A satisfy the Einstein field equations,

KTijzRij—%Rg"j, )
where k = 8m is the Einstein constant with G = 1 = ¢
in relativistic geometrized units, G and c, respectively, being
the Newtonian gravitational constant and velocity of photons
in vacuum.

The matter within the star is assumed to be locally
anisotropic fluid in nature and consequently T j is the
energy-momentum tensor of the fluid distribution defined by

p0o6;1, )

where v’ is the four-velocity with e*)/2v = §i4, 07 is the
unit space-like vector in the direction of radial vector, ' =
e*(/251 | is the energy density, p; is the pressure in direction

T =[(p+ pv'v; — pd' j + (pr —

@ Springer

of #' (normal pressure), and p is the pressure orthogonal to
0; (transverse or tangential pressure).

For the spherically symmetric metric (1), the Einstein field
equations may be expressed as the following system of ordi-
nary differential equations [27]:

v, (I—e)
—kTh = —eh = ——— =xp, @)
T2 T3 V" Ay N \/2 N v — N .
—K = —K === — e
2 T2 T 4 T 2r

= Kpy, (5

A l—e*
KT44 =" + (r—z) =Kp, (6)

where the prime denotes differentiation with respect to the
radial coordinate r.

The pressure anisotropy condition for the system can be
written

A=k (p—pr) =[——

1 oA
_v_e*)»_}_ w_ (7)

Now let us consider the metric potentials [1] in the fol-
lowing forms:
. 1—10Cr? -4
= , 3
74 14Cr2 +7C%r4
v=2Iny, 9

where C is a positive constant and ¥ is a function which
depends on the radial coordinate r. The plots for these quan-
tities are shown in Fig. 1.

1.6 -
1.5 ]
1.4 ]
1.3 ]
1.2 1

metric potentials
o
oo

0O+r—rT—rT—rrrTTrrrrrrrroTTTTrrm

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
r/R

Fig. 1 Variations of the metric potentials with radial coordinate r/R.
(i) e” is plotted with dotted line for Her X-1 and short-dashed line for
white dwarf, (ii) e is plotted with a continuous line for Her X-1 and a
long-dashed line for a white dwarf
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Equation (7) together with Eqs. (8) and (9) becomes
7—10Cr* — C*r*7 4"
:[ 70+ Cr2)2 }I
C3r® +19C%r* —21Cr* =77 Y/
[ 7r(1+4 Cr2)3 } v
8C2r2(Cr +5)
[ 7(1+ Cr2)? }

(10)

3 The solutions for the model

Here our initial aim is to find the pressure anisotropic function
A, which is zero at the center and monotonic increasing for
suitable choices of ¥y. However, Lake [2] imposes the con-
dition that ¥ should be a regular and monotonic increasing
function of the radial coordinate r.

Let us therefore take the form of i as follows:

v =(0-—a+Cr??, (11)

where o > 0.
Substituting the value of ¢ from Eq. (11) in Eq. (10), we
get

8 a C2r[2C%H* + (16 —a)Cr? — Sa — 2]
7 (14 Cr2)3(1 —a + Cr2)?

12)
Fora > 0and 0 < Cr? < ‘“2+8°‘+24727(167K), the

pressure anisotropy is finite as well as positive everywhere,
as can be seen in Fig. 2.
By inserting the above value of A in Eq. (12), we get

s [ e +19c%t —21Cr2 -7 7
4 |:r(1+Cr2)(7— 10Cr2—C2r4)i|w
1 8C?r3(Cr? +5)
7 —10Cr2 — C%r4 |: (1+Cr?)
8aC2r2[2C%r* + (16 — a)Cr? — (5a + 2)]
(14 Cr)(1 —a + Cr?)?

+

}w:o.
(13)
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Fig. 2 Variation of the anisotropy factor with radial coordinate r/R.
(i) A is plotted with a short-dashed line for Her X-1, (ii) A is plotted
with a continuous line for a white dwarf

Yy + p(r)y +q(r)y =0. (14)

Let y = y; be the particular solution of the differential
equation (14). Then y = y;U will be complete solution of
the differential equation (14), where

2y
U =aj+ b fexp [— /(p(r) + y—)dri| dr,
1

where a; and b are arbitrary constants.

Again letus assume here that v = (1 —a4Cr)? = War 18
aparticular solution of Eq. (13). So, the most general solution
of the differential equation (13) can be given by

v=(—a+Cr}?

