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Abstract A contribution to J/ψ hadroproduction is ana-
lyzed in which the meson production is mediated by three-
gluon partonic state, with two gluons coming from the target
and one gluon from the projectile. This mechanism involves
double gluon density in one of the protons, hence this con-
tribution enters at a non-leading twist. It is, however, rele-
vant due to an enhancement factor coming from large double
gluon density at small x . We calculate the three-gluon con-
tribution to J/ψ hadroproduction within perturbative QCD
in the kT -factorization framework. Results are obtained for
differential pT -dependent cross sections for all J/ψ polar-
izations and for the sum over the polarization components.
The rescattering contribution is found to provide a signif-
icant correction to the standard leading twist cross section
at the energies of the Tevatron or the LHC at moderate pT .
We suggest J/ψ production in proton–nucleus collision as a
possible probe of the triple-gluon mechanism.

1 Introduction

Production of heavy vector quarkonia in proton collisions
has been a subject of intense experimental and theoretical
investigations since CDF found huge excess of the mea-
sured cross sections of prompt J/ψ [1,2] with respect to the
standard theoretical predictions in QCD. Initially the the-
ory predictions were based on a leading order collinear QCD
approximation, in which the hard matrix element of a partonic
color singlet subprocess gg → J/ψg gives the dominant
contribution. This approximation, however, badly underes-
timates the measured cross section and yields an incorrect
pT distribution of the produced mesons, so it was necessary
to consider alternative mechanisms of quarkonia hadropro-
duction. In particular, two theoretical concepts received a
lot of attention: the so-called color octet model (COM)
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[3–12] and the other approach based on the kT -factorization
(KTF) scheme [13–19]. For a comprehensive theory review
of various approaches to quarkonium hadroproduction see
[20].

The COM is based on the fact that the hadron wave func-
tions contain higher Fock components. For heavy quarkonia
it implies that the heavy quark–antiquark (QQ̄) pair in a
heavy meson may be accompanied e.g. by one or more glu-
ons. So the QQ̄-pair may appear in the meson in a color
octet state [3]. The amplitudes of such octet components
are subleading (w.r.t. the standard, color singlet component)
in heavy quark velocity expansion within the Heavy Quark
Effective Theory [3], but in the vector meson hadroproduc-
tion the color octet states contributions are enhanced by the
corresponding hard partonic cross section for the produc-
tion of such states [4,5]. With only a few free parameters
the color octet model is quite successful in describing the
magnitude and pT -dependence of the prompt J/ψ hadropro-
duction [9–12], however, it faces some problems with an
accurate description of the produced mesons polarization. In
particular, predictions for the meson polarization change a
lot when going from LO to NLO accuracy [10,12]. Besides,
neither LO nor NLO COM estimates of prompt J/ψ polar-
ization are fully consistent with the data. It is fair to add
that in the COM the amplitudes of color octet QQ̄ transi-
tions into mesons are not known from first principles, and
the theoretical estimates of the cross section magnitudes rely
upon fitted parameters. On the other hand, the kinematical
dependence of the cross sections, e.g. the pT -dependence,
is already a genuine QCD prediction (for each partonic sub-
process separately) and the good description of the meson
pT -dependence within the COM supports the strong valid-
ity of this approach. The COM may also be understood
within the hard factorization theorem in QCD, where univer-
sal (independent on the environment) fragmentation func-
tions exist of QQ̄ partonic states with various quantum
numbers (including color octet) into final state quarkonia
[21,22].
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Another theoretical approach to quarkonia hadroproduc-
tion relies on the kT -factorization scheme. In this framework,
one allows for non-zero transverse momentum of colliding
partons. Because of multiple emissions in the course of QCD
evolution the parton momentum may become sizable if the
evolution length is sufficiently large. This effect is especially
pronounced if gluons are probed at small x , which is the
case for prompt quarkonia production at the Tevatron or at
the LHC. Then the kinematical distributions of produced
quarkonia may be strongly affected by kT of the incom-
ing gluons. Indeed, inclusion of gluon kT in the analysis
brings theoretical estimates much closer to the experimental
data, both for the magnitude and for the shape of the dis-
tributions, already at the lowest order in QCD. This works
rather well for the C-even charmonia, like χc, but for an
accurate description of Tevatron data on prompt J/ψ and
ψ ′ production a color octet component was necessary also in
the KTF approach [16], although smaller than in the collinear
approximation. For the recent LHC data on prompt charmo-
nia production, however, a good theoretical description of
magnitude, kinematics, and polarization was found within
KTF without including the color octet mechanism [18]. This
good description in KTF CSM was achieved by using a more
advanced unintegrated parton density, CCFMA0 [23,24].
Still, it is fair to say that a global, consistent description
of quarkonia production in KTF has not been formulated
yet.

It follows from this discussion that the theoretical under-
standing of heavy quarkonia hadroproduction is not yet fully
satisfactory. A polarization description and the need of fitting
key parameters are somewhat weak points of the color octet
model, and a global description of J/ψ , ψ ′, and χc hardropro-
duction has not been formulated yet in the KTF approach.
Therefore it is possible that both proposed approaches are
not complete and need to be supplemented by another mech-
anism.

