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Abstract Observable quantities in cosmology are dimen-
sionless, and therefore independent of the units in which they
are measured. This is true of all physical quantities associ-
ated with the primordial perturbations that source cosmic
microwave background anisotropies such as their amplitude
and spectral properties. However, if one were to try and
infer an absolute energy scale for inflation—a priori, one
of the more immediate corollaries of detecting primordial
tensor modes—one necessarily makes reference to a partic-
ular choice of units, the natural choice for which is Planck
units. In this note, we discuss various aspects of how infer-
ring the energy scale of inflation is complicated by the fact
that the effective strength of gravity as seen by inflation-
ary quanta necessarily differs from that seen by gravitational
experiments at presently accessible scales. The uncertainty
in the former relative to the latter has to do with the unknown
spectrum of universally coupled particles between laboratory
scales and the putative scale of inflation. These intermediate
particles could be in hidden as well as visible sectors or could
also be associated with Kaluza–Klein resonances associated
with a compactification scale below the scale of inflation. We
discuss various implications for cosmological observables.

1 Preliminaries

The strength of the gravitational force depends on the scale
at which it is measured.1 At laboratory scales, the strength
of gravity is characterized by the reduced Planck mass
Mpl = 2.435 × 1018 GeV which determines Newton’s con-
stant GN = M−2

pl . However, like all other interactions,

1 E.g. via Cavendish type experiments where we have precise knowl-
edge of two masses (one of which could be a test mass), or equivalently
in principle through gravitational scattering experiments.
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quantum corrections effect the effective strength of gravity
depending on the characteristic energy of the process probing
it.2

Massive particles are particularly interesting for the
threshold effects they impart once we start to probe energies
above their mass M , i.e. at distances below M−1. This can
be understood via a simple thought experiment [5]: consider
scattering a test particle off a very heavy point mass. The
inverse Fourier transform of the scattering amplitude yields
the gravitational potential generated by the source. Once the
inter-particle separation approaches �x ∼ M−1, M being
the mass of some heavy particle, virtual pairs of these parti-
cles are created, the positive/ negative energy virtual quanta
of which are attracted/ repelled by the source, creating a grav-
itational dipole distribution that effectively anti-screens the
source, strengthening its gravitational field. Therefore, the
strength of gravity is increased by this effective ‘vacuum
polarization’ far enough away from the threshold induced
by a particle of mass Mj that couples to gravity,3 i.e. as we
probe increasingly shorter distances �x � M−1

j .
One can quantitatively understand this effective strength-

ening through the computation of the graviton propagator
with loops of the massive fields contributing to the gravi-
ton self-energy insertions. We trace through the details of
this computation in Appendix A following the treatment of
[6]; however, a quick understanding of this can be arrived at
through the argument presented in [7]. Consider the correc-
tion to the graviton propagator induced by loops of various
particles—suppressing all index structure, we find that the
leading correction will have the form

2 See [1,2] for reviews of treating gravity as an effective theory. In the
following discussion, we steer clear of potentially problematic aspects
of the notion of running gravitational couplings [3,4] by focusing only
on physically observable quantities such as amplitudes and cross sec-
tions.
3 This is true regardless of whether these massive particles couple
directly to the sector that contains the probe particle (e.g. the Standard
Model) or not.
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M4
pl

1

p2 〈T (−p)T (p)〉 1

p2 , (1)

whereT (p) schematically represents the total energy momen-
tum tensor of the theory. We further consider the limit where
the external momentum satisfies p2 � M2 where M2 is the
mass of the heaviest particle that can run through the loops.
In this limit, the theory becomes conformal, which fixes the
finite part of the loop integral to be

〈T (−p)T (p)〉 ∼ c

16π2 p
4 log

p2

μ2 (2)

where μ is some arbitrary renormalization scale, and where
c is the central charge of the theory that effectively counts the
number of degrees of freedom running through the loop, i.e.
c ≈ N [7]. As an illustrative example, in four-dimensional
Minkowski space, the central charge of a non-interacting the-
ory containing Nφ scalars, Nψ Dirac fermions and NV vector
bosons is given by [8–10]:

c := ˜N = 4

3
Nφ + 8Nψ + 16NV . (3)

Comparison with the free propagator 1/(p2M2
pl) implies that

the perturbative expansion fails at the scale p = M∗∗, where

M∗∗ ∼ Mpl
√

˜N
, (4)