B+A/ / C3r84+19C?r4—21Cr% — 7
X €X —
P r(I+Cr2)(7—10Cr2—C2r4)

8Cr?
* marom) o] 1

where A and B are arbitrary constants.
After integrating it, we get

V= | B—A Wl + Va2l — @ + Cr?) + Ya3Var}y/ a5 —2(4 + a)(1 —a + Cr?) — Yur)
(1 —a+Cr2)3

+ W(r)}] , (16)

Now our next task is to obtain the most general solution of
the differential equation (13). Here we shall use the change
of dependent variable method. We consider the differential
equation of the form

where

Vor = (1 —a 4+ Cr?)?, (17)

@ Springer
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10.2 - Using Egs. (8), (12), and (16) the expressions for the
9.8 i energy-density and pressure read
1 Kp 8(9 4+ 2Cr? 4+ C*r%
9.4 - - = 273 (19)
| C 71+ Cr=)
9.0 and
S 86- kpr 41 —10Cr2—C%r?) [1//,,,(1—01 +Crh)’ + 21//]
g2 ] cC 11+ Cr3)? Y(l —a+Cr?)
1 8(Cr? +3
78 _w’ (20)
| 7(1 + Cr?)?
74 | where
7.0 LINL I N I I B BN N B B B N N B H S s e | A(l + Cr2)
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 Vor 2D

r/R

Fig. 3 Variation of the density with radial coordinate r/R. (i) p is
plotted with a continuous line for Her X-1, (ii) p is plotted with a
dashed line for a white dwarf

(A —a+Cr)4/(T—10Cr2 — Cr2)

In Figs. 3, 4, and 5 we have plotted the nature of the above
physical quantities, which show the viability of the features

W) = Vs log Vos — (@ +a)(l —a+Cr?) + \/1//(15\/(1%(5 2@t o)1 —a+Crd) — v
Vs (= +Cryes

of the present model.
} ; (18)

and A and B are arbitrary constants with

_ o
Vol = 306 sa—a?)”
_ 24—2a+a>
Vo2 = 3i6ga—a?’
Vaz = 288+80a—10a2 403
@3 = T3(16-8a—a?)® °
__ 1536—3840+480%—2a3
1z
a4 = T3(16-8a—a2)3
VYos = (16 — 8o — ?).

3.1 Matching condition

The above system of equations is to be solved subject to the
boundary condition that radial pressure p, = 0 atr = R
(where r = R is the outer boundary of the fluid sphere). It
is clear that m(r = R) = M is a constant and, in fact, the
interior metric (2.1) can be joined smoothly at the surface of
spheres (r = R) to an exterior Schwarzschild metric whose
mass is the same as above, i.e. m(r = R) = M [28].

The exterior spacetime of the star will be described by the
Schwarzschild metric given by

Fig. 4 Variation of the density 1.25 -
with radial coordinate. (i) p; is 1.15 4
plotted with a continuous line 1.05 -
for Her X-1 and a short-dashed '
line for a white dwarf in the left 0.95 1
graph (left panel), (ii) py is 0.85 ~
plotted with a continuous line 0.75 +
for Her X-1 and a short-dashed . 0.65 -
; ; ; N a

Il i dvat s :
0.45
0.35 A
0.25
0.15 A
) 0.05 A

0.00 +—+V—r—+—T"—Tr—Tr T T T T _005_'l'l'l'|-|-|-|-|-|-|

0.00.10.20.30.40.50.60.70.80.91.0 70 0.10.2030.40506070809 1

r/R r/R
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Fig. 5 Variation of the density
with radial coordinate r/R. (i)
pr/p is plotted with a
short-dashed line for Her X-1
and a continuous line for a white
dwarf (left panel), (ii) p¢/p is
plotted with a short-dashed line
for Her X-1 and a continuous
line for a white dwarf (right
panel)
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p:/p

0 0102030405060.70809 1

2M
1 — 2=
’

2M
- ==
P

—1
ds? = — < ) dr? — r?(d6? + sin’6d¢?)