The COM and CSM approaches both in the collinear and
KTF framework share an important common feature – it is
assumed that at the parton level the quarkonia production
is initiated by two gluons. At very large energies, however,
when the gluon density becomes large, it is expected that
sizable corrections to this picture may come from subpro-
cess with more than two initial state partons, which would
be classified as rescattering or shadowing/anti-shadowing
contributions. Such effects are expected to be particularly
important in collisions with heavier nuclei. First estimates of
such multiple-gluon contributions to heavy quarkonia pro-
duction in pp and p p̄ collisions were performed by Khoze
et al. [25], who considered a three-gluon initial partonic
state. Recently, Ma and Venugopolan [26] proposed a resum-
mation of rescattering contributions within the color glass
condensate (CGC) formalism [27–29]. A good description
of unpolarized data for J/ψ and ψ ′ was achieved down to

very low pT by matching the resummed CGC cross section
with predictions of the collinear NRQCD COM approach
[26,30].

In this paper, following the idea of Khoze et al. [25],
we shall investigate the three-gluon mechanism of quarko-
nia hadroproduction in which hard rescattering plays the key
rôle in color neutralization of the QQ̄ pair. Thus, we shall
consider the three-gluon fusion process at the parton level:
3g → J/ψ in the color singlet channel instead of the stan-
dard color singlet process gg → J/ψg. This three-gluon
fusion partonic process is, of course, a higher twist correction
to the cross section, as it couples to a double gluon density in
one of the protons. Therefore, one expects it to be suppressed
w.r.t. the standard, leading twist contribution by powers of the
hard scale. In high energy collisions, however, this rescatter-
ing term receives a significant enhancement due to the large
gluon density, reflected by a large ratio of double and sin-
gle gluon density at small x . Moreover, the matrix elements
of the rescattering term 3g → J/ψ and the standard one
gg → J/ψg come at the same order of perturbation theory, so
no additional αs suppression of the rescattering piece occurs
in the matrix element. Hence, despite the higher twist nature,
it may still be important. As already stated, such processes
were already proposed in Ref. [25] where estimates were
given showing that rescattering might explain the discrep-
ancy between the data and the predictions based on the color
singlet mechanism. We address and develop this idea in more
detail by performing a complete calculation of the rescatter-
ing contribution in the KTF framework, including an explicit
calculation of the pT distribution of the produced quarkonia
and the polarization composition. We find that the rescat-
tering correction is a significant contribution to the prompt
J/ψ cross section especially at moderate pT and should be
included in a precise description of the data. It should be
stressed that the rescattering correction complements in a
natural way both the COM and the standard KTF approach,
providing a kinematics- and process-dependent mechanism
of color neutralization. Also, we expect that the rescattering
mechanism should be strongly enhanced and thus even more
important for heavy quarkonia production in collisions with
nuclei.

It is important to note that the triple-gluon mechanism
of the J/ψ hadroproduction employs the double gluon den-
sity (DGD). In this paper we use the simplest, uncorrelated
model of the DGD. A more advanced treatment of the DGD
including the QCD evolution [31] leads to nontrivial correla-
tions that grow with the increasing evolution length. Recently
this issue was vividly studied; see e.g. Refs. [32–37]. The
predicted correlations lead to an enhancement of the DGD
at small x and hence they affect the magnitude of the pre-
dicted cross sections. Within current theoretical understand-
ing these effects are moderate at the scales relevant for the
J/ψ hadroproduction at low and mid pT . Based on these
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estimates one finds that our predictions are somewhat under-
estimated, however, the numerical results described in Sect.
4. A show that the key theoretical uncertainties to the esti-
mates come from the uncertainty of the factorization scale
and of the shape of the unintegrated parton density.

The paper is organized as follows: in Sect. 2 we introduce
the kinematics of the process and the notation, in Sect. 3
we derive analytic formulas for the amplitudes and cross
sections of the direct quarkonium production by rescattering,
in Sect. 4 we give numerical estimates for the cross sections,
and conclusions are given in Sect. 5. Technical pieces of the
derivations are given in the Appendix A.

2 Kinematics

We consider direct inclusive production of heavy quarkonia
in high energy proton–(anti-) proton collisions and focus on
a process mediated by partonic subprocess with tree incom-
ing gluons: 3g → V . In general, V can be any heavy vector
quarkonium, J/ψ , ψ ′, ϒ , and so on, but we choose the best
measured J/ψ production as the reference process. The three-
gluon fusion contribution enters as a higher twist correction
to the direct vector quarkonium production. The notation for
the four-momenta of incoming protons (pA, pB), the outgo-
ing meson, p, outgoing hadronic final states (p′

A for A′ and
p′
B for B ′) is explained in the left panel of Fig. 1.

We analyze the process within perturbative QCD in the
high energy approximation, using the framework of kT -
factorization. In the high energy limit, only the leading power
of s = (pA + pB)2 is retained. In this approximation the
proton masses may be neglected, p2

A = p2
B = 0, and

s � 2pA · pB . The masses of outgoing states are denoted
by p2 = M2

J/ψ , p2
A′ = M2

A′ , p2
B′ = M2

B′ for the J/ψ and
hadronic final states A′ and B ′ emerging from the target and
the projectile, respectively.

The diagram in Fig. 1a illustrates the partonic topology of
the amplitude for direct vector quarkonium production with
three intermediate gluons. The four-momenta of intermediate
gluon couplings to pA → A′ and pB → B ′ transitions are
denoted by k1, k2, and l, respectively. The four-momentum
conservation imposes constraints on the four-momenta,

pA = pA′ + k1 + k2, pB = pB′ + l, p = k1 + k2 + l.