which is when gravity becomes strongly coupled. That is,
M∗∗ is the effective cut-off of gravity at short distances. How-
ever, one must take care to distinguish between the scale of
strong gravity M∗∗ from the strength of gravity at a particu-
lar energy scale, which we denote M∗. Whereas the former
sets the scale at which unitarity starts to break down in the
effective theory,4 the latter determines the strength of grav-
itationally mediated processes at any particular scale below
M∗∗. As detailed in Appendix B, although every massive
species contributes to lowering the scale at which strong grav-
ity effects become important, one has to distinguish between
species that universally couple directly to the matter energy-
momentum tensor at tree level [such as massive Kaluza–
Klein (KK) gravitons, non-minimally coupled scalars, and
U (1) gauge fields] from ordinary four-dimensional fields that
couple at one loop, in terms of their effects on the strength
of gravity as one crosses the threshold set by the mass M of
the species, but are still far below the scale M∗∗. Whereas the
former immediately affect the strength of gravity, the latter
do not make their effects known until very close to M∗∗.5

Therefore, for the rest of our discussion we denote use N as

4 And is thus unitarized by the appearance of new degrees of freedom
at M∗∗ from some UV completion, such as string theory.
5 We are grateful to Sergey Sibiryakov for discussions concerning this
point.

a shorthand for the weighted index that effectively counts the
number of universally coupled degrees of freedom below the
energy scale of interest corresponding to the generalization of
(3), such that the strength of gravity at that scale, henceforth
taken to be the scale of inflation, is given by

M∗ ∼ Mpl√
N

. (5)

In what follows, we work out the consequences of this scale
dependence of the strength of gravity for inferring various
quantities during inflation, which we take to be driven by a
single field for economy of discussion and because the data
does not compel us to consider otherwise [11,12].6 As is
to be expected, all dimensionless observables, such as the
amplitude and spectral properties of the perturbations, are
unaffected by the changing strength of gravity at inflation-
ary energies. However, when one tries to infer an absolute
energy scale for inflation, one finds that it is undetermined
commensurate with (5) up to the unknown spectrum of uni-
versally coupled species between laboratory scales and the
inflationary scale, the details of which we elaborate upon in
the following.

2 The scale of inflation

According to the inflationary paradigm, the primordial per-
turbations observed in the CMB were created at horizon
crossing during the quasi-de Sitter phase of early acceler-
ated expansion sourced by the inflaton field. Therefore, all
quantities that enter calculations of primordial correlation
functions (which we subsequently relate to observables in
the CMB) refer to quantities at the scale at which inflation
occurred. We denote all quantities measured at the scale of
inflation with a starred subscript. The dominant contribution
to the temperature anisotropies comes from adiabatic pertur-
bations7 sourced by the comoving curvature perturbation R,
defined as the conformal factor of the 3-metric hi j in comov-
ing gauge8:

hi j (t, x) = a2(t)e2R(t,x)ĥi j ; ĥi j := exp[γi j ] (6)

6 See also the related studies [13,14], which explore how additional
fields and non-adiabaticity further complicates inferring the scale of
inflation from the detection of primordial tensors.
7 In what follows, we assume that all of the extra species have suffi-
ciently suppressed couplings to the inflaton during inflation (e.g. either
through derivative couplings or as Planck suppressed interactions), so
that isocurvature perturbations are not significantly generated. This is
trivially true for hidden sector fields.
8 The comoving (or unitary) gauge is defined as the foliation where
inflaton field fluctuations have been locally gauged away. In words, it
is the time slicing where the inflaton itself is the clock.

123



Eur. Phys. J. C (2015) 75 :182 Page 3 of 12 182

with ∂iγi j = γi i = 0 defining transverse traceless gravi-
ton perturbations. The temperature anisotropies are charac-
terized by the dimensionless power spectrum for R, whose
amplitude is given by

PR := H2∗
8π2M2∗ε∗

= A × 10−10, (7)

where ε∗ := −Ḣ∗/H2∗ , H∗ being the Hubble factor during
inflation. Given that R is conserved on super-horizon scales
(in the absence of entropy perturbations), this immediately
relates to the amplitude of the late time CMB anisotropies,
which fixes A ∼ 22.15 [11]. The tensor anisotropies are
characterized by the tensor power spectrum