(- 2)a

The continuity of the metric coefficients g, g, across the
boundary surface r = R between the interior and the exterior
regions of the star yields the following conditions:

(22)

oM\ !
<1 — —) =B, (23)
r
1-— — )= Urs (24)
where ¥ (r = R) = yg.
Equations (23) and (24), respectively, give
R [8CR?>(3+ CR?
- = # , (25)
2 7(1 + CR?)?
7 — 10CR? — C2R*
ol (26)

A= .
V(1 + CR)Yr(3 — Q(R))

That the radial pressure p; is zero at the boundary (r = R)
leads to

B (1+CR*~7—10CR2—C2R? (R

A~ 2(1—a+CRY(1—a+CRY(B+CRL)—(1—10CR2—C2R4)] (R).
27

where

Yar = (1 —a + CR»)?, (28)

r/R

0 0.10.20.30.40.50.60.70.80.9 1
r/R

4 Some physical features of the model

4.1 Regularity at center

The density p, and the radial pressure p; and the tangential
pressure p; should be positive inside the star. The central
density at the center for the present model is
72C

7 3D

po=pr=0)=

The metric Eq. (22) implies that C = 77% is positive finite.

Again, from Eq. (20), we obtain
pe(r=0) 4A 24
C VIl-a)?Y— T

where p;(r =0) > 0.
This immediately implies that
Nei
6(1 —a)*
Va1 + Va2 (1 — @) + Yo3(1 —0)* 15 =264+ 0)(1 —a) — (1 —)?

(1—ay

(33)

(32)

B
— <
A

+

]//aA
Y% 1//015

« log [l/fas — @G+ o)1 =)+ Va5V Vs —2(@4 + ) (1 —a)—(1-a)?

(1 = a)as
4.2 Causality conditions

+

Inside the fluid sphere the speed of sound should be less than

the speed of lighti.e. 0 < Vi = %’; <land0 < Vg =
‘3—’;‘ < 1. Therefore

Vo1 + Va2 (1 — @ + CR?) + Ya3Var}VVas —2(4 + o) (1 —a + CR?) — Yar

Q(R) = (1 —a 1 CEOP + W(R), (29)
Va4 Vos — (4 +a)(1 —a + CR) + VVasv/Ves =24 +0)(1 —a + CR?) — Yur
= 1 .
W= s [ (1= + CR)Yus ] G0
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4(CH*+10Cr? = YA+ CrA) (Y1 — Y2 — ¥r3) — 8(Cr? +5)

Vi =1 +Cr?) [

8(C2r* 4 2Cr% +25)

} : (34)

4(C** +10Cr? = 7)(1 + Cr? — Y2 — —8(Cr*+5) —
V2, = (1 +Crd) (C°r*+10Cr YA+ Cr)Wr — Y2 = ¥r3) = 8(Cr™ +5) — g , (35)
8(C2r* +2Cr2 +25)
where
0674 — —
A(+Cr?) >~
wpr = ’ (36) 1 ~N
(1 —a+Cr2)*/(7—10Cr2 — Cr?) 0.65
2 4B - CrH(1 —a+ CrH)2y,, ] A
Y = 72 ) 224 0.63 1 N
(I —a+Cr?) Y (14 Cr?)(7T—10Cr> — C*r%)
(37 < 061 '—'HHNN.‘\
e T ~
2K A —a+Cr22y, T 059 4 el
Vi2 = . . (39) :
(1I—a+Cr? W ]
s = 833 — Cr?) 2 0.57 1
BT T=10C2 = C (1 + Cr2) LA —a + Cr2) 0ss
+(1—06+Cr2)21//‘pr @9 °3333dssd3-
) ’ r/R
V4 Fig. 6 Variation of the sound velocity with radial coordinate r/R. (i)
a0t Ops = CPYal0 —de 300 ], a marker continuons e for 5 white dwar, i) i 15 ploted with
1+ CrHd —a+Cr?)? continuous line for Her X-1, (iv) V; is plotted with a dotted line for a
40) white dwarf
Vrs = [12C%r* + 4(16 — ) Cr? — (10a + 4)], 41) 0.46 -
Yo = [4C2r* +2(16 — @)Cr? — (10a + 4)]. (42) 0441
0.42
The physical quantities related to the above equations are _
plotted in Figs. 6 and 7. 0.40 |
4.3 Well behaved condition 098]
0.36
The velocity of sound is monotonically decreasing away from 1
.. . . . . 0.34 -
the center and it is 1ncreasmg with the increase of dens1ty, ie. 1
(dl’f) <Oor(d L) > 0and 3 (df") <00r(d 2y > () 0.32 -
for 0 < r <R.In t is context it is worth mentlonlng that the 0.30 ]

equation of state at an ultra-high distribution has the property
that the sound speed is decreasing outward [29] as can be
observed from Fig. 6.