(1)

We employ the Sudakov parameterization of the four-
momenta,

pA′(B′) = αA(B) pA + βA(B) pB + pA′(B′)⊥,

p = αpA + βpB + p⊥, (2)

where the transverse directions are in the plane orthogonal
to the direction of the collision axis in the CMS frame. Then
the kinematic constraints lead to

A A

J/ψ

Φb1
B

B B

Φa1a2
A

βl, l

αk
1, k1 αk

2, k2

A A

A

dPSA

B B
dPSB

B

Φb1
B

Φa1a2
A Φa3a4

A
∗

ΦJ/ψ Φ∗
J/ψ

Φb2
B

∗

(a) (b)

Fig. 1 aThe amplitudeM of the J/ψ hadroproduction in the triple-gluon fusion mechanism;b the dominant diagram in the square of the amplitude,
|M|2
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βA = p 2+M2
A′

αAs
, αB = p 2+M2

A′
βBs

, β = p 2+M2
J/ψ

αs
.

(3)

The process of J/ψ production is analyzed in the kinematical
domain where αA = O(1), βB = O(1), and consequently
βA ∼ αB ∼ O(1/s). Thus, the gluon momenta satisfy

k ≡ k1 + k2 ≈ (1 − αA)pA − pA′⊥,

l ≈ (1 − βB)pB − pB′⊥ (4)

and from the last term of (1) one gets

α ≈ 1 − αA, β ≈ 1 − βB, p⊥ = −pA′⊥ − pB′⊥. (5)

In the Sudakov parameterization of the gluon momenta ki =
αk
i pA + βk

i pB + ki⊥, l = αl pA + βl pB + l⊥ (see Fig. 1a)
one has the relations:

αk
1 + αk

2 = α, βk
1 + βk

2 = O(1/s),

αl = O(1/s), β1 = β. (6)

3 The triple-gluon contribution: analytic formulas

3.1 The triple-gluon amplitude

The amplitude in Fig. 1a reads

− iM = 1

2! S
b1
B μ1

(pB, rB, B ′, l)dμ1σ1

l2

×
∫

d4k1

(2π)4 S
b1a1a2
σ1ρ1ρ2

(p, ε; l, k1, k2, p)

×dρ1ν1 dρ2ν2

k2
1k

2
2

Sa1a2
A ν1ν2

(pA, rA, A′, k1, k2) (7)

where S b1
B μ1

= 〈pB′ , l|Jb1
μ1(0)|pb, rB〉 and Sa1a2

A ν1ν2
(pA, rA,

A′, k1, k2) give the amplitudes of finding a gluon with color
b1 and four-momentum l, and two gluons of colors a1, a2

and momenta k1, k2 = k − k1, respectively, in the decay
products of a struck proton. The incoming proton polariza-
tions are denoted by rA,B . The vertex S b1a1a2

σ1ρ1ρ2 (l, k1, k2; p, ε)
describes the amplitude of J/ψ production with momen-
tum p and polarization ε. In the standard Regge kinemat-
ics of high energy scattering at a small momentum trans-
fer one can approximate the polarization tensors of the glu-
ons (in the Feynman gauge) as dμ1σ1 ≈ −2pμ1

A pσ1
B /s and

dρi νi ≈ −2pρi
A pνi

B /s for i = 1, 2. Then one can write the
amplitude (7) in the following form:

− iM = 2s

(2π)4 �
b1
B (pB , rB , B ′;αl , βl , l)

1

l2

∫
d2k1

k 2
1 (k − k1)2

×�
a1a2
A (pA, rA, A′;αk, βk; k1, k − k1)

×�
b1a1a2
J/ψ (αk, βl ; l, k1, k − k1; p, ε), (8)

where the impact factors (at the amplitude level) for a pB →
B ′ + g, pA → A′ + 2g, and 2g+ g → J/ψ transitions read,
respectively,

�
b1
B (pB, rB, B ′;αl , βl , l) = S b1

B μ1
(pB, rB, B ′; l) pμ1

A

s
, (9)

�
a1a2
A (pA, rA, A′;αk, βk; k1, k − k1)

=
∫

dβk
1 S

a1a2
A ν1ν2

(pA, rA, A′, k1, k − k1)
pν1
B pν2

B

s
, (10)

�
b1a1a2
J/ψ (αk, βl; l, k1, k − k1; p ε)

=
∫

dαk
1S

b1a1a2
σ1ρ1ρ2

(l, k1, k − k1; p, ε) p
σ1
B pρ1

A pρ2
A

s
. (11)

The total contribution of three gluons to the J/ψ produc-
tion amplitude comes from a diagram depicted in Fig. 1a and
an ‘upside-down’ diagram with the same topology, but with
two gluons coupling to the lower vertex pB → B ′. The con-
tribution of the other diagram, M′, may be obtained from
M, corresponding to the diagram in Fig. 1a by exchange
of kinematical variables: α ↔ β. It is important to note
that the interference of these two amplitudes, M and M′,
is a subleading effect. This is because terms M∗M and
M′∗M′ are driven by the QCD evolution of a four-gluon
t-channel state (two ladders in the large Nc limit) emerging
from one proton and a two-gluon t-channel state from the
other proton (see Fig. 2a), whereas the interference terms
M∗M′ and M′∗M are driven by subleading three-gluon t-
channel states from both sides; see Fig. 2b. Hence, at large
energies and for large scales, the interference terms, shown
in Fig. 2b, may be neglected and the contribution to the J/ψ
production cross section from three intermediate gluons is
dσ ∝ |M|2 + |M′|2.

(a) (b)

Fig. 2 Topologies contributing to the rescattering correction in the J/ψ
cross section: a the topology with three two-gluon ladders (leading), b
the topology of two three-gluon BKP states (suppressed)
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3.2 The uncorrelated triple-gluon cross section

The simplest model of the two-gluon distribution in the pro-
ton assumes lack of correlations of the gluons in the trans-
verse plane. This means that the double gluon density is pro-
portional to a product of independent single gluon distribu-
tions. Below we estimate the triple-gluon contribution to J/ψ
hadroproduction in this scenario.