Pγ := 2
H2∗

π2M2∗
. (8)

Taking the ratio of the above with (7), we find the tensor to
scalar ratio

r∗ := Pγ

PR
= 16ε∗. (9)

Therefore any determination of r∗, either through direct mea-
surements of the stochastic background of primordial gravi-
tational waves or through their secondary effects on the polar-
ization of the CMB [15–17] allows us in principle to fix the
scale of inflation. Specifically, by re-expressing (7) as

H∗ = M∗
(

π2Ar∗
2 · 1010

)1/2

, (10)

one can determine the value of the potential during inflation
in the slow roll approximation:

V 1/4∗ = M∗
(

3π2Ar∗
2 · 1010

)1/4

. (11)

We see that any measurements of r∗ and A determines the
scale of inflation up to our ignorance of the effective strength
of gravity at the scale H∗, given by

M∗ ∼ Mpl√
N

(12)

where Mpl = 2.435 × 1018 GeV is the reduced Planck mass
that defines the strength of gravitational interactions at labo-
ratory scale wavelengths and longer. As noted above, N is a
weighted index that effectively counts the number of all uni-
versally coupled9 species up to the scale H∗—whether they
exist in the visible sector or in any hidden sector. Presuming
r∗ = 0.1, Eq. (11) implies an energy scale for inflation of
V 1/4∗ = 7.6 × 10−3M∗.

In order to keep track of concepts in the discussion to
follow, we distinguish between what we henceforth refer to
as the scale of inflation—defined as H∗ during inflation—and

9 So that (12) denotes a tree level relation.

the energy scale of inflation, defined as V 1/4∗ . The reason for
this distinction is that H∗ defines (among other things) the
scale above or below which massive particles respond to the
background expansion irrespective of any direct couplings
to the inflaton10 whereas V 1/4∗ defines the physical energy
density in the inflaton field as seen by particles that couple to
it, such as all decay products produced in (p)reheating. We
take this distinction for granted in what follows.

In a universe where there is a true desert between labo-
ratory scales and the onset of inflation,11 M∗ = Mpl. How-
ever, given our ignorance of particle physics between collider
scales and the scale of inflation in addition to all hidden sec-
tor physics, M∗ is in general lower than Mpl according to
(12), where N represents a model dependent parameter that
obscures our ability to infer the actual energy scale of infla-
tion from observations of CMB temperature and polarization
anisotropies. That is,

V 1/4∗ ∼ r1/4∗√
N

3.28 × 1016 GeV. (13)

Presuming a range for r∗ such that 0.001 � r∗ � 0.1, it
is amusing to infer that in order to have an energy scale
of inflation around 10 TeV, one requires N ∼ 1026 univer-
sally coupled species directly to the matter stress-tensor with
masses less than that energy. Presumably any such particles
in the visible sector would have started to appear in collider
events accessed at the LHC. Note that as one lowers the scale
of strong gravity, the maximum reheating temperature Ti is
necessarily lowered as well, since it cannot be higher than
(13). Conservatively, Ti cannot be too far below the TeV
scale without spoiling the standard scenarios of big bang
cosmology—in particular, mechanisms for leptogenesis and
baryogenesis which can occur no lower than the electroweak
scale [18,19].

We note, as a consistency check on the above considera-
tions, that although additional species increase the strength
of gravity, the ratio H2∗ /M2∗ is independent of N and is fixed
by observable quantities as

H∗
M∗

=
(

π2Ar∗
2 · 1010

)1/2

:= ϒ = 1.05
√
r∗ × 10−4. (14)

Therefore the effects of strong gravity are evidently neg-
ligible during inflation even if M∗ is much smaller than
the macroscopic strength of gravity Mpl. Hence inflationary
dynamics, in particular the dynamics of adiabatic fluctuations
remain weakly coupled independent of N and the usual com-
putation of adiabatic correlators can be implemented [20].