4.4 Energy conditions

The anisotropic fluid sphere composed of strange matter will
satisfy the null energy condition (NEC), the weak energy
condition (WEC), and the strong energy condition (SEC), if
the following inequalities hold simultaneously at all points
in the star:

NEC: p > 0,

WEC: p + pr > 0,

@ Springer
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r'R

Fig. 7 Variation of the sound velocity with radial coordinate r/R. (i)
V2 is plotted with a dotted line for Her X-1, (i) V2 is plotted with a
dashed line for a white dwarf, (iii) V2 is plotted with a marker contin-
uous line for Her X-1, (iv) VS% is plotted with a continuous line for a
white dwarf

WEC: p + pt 2 0,

SEC: p + pr +2p > 0.

We have shown the energy conditions in Fig. 8 for Her
X-11in (i) and for a white dwarf in (ii).
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Fig. 8 Variation of the energy conditions with radial coordinate r/R.
(i) N EC is plotted with amarker long-dashed line, W E Cy with a marker
short-dashed line, and S EC with a continuous line (for Her X-1), (ii)
NEC is plotted with a marker continuous line, W EC, with a long-
dashed line, and S EC with a short-dashed line (for a white dwarf)

55 1

50 A
i )
45 H !
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P 25 4
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54
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Fig. 9 Variation of the adiabatic index with radial coordinate r/R. (i)
y is plotted with a continuous line for Her X-1, (ii) y is plotted with a
dashed line for a white dwarf

4.5 Stability conditions
4.5.1 Case 1

In order to have an equilibrium configuration the matter must
be stable against the collapse of local regions. This requires
Le Chatelier’s principle, also known as the local or micro-
scopic stability condition: that the radial pressure p, must
be a monotonically non-decreasing function of r such that
% > 0 [30]. Heintzmann and Hillebrandt [31] also pro-
posed that a neutron star with an anisotropic equation of
state is stable for y > 4/3 as is observed from Fig. 9 and

also shown in Tables 1 and 2 for our model related to compact
stars.

4.5.2 Case 2

For a physically acceptable model, one expects that the
velocity of sound should be within the range 0 = Vf =
(dp;i/dp) < 1 [32,33]. We plot the radial and transverse
velocity of sound in Fig. 7 and conclude that all parame-
ters satisfy the inequalities 0 = VS% = (dp;/dp) < 1 and
0= VS% = (dp;/dp) < 1 everywhere inside the star models.
Also0 = V2 < land0 = V2 < 1;therefore |V2— V2| < 1.
In order to examine the stability of local anisotropic fluid
distribution, we follow the cracking concept of Herrera [32]
which states that the region for which the radial speed of
sound is greater than the transverse speed of sound is a poten-
tially stable region.
To this aim, we calculate the difference of the velocities
as follows:
Vs% - Vs%
A+ CrH(A —a+ Cr)y,s — Criv,e(5 — 3a + 5Cr?)
=« [ 20+ Cr23(1 —a + Cr23(C2r% +2Cr2 + 25) ] :

(43)
where
Y5 = [12C%r* + 4(16 — ) Cr? — (10 + 4)], (44)
Yre = [4C*r* 4+ 2(16 — ) Cr? — (10a + 4)]. (45)

It can be seen that |Vs% — V2| at the center lies between
0 and 1 (see Fig. 10). This implies that we must have 0 <
% < 1. Then « should satisfy the following condition:
0<a< 52—4«0/704.

4.6 Generalized TOV equation

The generalized Tolman—Oppenheimer—Volkoff (TOV)
equation is

MG (p “+ ) A—v d 2
_—zprgT S S = p) =0, (46)
r dr r
where Mg = Mg(r) is the effective gravitational mass,

which is given by

1 2 vk oy
Mg(r) = Er ez v, 47
Substituting the value of Mg(r) in Eq. (46), we get
1 d 2
— V(o +p) = L+ (p—po) =0 (48)
2 dr r

Equation (48) basically describes the equilibrium condi-
tion for an anisotropic fluid subject to gravitational (Fy),
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Table 1 Values of different
physical parameters of a white
dwarf star for

o =0.10, CR*> = 0.068, M =
0.8882 Mg, R = 12.5202 Km

Table 2 Values of different
physical parameters of the
strange star Her X-1 for
a=0.11,CR>=0.1178, M =
0.8804 Mg, R = 7.7214 Km