The contribution to J/ψ cross section, corresponding to
the diagram shown in Fig. 1b takes the following form:

dσpp→J/ψX = 2

(2π)8

∫
d4l

(2π)4

1

(l2)2 �
b1b2
2,p (αl , βl , l )

×
∫

d4k

(2π)4

∫
d2k1

k 2
1 (k − k1)2

∫
d2k3

k 2
3 (k − k3)2

×�
a1a2a3a4
4,p (αk, βk, k1, k − k1; k3, k − k3)

×�
b1a1a2
J/ψ (αk, βl; l, k1; , k − k1, p; ε)

×�
b2a3a4 ∗
J/ψ (αk, βl ; l, k3, k − k3, p ; ε)

×(2π)4δ(l + k − p)
d4 p

(2π)4 θ(p0)

×2πδ(p2 − M2
J/ψ) + (U ↔ L), (12)

where the last term describes the contribution from the graph
where upper and lower vertices from Fig. 1b are inter-
changed. The pomeron–proton impact factor is defined by
the formula

�
b1b2
2,p (αl , βl , l) = 1

2

∑
rB

∑
B′

∫
d�B′(2π)4

×δ(l − pB + pB′) S b1
B μ1

S b2 ∗
B μ2

pμ1
A pμ2

A

s
,

(13)

whereas

�
a1a2a3a4
4,p (αk, βk, k1, k − k1; k3, k − k3)

= 1

2

∑
rA

∑
A′

∫
d�A′(2π)4δ(k − pA + pA′)

×�
a1a2
A (pA, rA, A′;αk, βk; k1, k − k1)

×�
a3a4 ∗
A (pA, rA, A′;αk, βk, k3, k − k3) (14)

gives the two-pomeron–proton impact factor (2Pp). In the
last line the energy–momentum conservation delta function
in the J/ψ vertex gives αk ≈ α, βl ≈ β.

Several remarks are in order here:

1. The pomeron–proton impact factor �2,p (see Fig. 3) inte-
grated over longitudinal variables gives

∫
dαldβl�

b1b2
2,p (αl , βl , l) = (2π)3

N 2
c − 1

f (β, l2)δb1b2 ,

(15)

B

1, b1, β1, l1 2, b2, β2, l2

B

dPSB

dα

Φb1
B Φb2

B

∗

Fig. 3 The unintegrated gluon distribution

where βl ≈ β follows from the energy–momentum con-
servation in J/ψ vertex and f (β, l2) is an unintegrated
gluon distribution.

2. The 2Pp impact factor integrated over longitudinal vari-
able βk can be decompose in the following way (see the
Appendix A for the derivation):

∫
dαkdβk�

a1a2a3a4
4,p (αk, βk, k1, k − k1; k3, k − k3)

= R2
sh(2π)7

(N 2
c − 1)2s

[
δa1a3δa2a4 f (α, k2

1) f (α, (k − k1)
2)

×S2(k1−k3)+δa1a4δa2a3 f (α, k2
1) f (α, (k−k1)

2)

× S2(k1 + k3 − k) + δa1a2δa3a4 ...
]
, (16)

where αk ≈ α follows from the energy–momentum con-
servation in the J/ψ vertex. The last term in parentheses
does not contribute to the cross section due to the color fac-
tor contraction with the J/ψ vertex. S(k) is a symmetric
function peaked around k = 0 and Rsh is the Shuvaev fac-
tor [38] introduced to account for the fact that longitudinal
variables of the gluons are not equal and the off-diagonal
gluon distributions enter the cross section.

3. The J/ψ triple-gluon vertex reads [39]

�
b1a1a2
J/ψ (α, β; l, k1; , k − k1, p; ε)

= g3 da1a2b1

Nc
VJ/ψ(α, β; l , k1, k2; ε),

VJ/ψ(α, β; l , k1, k2; ε)

= 4πmcgJ/ψ

[
− ε∗ · (xpA + l⊥)

l 2 + (k1 + k2)2 + 4m2
c

+ ε∗ · pA(x − 4k1·k2
ys ) + ε∗ · l⊥

l 2 + (k1 − k2)2 + 4m2
c

]
, (17)

where k2 = k − k1.

Substituting Eqs. (13) through (17) into (12), and perform-
ing delta function integrations and color factor contractions
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one arrives at the final formula for the rescattering correction
to polarization dependent differential J/ψ hadroproduction
cross section,

d3σpp→J/ψX

d ln βdp2⊥
= 2

π

N2
c − 4

N3
c (Nc − 1)2

R2
sh

σeff

×
∫

d2kd2k1
α3
s f (β, ( p − k)2) f (α, k2

1) f (α, (k − k1)2)(
( p − k)2k 2

1 (k − k1)2
)2

×|VJ/ψ (α, β; k1, k − k1, p − k; ε)|2 + (α ↔ β, pA ↔ pB),

(18)

where the last term describes the contribution from the graph
as in Fig. 1b where four gluons are attached to the pB instead
of pA vertex. In the derivation one needs to evaluate the inte-
gral

∫
d2k⊥S2(k⊥), which, assuming the Gaussian form of

S̃(b), may be related to the inverse of the multiple scattering
parameter,

∫
d2k⊥S2(k⊥) = 8π2σ−1

eff .

3.3 Triple-gluon cross section with gluon correlations

Equation (18) describes the distributions of transverse posi-
tions of two gluons coming from one of the protons as being
independent, i.e. uncorrelated, in the transverse plane. At
large pT of the meson one should, however, expect some
correlations of these distribution to emerge in the course of
the QCD evolution of double gluon density. In this evolu-
tion [31], a single parton ladder may split into two ladders,
emerging at the same impact parameter, which introduces
correlations of the parton positions.