10 In addition to quantum corrections to the effective action itself being
set by the ratio H2∗ /M2∗ .
11 Note that this would require a desert not only in the sector in which
the standard model resides, but in all other hidden sectors as well.
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3 Extra species as Kaluza–Klein states

It is an interesting exercise to work out the consequences of
extra species associated with the Kaluza–Klein (KK) states
of a particular compactification. One of two scenarios are
possible—that inflation occurs below (H∗ < μc), or above
(H∗ > μc) the effective compactification scale μc defined as
the mass scale associated with the moduli that fix the size of
the extra dimensions.12 In the former case, the moduli corre-
sponding to the extra dimensions remain fixed at their min-
ima during inflation and we have available the usual relation
between the fundamental gravity scale M∗∗ below the effec-
tive compactification scale and the long wavelength strength
of gravity (the Planck mass):

MD−2∗∗ Vn = M2
pl ,

whereVn is the volume of the compactified sub-manifold [21,
22]. Again, the double asterisked subscript is to differentiate
M∗∗ from M∗, the strength of gravity at the inflationary scale
H∗. In D = 4 + n, this relation becomes M2+n∗∗ Vn = M2

pl.

For the example of toroidal compactifications,13 Vn = M−n ,
so that

M2∗∗
Mn∗∗
Mn

:= M2∗∗V∗∗ = M2
pl , (15)

where we have defined V∗∗ as the volume in units of M∗∗.
Comparison with (4) implies

˜N = V∗∗, (16)

where we again distinguish ˜N from N , the former of course
being the total number of species up to the effective cut-off
whereas the latter is the total number of species up to the scale
H∗. To see this another way, we note that we could also have
arrived at (16) through more direct reasoning. Consider first
for simplicity a tower of KK states on a single flat, compact
dimension of radius R = M−1. The KK modes are character-
ized by their quantized momenta along the extra dimension,
resulting in a tower of masses:

m2
l = l2M2 l = 0,±1, . . . (17)

Clearly, the maximum number of resonances there can be
before one hits the scale of strong gravity is set by the highest
permissible momentum quantum number l2maxM

2 = M2∗∗.
Hence with one extra dimension, the number of extra massive
species is given by ˜N = M∗∗/M . With n extra dimensions,
we have m2{li } = ∑

i l
2
i M

2 with i running from 1 to n. The

12 We presume for simplicity that there are no further hierarchies
between the extra dimensions. Note that μc can be in general (hier-
archically) different from the actual compactification scale associated
to their inverse size.
13 This will remain true for more general compactifications (up to fac-
tors of order unity) provided again that there are no further hierarchies
among the extra dimensions.

number of extra massive species is now given by (neglecting
factors of order unity):

˜N = (M∗∗/M)n ≡ V∗∗, (18)

which corresponds to the number or lattice sites such that
the condition

∑

i l
2
i M

2 ≤ M2∗∗ is satisfied. We note that one
could also have inflation happening above the effective com-
pactification scale (H∗ > μc). In general, this would involve
having to track the full dynamics of the moduli fields on their
way to stabilization, which does not permit any straightfor-
ward generalizations. However, there are certain limits for
which the moduli are effectively frozen in spite of not being
fixed at the minima of their effective potentials. As discussed
in Appendix C, this occurs in the limit where the sum of the
inflationary and moduli potentials satisfy an analog of the
slow roll conditions. We will presume this to be the case
when H∗ > μc. Although the discussion to follow presumes
H∗ < μc, the results generalize straightforwardly were we to
replace M∗∗ with M̄∗∗ defined as the effective cut-off when
the compact dimensions have the (effectively frozen) volume
V̄∗∗ during inflation.

3.1 Extra KK species and the scale of inflation

During inflation, all masses much lighter than H∗ correct
the graviton propagator and will contribute towards lowering
the effective gravitational cut-off. If furthermore, these states
are universally coupled (as are KK gravitons), they will also
increase the effective strength of gravity now set by M∗. All
heavier KK states do not correct the short range interactions
(i.e. they decouple) and can safely be ignored. Therefore N ,
the number of massive species that correct the strength of
gravity, is bounded by n2M2 = m2

n � H2∗ in the case of one
extra dimension. Hence

N � H∗
M

. (19)

Imagine we were to saturate this bound,

N ≈ H∗
M∗

M∗
M

≈ ϒ
M∗
M

≈ 1.05
√
r∗ × 10−4 M∗

M
(20)

where the latter follows from the observationally determined
quantity (14). For n extra dimensions, the number of massive
species with masses less than Hubble will be given by

N ≈
(

H∗
M

)n

≈
(

H∗
M∗

)n (

M∗
M

)n

≈ ϒn
(

M∗
M

)n

. (21)