0.016
0.014

0.012

0.008

|V25t - str |

0.006

0.004

0.002

Fig. 10 Variation of the absolute value of square of sound velocity
with radial coordinate r/R. (i) | V2 — V2| is plotted with a short-dashed
line for Her X-1, (i) | V2 — V2| is plotted with a continuous line for a

white dwarf

hydrostatic (Fy), and anisotropic stress (Fy), which can, in a
compact form, be expressed as

Fy+ Fh+ Fa =0,

@ Springer

r Pr P P Ve Vi A z y
0.0 0.6386 0.6386 10.2857 0.6135 0.6034 0.00000 0.2036 10.4949
0.1 0.6314 0.6316 10.2663 0.6133 0.6033 0.00024 0.2028 10.5863
0.2 0.6096 0.6106 10.2084 0.6127 0.6031 0.00093 0.2003 10.8718
0.3 0.5738 0.5758 10.1129 0.6116 0.6026 0.0020 0.1961 11.3897
0.4 0.5245 0.5278 9.9814 0.6100 0.6019 0.0034 0.1903 12.2191
0.5 0.4624 0.4673 9.8157 0.6079 0.6010 0.0049 0.1830 13.5139
0.6 0.3885 0.3949 9.6185 0.6053 0.5997 0.0064 0.1741 15.5930
0.7 03040 03118 9.3926 0.6022 0.5980 0.0078 0.1637 19.2098
0.8 0.2101 0.2190 9.1412 0.5985 0.5959 0.0089 0.1519 26.6355
0.9 0.1083 0.1178 8.8676 0.5942 0.5932 0.0095 0.1388 49.2412
1.0 0.0000  0.0096 8.5754 0.5893 0.5899 0.0096 0.1244 00
r Pr Pt P Vi Vi A Z 1%
0.0 1.2135 1.2135 10.2857 0.6730 0.6624 0.0000 0.4010 42917
0.1 1.1984 1.1988 10.2521 0.6726 0.6622 0.0004 0.3991 43223
0.2 1.1533 1.1551 10.1523 0.6713 0.6617 0.0018 0.3933 4.4180
0.3 1.0795 1.0833 9.9890 0.6692 0.6607 0.0038 0.3838 45919
0.4 0.9790 0.9851 9.7665 0.6662 0.6592 0.0061 0.3707 4.8710
0.5 0.8546 0.8630 9.4906 0.6622 0.6571 0.0084 0.3541 5.3078
0.6 0.7096 0.7197 9.1681 0.6572 0.6541 0.0101 0.3342 6.0116
0.7 0.5475 0.5586 8.8067 0.6510 0.6501 0.0111 03113 7.2403
0.8 0.3725 0.3835 8.4143 0.6436 0.6450 0.0110 0.2856 9.7716
0.9 0.1886 0.1982 7.9990 0.6350 0.6385 0.0095 0.2574 17.4995
1.0 0.0000 0.0068 7.5686 0.6249 0.6305 0.0068 0.2271 -
where
1 /
Fy = 5V (0 + pr)s (50
d
Fp=—-21 (51)
dr
2
Faz;(Pt_Pr)~ (52)
The above forces can be expressed in the following explicit
forms:
1
F; = _EV/(P + pr)
_C%r | 8(6—2Cr?) [Yp (1 —a+ Cr?) 4+ 2y]
T 8n | T(14Cr2)3 vl —a+Cr?)
47— C2* = 10Cr2) (Ypr(l —a+ Cr2)® + 29\’
7(1 4+ Cr2)? Yl —a+Cr?) ’
(53)
dpr  C2* [4(CE* +10Cr2 —17)
F = —_-——— = — — oy —
h dr an 7(1 T Cr2)2 (%1 1//12 'Slfr.?)
8(Cr? +5)
——— 2, 54
(49) 71+ Cr2)3 >4



Eur. Phys. J. C (2015) 75:225

Page 9of 11 225

0.10

0.08

0.06

0.04

0.02

w 0.00 —F T T T T T T T
10203040506070809 1
-0.02 N r/R

N
-0.04 N

~
-0.06 ~
-0.08 ~
-0.10

Fig. 11 Variation of the forces with radial coordinate r/ R. Fy is plotted
with a long-dashed line, Fy, with a continuous line, and F, with a short-
dashed line

=
[

2
- (pt — pr)

_ CPr[2a[(5a +2) = (16 —a)Cr? = 2C°r"]

- 7(1 4+ Cr2)3(1 —a + Cr?2)2 ’

4
(55)

The variation of different forces and the attainment of
equilibrium has been drawn in Fig. 11. At this point, however,
it is justified to note that the stability issues in Sects. 4.5 and
4.6 have also been analyzed in general and in full detail in
the case of anisotropic fluids by Chan et al. [34].