A diagram that describes the gluon parton splitting into
two gluons is shown in Fig. 4. This contribution to J/ψ
hadroproduction was discussed in [25] in the collinear limit
and using only an approximate estimate of QCD evolution
of the double gluon state. This correlated rescattering correc-
tion is potentially important, as it is expected to lead to a less
steep pT dependence of the resulting differential cross sec-
tion component than the one obtained with the uncorrelated
gluon distributions. We calculated this amplitude with full
kT -dependence of the three gluons that enter the J/ψ ver-
tex, and assuming that the initial gluon in an upper vertex,
which acts as a source of the double gluon, is collinear with
the parent proton. After the standard steps we obtained the
following cross section:

d3σpp→J/ψX

d ln βdp2⊥
= α3

s α
2
s

π4

9

4

N 2
c − 4

N 3
c (Nc − 1)

×
∫

g(ξ, μ)dξ

∫
d2kd2k1d2k2 f (β, ( p − k)2)

( p − k)4k 2
1 (k − k1)2k 2

2 (k − k2) 2

×VJ/ψ(α, β; k1, k − k1, p − k; ε)

×V ∗
J/ψ(α, β; k2, k − k2, p − k; ε). (19)

Fig. 4 The correlated triple-gluon contribution

An analogous formula is valid for a quark from the target,
replacing the gluon as a source of the two correlated t-channel
gluons after the suitable replacement of the pdfs and the color
factor. This formula provides the lowest order approximation
to the correlated rescattering amplitude, which is only an
input amplitude for the evolution of the two-gluon state from
the parent gluon to the J/ψ vertex. Since the typical evolution
length in rapidity is sizable for this evolution one expects
potentially large effects of the QCD evolution to occur. The
treatment of this evolution in the framework of the small x
resummation is possible, but it is a highly nontrivial task and
it is beyond the scope of the present analysis. However, we
estimated numerically the lowest order contribution of (19)
and found it to be significantly smaller than the uncorrelated
rescattering contribution of (18). Thus in the present analysis
this contribution will be disregarded.

4 Numerical results

4.1 Triple-gluon corrections in p p̄ and pp collisions

In the numerical evaluations the unintegrated gluon densi-
ties were used derived from the CT10 collinear gluon den-
sity [42] using Kimber–Martin–Ryskin (KMR) scheme [43]
with the factorization scale given by the transverse meson
mass, μ2 = M2

J/ψ + p2
T . The running strong coupling con-

stant of a gluon with virtuality k2 was evaluated at the scale
μ2

0 = M2
c + k2, with Mc = MJ/ψ/2. This choice of scale is

consistent with the KMR prescription. We set the multiple
scattering parameter value σeff = 15 mb, in accordance with
the experimental results from the Tevatron [44,45]. For the
effective gluon distribution λ in the Shuvaev factor RSh we
set λ = 0.3, which leads to RSh = 1.3.
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Fig. 5 Differential cross sections for J/ψ hadroproduction: a
dσpp→J/ψX

dpT

∣∣∣|Y |<0.6
×Br(J/ψ → μ+μ−) at the Tevatron,

√
s = 1.96 TeV

andb dσpp→J/ψX
dY dpT

∣∣∣|Y |<0.75
×Br(J/ψ → μ+μ−) at the LHC,

√
s = 7 TeV.

The data-points shown: a CDF [40] and b ATLAS [41]. The curves
shown: bold continuous is for the triple gluon contribution computed in
this paper, the dashed and dotted thin curves represent results of Ref. [9]
in the collinear approach: color singlet (LO and NLO) and combined
color octet and color singlet results (see the legend in the plots)

In order to visualize the relevance of the triple-gluon cor-
rection we compare the obtained results to a limited choice
of experimental results from the Tevatron and the LHC, and
to the standard collinear QCD fits within the color singlet
and octet models. In this paper we do not aim to fit the data,
nor provide the global description, so, for clarity, only pT
dependencies near the central rapidity Y = 0 are shown.

In Fig. 5a the results of numerical evaluation of the triple-
gluon correction to the differential meson production cross

section
dσpp→J/ψX

dpT

∣∣∣|Y |<0.6
× Br(J/ψ → μ+μ−) (including

the branching ratio of the meson decay to muons) are shown
for the Tevatron energy (

√
s = 1.96 GeV) – the bold contin-

uous line. For reference we display also the CDF data [40]
and the results of collinear calculations of the color singlet
and CS + CO predictions at LO and NLO [9]. Clearly, the
triple-gluon contribution enters as a subleading correction to
the prompt J/ψ cross section, which may reach 20–25 % of
the total cross section at moderate pT and becomes negligible
at larger pT . On the other hand, the triple-gluon contribution
exceeds the standard (collinear) color singlet contribution in
the relevant pT range.

In Fig. 5b we also show a similar comparison for the
ATLAS data in the central rapidity region. Note that the
data-points here describe the double-differential cross sec-

tion,
dσpp→J/ψX

dYdpT

∣∣∣|Y |<0.75
× Br(J/ψ → μ+μ−). The overall

pattern of different contributions and the data-points is sim-
ilar to the pattern described above for the Tevatron energies.
Again, the triple gluon contribution exceeds the CSM contri-

butions, but it makes up not more than 20–25 % of the total
prompt J/ψ cross section, and the triple-gluon correction
becomes negligible at larger pT .