Furthermore, given that ˜N = (M∗∗/M)n = (M∗∗/H∗)n
(H∗/M)n , we arrive at the relation between the number of
species that lower the effective cut-off during inflation N
with ˜N :

N = ˜N

(

H∗
M∗∗

)n

≡ V∗∗
(

H∗
M∗∗

)n

. (22)
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As we shall see shortly, since H∗/M∗∗ < 1 we have N < ˜N ,
implying that in general we must also have M∗∗ < M∗ as
one can only cross additional mass thresholds from the scale
of inflation to the scale of strong gravity. We note that (21)
immediately translates the uncertainty in the energy scale of
inflation in terms of an intermediate compactification scale
M in units of M∗ through (13) and (14):

V 1/4∗ � 31/4M∗γ 1/2 = 31/4
(

M

ϒM∗

)n/2

ϒ1/2Mpl, (23)

or equivalently

V 1/4∗ � 31/4 M∗∗
Mpl

(

M∗∗
H∗

)n/2

ϒ1/2 Mpl. (24)

Now using (10), (11), and (14), we have

V 1/4∗ � 31/4 ϒ−1/2 H∗ , (25)

so that equivalently

H∗ � M∗∗ ϒ2/(n+2) . (26)

It follows that H∗ is one to three orders of magnitude below
the fundamental gravity scale M∗∗ for the range 0.001 �
r∗ � 0.1. The ratio H∗/M∗ is of course fixed by (14). Fur-
thermore, we note that from (25) the energy scale of inflation
is related to the scale M∗∗ by

V 1/4∗ � 31/4ϒ2/(n+2)−1/2M∗∗, (27)

which depending on the number of extra particles between
H∗ and M∗∗ implies that V 1/4∗ can be greater than14 M∗∗ (of
the same order or an order of magnitude higher for 2 ≤ n ≤
6), even though it is always less than the effective cut-off
M∗ at the scale H∗ through (11). We note that this is never
problematic, even though M∗∗ is the cut-off induced by the
underlying UV completion. This is because we remain in
the perturbative regime with respect to corrections from the
heavy states that UV complete the theory, which relies on
derivatives being suppressed relative to this scale i.e. by the
ratio H∗/M∗∗, guaranteed to be less than unity by (26).

Furthermore, we stress that although extra dimensions
(compactified at a scale below that of inflation) provide a
natural context for the appearance of extra massive species,
the relation (13) is also valid in a strictly four-dimensional
context and illustrates an irreducible uncertainty in our abil-
ity to infer a scale for inflation given our lack of knowledge
of particle physics from collider energies up to the energy
scale of inflation.

14 For a large enough ratio ˜N/N—guaranteed for n ≥ 2 through the
hierarchy implied by (26).

3.2 Large number of species in string theory

In the framework of string theory, the effective higher-
dimensional Planck mass M∗∗ is proportional to the funda-
mental string scale Ms , and Eq. (B18) becomes

M2
pl = 1

g2
s
M2

s V∗∗, (28)

where gs is the string coupling and the internal volume V∗∗
is now given in string units. The corresponding number of
species is then ˜N = V∗∗/g2

s , which is fixed by the number of
KK modes with mass lower than Ms for gs � O(1), as is the
case of D-branes where gs is given by the gauge coupling.
Again, we distinguish ˜N , the number of KK modes below
the effective cut-off around the compactification scale from
N , the number of states with masses less than H∗. Note that
the lower bound for the string scale of few TeV is consistent
with a reheating temperature around above the electroweak
scale (see discussion at the end of the previous section).

Apart from the possibility of having light KK modes of
large extra dimensions, the fundamental gravity scale can be
lowered due to a large number of species from hidden sectors
(even coupled gravitationally to the Standard Model), or even
from string excitations whose number increase exponentially
with their mass. In the later case, the effective number of
particle species which are not broad resonances, with width
less than their mass is ˜N � 1/g2

s [23–27].