4.7 Effective mass—radius relation and surface redshift

Let us now turn our attention towards the effective mass-to-
radius relationship. For a static spherically symmetric perfect
fluid star, Buchdahl [35] has proposed an absolute constraint
on the maximally allowable mass-to-radius ratio (M /R) for
isotropic fluid spheres as 2M/R < 8/9 (in the units ¢ =
G = 1). This basically states that for a given radius a static
isotropic fluid sphere cannot be arbitrarily massive. However,
for amore generalized expression for the mass-to-radius ratio
one may refer to the paper by Mak and Harko [11].

For the present compact star model, the effective mass is
written as

R
Megs = 47Tf ,orzdr
0

1 1
= SRII - e MR =R [

8CR%*(3 + CR?) }
5 .

7(1 +2CR? 4+ C%R%)
(56)

The compactness of the star is therefore given by

Mege 1 8CR2(3+ CR?)
u= = — .
R 2| 7(1 + 2CR? + C2R%)

(57)

Therefore, the surface redshift (Z) corresponding to the
above compactness factor (u) is obtained as
Z=[1-2u]""?-1

B 8CR*(3 + CR?)

o 7(1 4+ 2CR? 4 C2R%)

—12
] ~1. (58)

We have shown the variation of the physical quanti-
ties related to Buchdahl’s mass-to-radius ratio (2M/R) for
isotropic fluid spheres, and also surface redshift are plotted
in Figs. 12 and 13.

5 Model parameters and comparison with some
of the compact stars

In this section we prepare several data sheets for the model
parameters in Tables 1, 2, and 3 and compare those with
some of the compact stars, e.g. the strange star Her X-1 and
a white dwarf in Table 4. In our present investigation we
propose a stable compact star model with the parameters
R =12.5202 Km and M = 0.8882 M (for a white dwarf)
and R = 7.7214 Km and M = 0.8804 M, (for Her X-1).
The values of these data points have already been used for
plotting the graphs in all figures in Sects. 3 and 4.

What we have done in the tables is as follows: in Tables
1, 2, and 3 the values of different physical parameters of the
strange star Her X-1 and a white dwarf have been provided.
Under this data set, we calculate some physical parameters
of the compact star, say the central density, the surface den-
sity, the central pressure etc. in Table 4. It can be observed
that these data are quite satisfactory for the compact stars—
whether it is strange star with central density 1.0913 x 10"
gm/cm 3 or a white dwarf with central density 2.3961 x 10'#
gm/cm 3. Likewise this feature of compact stars can be
explored for some other physical parameters also.

6 Discussion and conclusion

In the present work we have investigated an anisotropic ana-
log of the model due to Durgapal and Fuloria [1] and the
possibilities for there being interesting physical properties of
the proposed model. As a necessary step we have contracted
the anisotropic factor A with the help of both metric poten-
tials ¢” and e*. However, ¢’ is considered as in Durgapal and
Fuloria [1], whereas e” is given by Lake [2].

The field equations are solved by the change of dependent
variable method, and under suitable boundary condition the