In Fig. 6a polarized components are shown of the triple
gluon correction in the helicity frame for the Tevatron (at√
s = 1.96 TeV) and in Fig. 6b for the LHC (at

√
s = 7 TeV)

and for the central rapidity, Y = 0. The transverse polar-
ization 1 in the plot is referred to the transverse polariza-
tion contained in the plane spanned by the beam axis and
the meson three-momentum in the laboratory frame, and
the transverse polarization 2 is perpendicular to this plane.
Clearly, at low transverse momentum the longitudinal and
the total transverse cross sections are close to each other,
and with increasing pT the longitudinal component becomes
dominant, almost saturating the total triple-gluon correction
at pT = 20 GeV. As seen from Fig. 6c the pattern of polarized
cross section for the Tevatron and the LHC is very similar.

The presented results for the triple-gluon correction in
J/ψ hadroproduction are our central theoretical predictions.
There is, however, theoretical uncertainty of these results
coming from the choices of the scale in the running cou-
pling constant, the details of the unintegrated gluon densi-
ties, and from the unknown higher order corrections. The
full analysis of these uncertainties is beyond the scope of
this paper; however, we performed some first estimates and
tested the sensitivity of the results to the μ0 scale variation in
αs(μ0) and collinear parton choice in the KMR scheme. The
results depend weakly on the collinear parton set; however,
the increase of μ0 to 2μ0 leads to a reduction of the cross sec-
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Fig. 6 Polarization components of the triple-gluon correction: a
d2σp p̄→J/ψ(σ)X/dYdpT

∣∣
Y=0 for the Tevatron at

√
s = 1.96 TeV, b

d2σpp→J/ψ(σ)X/dYdpT
∣∣
Y=0 for the LHC at

√
s = 7 TeV, c ratio of the

cross section for longitudinal and transverse polarizations. In a and b
the polarizations σ are chosen in the helicity frame

tions by about 50 % in the moderate pT range. For increasing
pT this effect is weaker. On the other hand, applications of the
unintegrated gluon densities (and related schemes) CCFMA0
[23,24] and JH2013 [46] instead of the KMR scheme gave
results larger by a factor of 2–3 in moderate pT (say for
pT < 5 GeV), and at larger pT (say for pT > 7 GeV) the
CCFMA0 and JH2013 results are close to our central predic-
tions. Summarizing these theoretical uncertainty checks, the
normalization of our predictions in uncertainty are by a fac-
tor 2 up or down for moderate pT , and the normalization and
shape of the distributions at large pT is much less uncertain.

4.2 Probing the triple-gluon contribution
with nuclear beams

In pp and p p̄ the contributions of triple (or multiple) gluon
exchange mechanisms of heavy vector meson hadroproduc-
tion may not be easy to disentangle from the standard mech-
anism of production within the CSM and COM. In partic-
ular, the triple-gluon contribution may be to some extent
absorbed into the fit parameters of the COM. A more sensi-
tive probe of the triple- and multiple-gluon exchange effects
in vector quarkonia hadroproduction should be provided in
experiments with nuclear beams, in particular, in proton–
nucleus collisions, pA, where A is the number of nucleons
in the nucleus. In such collisions the triple-gluon contribu-
tion scales with A in a different way from the standard (two-
gluon) contributions.

Let us write the pA cross section σ
pA
V as a sum of the

standard gluon–gluon contribution σ
pA
gg , a contribution with

two gluons coming from the proton σ
pA
(gg)g , and a contribution

with two gluon coming from a nucleus σ
pA
g(gg),

σ
pA
V = σ

pA
gg + σ

pA
(gg)g + σ

pA
g(gg). (20)

In particular, for the pp scattering it reduces to σ
pp
V = σ

pp
gg +

σ
pp
(gg)g + σ

pp
g(gg). Since in σ

pA
gg and in σ

pA
(gg)g one probes a

single density of gluons in the nucleus, these cross sections
are enhanced by a factor of A w.r.t. the proton–proton cross
sections, σ

pA
gg = Aσ

pp
gg and σ

pA
(gg)g = Aσ

pp
(gg)g .

The triple-gluon contribution to J/ψ production with two
gluons coming from the nucleus is enhanced by A2R2

p/R
2
A,

with Rp and RA being the proton and the nucleus effective
radius. This dependence on the radius RA comes from the
integral of the nuclear impact parameter density SA(b) of
the gluon distribution,

∫
d2bS2

A(b) ∼ 1/R2
A. Since RA ∼

A1/3Rp, we have σ
pA
g(gg) = A4/3σ

pp
g(gg). Combining the

A-dependencies of the chosen cross section components one
finds for the nuclear modification factor,

R̄pA = σ
pA
V

Aσ
pp
V

= 1 + (A1/3 − 1)
σ
pp
g(gg)

σ
pp
V

. (21)

Thus the deviation of R̄pA from 1, δA = R̄pA − 1, measures
the nuclear effects of multiple gluons from the nucleus. In
our approach we neglect the effects of more than two glu-
ons coming from the nucleus, which is only motivated if the
triple-gluon correction is not large, δA � 1.

Based on the obtained results on the triple-gluon contribu-
tion we also performed an estimate of δA for ALICE exper-
iment conditions, that is, for J/ψ inclusive production in
pPb collisions at

√
s = 5.02 TeV, −4.46 < Y < −2.96 (the

nucleus fragmentation region) and 2.03 < Y < 3.53 (the for-
ward region). We found δA � 20 % in the backward region
and δA � 100 % in the forward region. The result for the
backward region is slightly larger than the ALICE measure-
ments, showing evidence for about 10 % nuclear enhance-
ment of RpA with experimental errors of about 10 % [47].
Thus our estimates of the triple-gluon correction are at the
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upper limit of ALICE measurements and more precise mea-
surements may be used to constrain the details of our calcu-
lation and of the unintegrated gluon densities. The available
data prefer a conservative approach of our central theory pre-
diction with the unintegrated gluon densities derived from the
collinear gluon densities within the KMR scheme.