4 (P)reheating

The big bang begins shortly after inflation ends. The mech-
anism through which the inflaton dumps its energy density
into the material content of the universe is known as reheating
if this process occurs in thermal equilibrium, and preheating
otherwise. During preheating, parametric resonance during
the inflaton’s final oscillations about its minimum results in
bursts of particle production for any massive fields coupled
to it (see [28] and references therein for details as regards
the points discussed here). The latter is a very out of equi-
librium process and requires a subsequent period of ther-
malization. Since the primary mechanisms for generating
parametric resonance have a purely particle physics origin,
gravitational effects do not play any significant role and the
mechanisms for preheating proceed as they do in the stan-
dard context regardless of the value of M∗. The exception
being the special case of ‘geometric preheating’, wherein
the inflaton φ couples very weakly or has no direct couplings
to a non-minimally coupled field χ with a non-minimal cou-
pling parameter ξ . For this scenario, we first observe that on
a background sourced by φ at the end of inflation, the mode
functions for χ satisfy

123
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χ̈k + 3H χ̇k +
(

k2

a2 + ξ R

)

χk = 0. (29)

As the inflaton oscillates around its minimum, the scalar cur-
vature R = 12H2 + 2Ḣ oscillates as well. Upon time aver-
aging we have the relation 〈m2

φφ2〉 = 〈φ̇2〉, which implies

R ∼ m2
φφ2/M2∗ , inducing an effective coupling to φ and

which can produce parametric resonance for large enough
ξ . By enhancing the strength of gravity, one enhances the
effects of the geometric coupling term and thus widening the
bands in which the Floquet index [28] is positive, assisting
parametric resonance non-linearly the more M∗ is reduced.

Reheating on the other hand is an equilibrium process that
produces quanta of matter fields through one body decays
such as φ → χχ or φ → ψ̄ψ where χ,ψ are scalar and
fermionic quanta, respectively. The interactions that can gen-
erate such decays are Lφχχ = μφχ2 or Lφψ̄ψ = yφψ̄ψ ,
where μ has dimensions of mass and y is dimensionless. In
the limit m2

φ � m2
ψ,m2

χ the decay rates can be estimated as
[28]:

�φ→χχ = μ2

8πmφ

, (30)

�φ→ψ̄ψ = y2mφ

8π
. (31)

Thermal equilibrium requires interactions to be efficient
enough to equipartition all available states in phase space. In
an expanding universe this necessitates �tot > H∗. Hence,
the maximum temperature reheating can occur at is implied
by the condition �tot = H∗ = √

ρ/(3M2∗ ). Assuming g∗ rel-
ativistic species in thermal equilibrium after reheating, we
have

ρ = g∗π2

30
T 4, (32)

and therefore

Ti =
(

90

g∗π2

)1/4
√

�totM∗ ∼
(

90

g∗π2

)1/4 √

�totMpl

N 1/4 . (33)

That is, the maximum temperature that can reheat is corre-
spondingly reduced, consistent with our discussion in Sect.
3. We mention in closing that there are rich phenomenologi-
cal possibilities in considering hidden sector fields produced
in reheating as possible dark matter candidates in scenarios
with many extra species, certain aspects of which have been
studied in the multi-field inflationary context in [29].15

15 Also in the multi-field context are the references [30–32]. In these
studies, no species below the scale of inflation were considered, and so
the strength of gravity at H∗ was taken to be the usual Mpl.

5 Discussion

It is commonly presumed that detection of a primordial tensor
mode background would allow us to determine the (energy)
scale of inflation in the context of single field inflation. The
purpose of this note was to highlight the fact that, instead,
one can only infer the (energy) scale of inflation from obser-
vations up to our ignorance of the scale M∗ = Mpl/

√
N , the

precise value for which depends on the spectrum of all uni-
versally coupled species with masses up to H∗, and for which
field content of the standard model alone suggests an N dif-
ferent from one though still of order unity. These observations
raise the possibility that the energy scale for inflation can be
significantly lowered by the presence of many gravitation-
ally coupled species, an observation that has a particularly
natural realization in extra-dimensional scenarios, although
is equally pertinent in a four-dimensional context.
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AppendixA:Loop corrections to the graviton propagator

As a concrete example to illustrate how gravity can become
more strongly coupled at lower energies due to loops of mat-
ter fields, we reproduce the one loop correction to the graviton
propagator on a flat Euclidean spacetime due to loops of a
massive scalar field, as calculated by Capper [6] (see also ref-
erences therein). Beginning with the matter sector action16

S = − 2

κ2

∫

d4x
√
g (R − 2�)

−1

2

∫

d4x
√
g

(

gμν∂μϕ∂νϕ + m2ϕ2
)

. (A1)

It is particularly handy to define the tensor density

g̃μν = √
ggμν, (A2)

16 As we shall see shortly, the bare cosmological constant term is neces-
sitated to ensure the satisfaction of the Slavnov–Taylor identities when
expanding around flat space.
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and to define the graviton ϕμν (note the departure from the
usual definition) as

g̃μν = δμν + κϕμν (A3)

so that

√
g = det[gμν]1/(d−2) = exp

[

1

d − 2
Tr ln

(

δμν + κϕμν
)

]

.