@ Springer
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Fig. 12 Variation of the mass 15 1A
with radial coordinate r/R. (i) 09 ] R
2M /R is plotted with a T ——————-— Or————————-
short-dashed line for Her X-1 0.8 1 0.8 -
and a long-dashed line for its 1 1
upper bound (left panel), (ii) 0.7 ] 0.7 ]
2M /R is plotted with a 0.6 4 0.6 -
short-dashed line for a white e 1 ]
dwarf and a long-dashed line for < 05 i e 057
its upper bound (right panel) E 04 ] E 04 ]
i I I~ .
0.3 4 e 0.3 4
0.2 4 //" 0.2 - .
0.1 - 0.1 1 __,——"'
O-—_—I—“ T T T T T 1 0 '-l_'_l-'_l—T—l—'I'I'Illllllll
1 2 3 4 5 6 7 772 223233:32333
0.40 T ~-~< - As a detailed discussion we would like to put forward
0.36 A RN N here that several verification schemes of the model have been
032 | RN performed and we extract expected results some of which are
. N
1 N as follows:
0.28 A S
1 N\
0.24 A N
N 020 (1) Regularity at the center: the density p and radial pressure
1 pr and tangential pressure p; should be positive inside
0.16 1 the star. It is shown that the central density at the center
0.12 - is po = p(r = 0) = 2 and p;(r = 0) > 0. This
0.08 - means that the density p as well as radial pressure p;
0.04 ] and tangential pressure p; all are positive inside the star.
] (2) Causality conditions: it is shown that inside the fluid
000 rTrrrrrrrrrrrrrTrrTrTrT

0 0.10.20.30.4050.60.70809 1
r/R

Fig. 13 Variation of the redshift index radial coordinate »/R. Z is
plotted with a continuous line for Her X-1 and a long-dashed line for a
white dwarf

interior metric (2.1) has been joined smoothly at the surface
of spheres (r = R), to an exterior Schwarzschild metric
whose mass is the same asm(r = R) = M [28]. The solution
set thus obtained is correlated with the physical properties of
some of the compact stars, which include strange stars as
well as white dwarfs. It is observed that the model is viable
in connection to several physical features, which are quite
interesting and acceptable as proposed by other researchers
within the framework of General Theory of Relativity.

sphere the speed of sound is less than the speed of light

e 0< Vo= /%<1, 0<Vy= /¢ <1

(3) Well behaved condition: the velocity of sound is mono-
tonically decreasing away from the center and it is
increasing with the increase of density as can be
observed from Fig. 6.

(4) Energy conditions: from Fig. 9 we observe that the
anisotropic fluid sphere composed of strange matter sat-
isfy the null energy condition, the weak energy condi-
tion, and the strong energy condition simultaneously at
all points in the star.

(5) Stability conditions: Following Heintzmann and Hille-
brandt [31] we note that a neutron star with an anisotropic
equation of state is stable for y > 4/3 as is observed
in Tables 1 and 2 for our model. Also, it is expected
that the velocity of sound should be within the range

Table 3 Values of the model parameters A, B, C, and « for different compact stars

Compact star candidates M (Mg) R (Km) A B C o
White dwarf 0.8882 12.5202 —2.1463 0.5533 43380 x 10713 0.10
Her X-1 0.8804 7.7214 —1.6255 0.5301 1.9758 x 10~13 0.11
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Table 4 Energy densities, central pressure, and Buchdahl condition for different compact star candidates for the above parameter values of Tables

1,2,and 3

Compact star Central Density

Surface density

Central pressure Buchdahl condition

candidates (gm/cm™3) (gm/cm™3) (dyne/cm™—2) (@M/R < 8/9)
White dwarf 2.3961 x 1014 2.0 x 1014 1.3392 x 103 0.1418
Her X-1 1.0913 x 1013 0.8031 x 1013 1.1591 x 103 0.2280

0= Vszi = (dpi/dp) < 1 [32,33]. The plots for the
radial and transverse velocity of sound in Fig. 7 is every-
where inside the star models.

(6) Generalized TOV equation: the generalized Tolman—
Oppenheimer—Volkoff equation describes the equilib-
rium condition for the anisotropic fluid subject to grav-
itational (Fy), hydrostatic (#}), and anisotropic stress
(F,). Figure 8 shows that the gravitational force is bal-
anced by the joint action of hydrostatic and anisotropic
forces to attain the required stability of the model. How-
ever, the effect of an anisotropic force is very much less
than the hydrostatic force.

(7) Effective mass—radius relation and surface redshift: for
a static spherically symmetric perfect fluid star, the
Buchdahl [35] absolute constraint on the maximally
allowable mass-to-radius ratio (M / R) for isotropic fluid
spheres as 2M /R < 8§/9 = 0.8888 is seen to be main-
tained in the present model as can be observed from
Table 4.

In Sect. 5 we have made a comparative study by using
the model parameters and data of two of the compact stars
which are, in general, very satisfactory as compared to the
observational results. However, at this point we would like to
comment that the sample data used for verifying the present
model are to be increased to obtain more satisfactory and
exhaustive physical features.
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