In the forward region the triple-gluon correction to R̄pA is
found to be large, over 100 %. This implies that higher order
rescattering corrections, with more than two gluons from the
nucleus, are also important and the triple-gluon contribu-
tion σ

pA
g(gg) does not provide a reliable estimate of nuclear

effects in the forward region for pPb collisions at the LHC.
Therefore, in this region one should perform a resummation
of multiple scattering effects, as e.g. in the color glass con-
densate approach [26,30]. We conclude that the triple-gluon
contributions to J/ψ hadroproduction may be experimen-
tally constrained in pA measurements with lighter nuclei
and/or central to backward meson rapidities where the triple-
gluon contribution is expected to bring a dominant correction
to R̄pA. The key observable for such a measurement is the
A-dependence of the nuclear modification factor R̄pA.

5 Conclusions

The performed calculations show that the uncorrelated triple-
gluon contribution to J/ψ hadroproduction introduces a
sizable ∼20 % correction to the theoretical predictions of
prompt J/ψ hadroproduction. The relative correction is
largest for moderate transverse momenta pT < 8 GeV and
it quickly becomes negligible with pT growing beyond this
range. The result for a moderate pT is uncertain by about
factor of 2 (up or down), but the large pT shape and nor-
malization are more stable against variations of the model
details. It follows that the uncorrelated color singlet triple-
gluon contribution is unable to explain the large excess of
the J/ψ hadroproduction cross section over the collinear
color singlet predictions, especially at larger values of pT .
The triple-gluon contribution, however, is found to be larger
than the NLO color singlet cross sections and therefore it
should be relevant for theoretical analyses of heavy vec-
tor quarkonia hadroproduction. In particular, the estimated
triple-gluon contribution exhibits a strong pT dependence of
the meson polarization. At small pT this mechanism leads
to equal rates of the longitudinally and transversally polar-
ized mesons, whereas at larger pT the longitudinal polariza-
tion strongly dominates. So the rescattering correction may
modify the polarization pattern following from the collinear
COM or KTF descriptions, and it should be advantageous to
complement with this contribution the fits to the quarkonia
hadroproduction cross sections.

For proper theoretical understanding of the heavy vector
meson hadroproduction it should be important to constrain

experimentally the triple-gluon (or rescattering) corrections.
This may not be easy in pp and p p̄ collisions where free
parameters of the collinear COM or KTF fits may be used
to absorb this correction. The multiple-gluon effects, how-
ever, are characterized by a distinct (nonlinear) dependence
of the gluon densities of colliding beams. Such effects may
be directly probed in proton–nucleus (pA) collisions, where
the relative triple-gluon correction should be enhanced by a
factor of A1/3. Recent ALICE data on inclusive J/ψ pro-
duction in pPb collisions at

√
s = 5 TeV in the nucleus

fragmentation region show some evidence of such nonlinear
nuclear enhancement; however, more extended and accurate
measurements are needed to determine experimentally the
magnitude of the triple-gluon correction with satisfactory
precision.
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Appendix A

The relation between the 2Pp impact factor and uninte-
grated gluon distributions is read off from the collinear
limit of the semi-inclusive two particle production process
pp → V1V2X described by the amplitude given in Fig. 7.
The total cross section in the impact parameter space is given
by the collinear formula (Fig. 8a)

σ = σ̂1(α1, β1)σ̂2(α2, β2)g(α1, μ)g(α2, μ)g(β1, μ)g(β2, μ)

×
∫

d2bd2bA1 d2bA2 S̃(bA1 )S̃(b − bA1 )S̃(bA2 )S̃(b − bA2 ),

(A1)

l1

A

B
B

k1

A

l2

k2

p2p1

Fig. 7 The amplitude for a semi-inclusive two particle production pro-
cess pp → V1V2X
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where we assumed that the two-gluon density distribution
factorizes into two single-gluon distributions g(α, μ), and
σ̂1,2 are cross sections for the gg → V1,2 productions at the
partonic level. A description of the double vector quarkonium
is possible also in the kT -factorization scheme as shown e.g.
in Refs. [48,49]. In this section, however, we refer to this
process only to fix the overall normalization, and for this
purpose the collinear approximation scheme is sufficient. The
function S̃(b), which is approximated by the Gaussian form,
S(b) = exp(−b2/R2

p)/πR2
p, is normalized

∫
d2bS̃(b) = 1,

where Rp is the effective proton radius. In the momentum
space the total cross section reads

σ = σ̂1(α1, β1)σ̂2(α2, β2)

σeff

× g(α1, μ)g(α2, μ)g(β1, μ)g(β2, μ), (A2)

where

σ−1
eff =

∫
d2k

(2π)2 S
4(k), S̃(b) =

∫
d2k

(2π)2 S(k)eikb,

(A3)

and the normalization condition translates into S(0) = 1.
The partonic amplitude for the production gg → V1 has

the form (see Fig. 8b)

M = ε
ρ1
(λk )

ε
σ1
(λl )

Sa1b1
1 ρ1σ1

(k1, l1, p1),

where Sa1b1
1 ρ1σ1

describes a production amplitude and ε
ρ

(λ) is
a gluon polarization vector. The cross section, in leading s
approximation, reads

σ̂1 = πs

N 2
c − 1

α1β1

k2
1⊥l21

|V1(k1, l1, p1)|2δ(α1β1s − m2
1⊥),

(A4)

where k1 ≈ αk
1 pA + k1⊥, l1 ≈ βl

1 pB + l1⊥, p1 = α1 pA +
β1 pB + p1⊥ and α1 ≈ αk

1, β1 ≈ βl
1. The effective vertex is

related to the production amplitude via

V1(k1, l1, p1)δ
a1b1 = Sa1b1

1 ρ1σ1

pρ1
A pσ1

B

s
.