(A4)

The matter Lagrangian can be expanded in powers of κ as

L =
∑

k=2

κk−2Lk (A5)

with

L3 = −1

2
ϕμν∂μϕ∂νϕ + m2

2

ϕ2ϕ
μ
μ

d − 2
(A6)

and

L4 = m2ϕ2

d − 2

[

−ϕμνϕ
μν + ϕ

μ
μϕν

ν

d − 2

]

, (A7)

which implies the cubic and quartic interaction vertices Vαβ

and Uαβ δγ :

Vα,β(p, k1, k2) = −k1(μk2ν) + m2δμν

n − 2
;

Uαβ γ δ(p1, p2, k1, k2) = m2

n−2

[

−δα(γ δβ(δ)+ δαβδγ δ

n−2

]

.

(A8)

Supplemented with the massive scalar and graviton propa-
gators (the latter obtained in the de Donder gauge [6]),

D(p) = −1

p2 + m2 ;

Dαβ μν = 1

2p2

(

δαμδβν + δανδβμ − δαβδμν

)

, (A9)

one can sum up all the self-energy diagrams that contribute
to the one loop corrected graviton propagator up to order κ2:

Formally, the loop corrected propagator Qνσμλ is obtained
by inserting the sum of all self-energy diagrams:

Qνσμλ = κ2D αβ
νσ Tαβθτ D

θτ
μλ, (A10)

which evaluates to

Qνσμλ = κ2

p4

{

T1

[

pν pσ pμ pλ − p2δμλ pν pσ

−p2δνσ pμ pλ + p4δνσ δμλ

]

+T3

[

p4δμνδσλ + p4δνλδσμ − 2p4δνσ δμλ

+ 2p2δμλ pν pσ + 2p2δνσ pμ pλ − 4p2 p(νδσ)(μ pλ)

]

}

(A11)

where 2ω = d is the parameter through which we implement
dimensional regularization, μ is an arbitrary renormalization
scale, and where

T1 = m2(ω−2) μ
2(2−ω)

2(4π)ω
�(2 − ω)

×
[

1

3
3F2

(

2 − ω, 1, 3; 2, 5/2;− p2

4m2

)

−1

2
3F2

(

2 − ω, 4, 1; 5/2, 3,− p2

4m2

)

+1

5
3F2

(

2 − ω, 5, 1; 3, 7/2,− p2

4m2

)]

, (A12)

T3 = m2ω μ2(2−ω)

8(4π)ω

�(2 − ω)

p4(ω − 1)

[

1

1 − ω
+ 1

ω
2F1

×
(

−ω, 1; 3/2;− p2

4m2

)]

. (A13)

Some remarks are in order at this stage. There are five possi-
ble terms with the right tensor structure that could contribute
to Tαβθτ , three of whose coefficients can be eliminated by
repeated applications of the Ward identities. Doing so results
in (A11),17 for which it is easily verified that pνQνσμλ = 0.
Having dimensionally regularized the loop integrals, we find
the usual 1/(2 − ω) poles which require appropriate coun-
terterms to subtract the divergences. These are given (in
Lorentzian signature) as

Lc.t. = −
√−g

16π2

1

(2 − ω)

{

m4

4
+ m2

12
R

+ 1

120

[

R2

2
+ RμνRμν

]}

. (A14)

Given the asymptotic behavior of the hypergeometric and
Gamma functions, it is straightforward to evaluate the
remaining (finite) part of Qνσμλ(p) in the limit p2 � m2,
where we find (suppressing tensor structure), the expected