The amplitude for the process in Fig. 7 reads

− iM =
∫

d4k1

(2π)4 S
a1a2
Aν1ν2

(pA, rA, A′, k1, k2)

dν1ρ1dν2ρ2

k2
1k

2
2

Sa1b1
1 ρ1σ1

(k1, p1 − k1, p1)

× Sa2b2
2 ρ2σ2

(k2, p2 − k2, p2)
dσ1μ1 dσ2μ2

(p1 − k1)2(p2 − k2)2

×Sb1b2
Bμ1μ2

(pB, rB, B ′, p1 − k1, p2 − k2), (A5)

and k2 = pA − pA′ − k1. The cross section is then expressed
as

dσpp→V1V2X =
¯|M|2

4(pA · pB)
d�pp→V1V2X ,

¯|M|2 = 1

4

∑
rA,rB

∑
A′,B′

|M|2, (A6)

and the phase space integral takes the form

d�pp→V1V2X = (2π)4δ(pA + pB − pA′

−pB′ − p1 − p2)d�A′d�B′d�p1 d�p2 .

(A7)

The integrals d�A′ , d�B′ describe the phase space integra-
tions of the A′ and B ′ final states, whereas d�p1 , d�p2 cor-
respond to the single-particle phase spaces for the V1, V2

particles.
Using the appropriate eikonal approximation for the gluon

polarization tensors and inserting unities in the form

1 =
∫

d4k

(2π)4 (2π)4δ(k − pA + pA′),

1 =
∫

d4l

(2π)4 (2π)4δ(l − pB + pB′),

1 =
∫

d4l1
(2π)4 (2π)4δ(k1 + l1 − p1),

Fig. 8 Colliding hadrons in the
impact parameter space (left).
The partonic amplitude for the
production process gg → V1
(right)

1

2

bA
1

bA
2

bB
1

bB
2

b

k1

l1

p1

(a) (b)
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1 =
∫

d4l3
(2π)4 (2π)4δ(k3 + l3 − p1), (A8)

one can write the cross section (A6) in a factorized form,

dσpp→V1V2X = 4s4

(2π)20

∫
d2k1d2k2d2k3

k2
1k

2
2k

2
3(k1 + k2 − k3)2

× d2l1d2l2d2l3
l21l

2
2l

2
3(l1 + l2 − l3)2

δ(k1 + l1 − k3 − l3)

×
∫

dβk�
a1a2a3a4
4, p (βk , k1, k2, k3, k1 + k2 − k3)

×
∫

dαl�
a1a2a3a4
4, p (αl , l1, l2, l3, l1 + l2 − l3)

×
∫

dα1kdβ1l S
a1b1
1 (α1k , β1l , k1⊥, l1⊥, p1)S

a3b3 ∗
1

×(α1k , β1l , k3⊥, l3⊥, p1)

×
∫

dα2kdβ2l S
a2b2
2 (α2k , β2l , k2⊥, l2⊥, p2)S

a4b4 ∗
2

×(α2k , β2l , k1 + k2 − k3, l1 + l2 − l3, p2)

×(2π)4δ(k1 + l1 − p1)d�p1 (2π)4

×δ(k2 + l2 − p2)d�p2 , (A9)

and k2 = k − k1, l2 = l − l1. The 2Pp impact factors from
the third line of Eq. (A9) can be decomposed into three color
structures each (see Fig. 9),∫

dβk�
a1a2a3a4
4, p (βk, k1, k2, k3, k4)

= N [
δa1a2δa3a4 f (k1)S(k1 − k2) f (k3)S(k3 − k4)

+ δa1a3δa2a4 f (k1)S(k1 − k3) f (k2)S(k2 − k4)

+δa1a4δa2a3 f (k1)S(k1 − k4) f (k2)S(k2 − k3)
]
,

and nine color terms are obtained after their multiplication.
However, only one of these terms gives the leading contri-
bution, the other ones being suppressed by the color factor
(1/N 2

c ) or the limiting phase space (p1 ≈ p2). The normal-
ization constant N is determined comparing the collinear
limit of Eq. (A9) to (A2). Indeed, using the decomposition
(A10) and noting that the last three lines of (A9) convert into
partonic cross sections (A4), the differential cross section

A

1, a1, α1, k1

A

dPSA

2, a2, α2, k2 3, a3, α3, k3

4, a4, α4, k4

dβ1 dβ dβ3

Φa1a2
A Φa3a4

A
∗

Fig. 9 The double gluon distribution

(A9) can be written in the form

d4σpp→V1V2X

dα1dβ1dα2dβ2
= s216(N 2

c − 1)4

(2π)20

N 2

α1β1α2β2

×
∫

d2k1

k2
1

f (α1, k
2
1)

∫
d2k2

k2
2

f (α2, k
2
2)

∫
d2l1
l21

f (β1, l
2
1)

×
∫

d2l2
l22

f (β2, l
2
2)σ̂1(α1, β1)σ̂2(α2, β2)

∫
d2k

(2π)2 S
4(k).

(A10)

Then it follows that

N = (2π)7

s(N 2
c − 1)2 ,

where the general correspondence between the unintegrated
f (α, k2) and collinear g(α, μ) gluon distributions

∫ μ2
d2k

k2 f (α, k2) = παg(α, μ)

was used.
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