17 Furthermore, the addition of the bare cosmological term in (A1) was
necessitated by the non-vanishing tadpole in Fig. 1, which we have to
cancel in order to consistently expand around flat space—the remaining
diagrams thus resulting in (A11)–(A13).
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Fig. 1 Diagrams contributing
to the one loop correction to the
graviton propagator

conformal limit for N minimally coupled massive scalars
[cf. the result of (2) plugged into (A10) and recalling that the
usual definition of the metric perturbation hμν := κϕμν]

lim
p2/m2→∞

‖Qνσμλ‖ ∼ κ2 N

16π2 log
(

p2/μ2
)

. (A15)

Appendix B: Note on universally coupled massive species

We wish to demonstrate that, although all massive species
contribute to lowering the effective scale of strong gravity,
the threshold effects imparted by universally coupled species
(e.g. massive KK gravitons) differs qualitatively from that of
massive, non-universally coupled species. Whereas the for-
mer changes the strength of gravity by an order one effect
as you cross the threshold M , the latter only changes the
strength of gravity by a factor of M2/M2

pl, even as both con-
tribute equally to lowering the scale at which strong gravity
effects become important. This can be seen by considering
the correction to the graviton propagator from loops of N
ordinary massive fields in the limit of high momentum trans-
fer p2 � M2:

1

M2
pl p

2
+ 1

M4
pl p

4

Np4

16π2 log
(

p2/μ2
)

+ · · · (B1)

Repeated insertions of self-energy diagrams would result in
a geometric series in the above of which we can compute the
(leading log) resummed propagator:

1

M2
pl p

2

[

1 − Np2

M2
pl

log
(

p2/μ2
)

] . (B2)

Clearly from (B1) we can infer the usual scale of strong grav-
ity M∗∗ = Mpl/

√
N , however, if we wanted to interpret (B2)

as a strengthening of gravity as you cross the mass threshold
M , we see that the effect is not significant until you come very
close to M∗∗. That is, in the regime M2 � p2 � M2

pl/N ,

the usual Newton’s force would result with GN = M−2
pl .

This can also be appreciated by directly computing the one
loop corrected Newton’s potential between two conserved
sources. Using (A11)–(A13), we can compute the gravita-
tional field generated by the source Tλβ given by (in the
notation of Appendix A)

ϕμν(x)=
∫

dD p

(2π)D/2 eip·x
[

D λβ
μν (p)+Q λβ

μν (p)
]

Tλβ(p).

(B3)

Consider the energy-momentum tensor of a point mass at
rest, given by

Tλβ(x) = mδD−1(�x)δ0
λδ

0
β;

Tλβ(p) = 2πm

(2π)D/2 δ(p0)δ0
λδ

0
β, (B4)

so that

ϕμν(x) = 2πm
∫

dD−1 p

(2π)D
ei �p·�x

×
[

D 00
μν (p) + Q 00

μν (p)
]

|p0=0. (B5)

One can revert to the traditional dimensionless metric per-
turbation hμν via the relation (A2),

hμν = − 1

Mpl

[

ϕμν − ϕλ
λ

D − 2
δμν

]

. (B6)

Ignoring the second term and using the expression for the
propagator in the de Donder gauge

Dαβ μν = 1

2p2

(

δαμδβν + δανδβμ − δαβδμν

)

we find

ϕi j = − m

8πr
δi j , ϕ00 = m

8πr
, (B7)

which through (B6) implies the usual Newton potential. From
(A11) to (A13) the one loop correction results in three pos-
sible finite contributions to the integrand (suppressing tensor
structure and factors of order unity),

16π2‖Q‖ ∼ 1

M2
pl

log
(

M2/μ2
)

+ 1

�p2

M2

M2
pl

log
(

M2/μ2
)

+M2

�p4

M2

M2
pl

log
(

M2/μ2
)

. (B8)

The first two terms contribute a contact (delta function) term
and a correction to the usual Newton potential, respectively.
The third term contributes linear and logarithmic corrections
that depend on rM , which are only to be understood in the
regime where they are small corrections that get completed
by higher order terms in the perturbative expansion such that
the total amplitude satisfies the usual decoupling require-
ments (i.e. that the corrections from insertion of self-energy
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Fig. 2 Correction to the gravitational interaction between conserved
sources (denoted by a double line) from crossing the mass threshold of
a massive particle

Fig. 3 Correction to the gravitational interaction between conserved
sources from crossing a massive KK graviton ϕ̃αβ

diagrams of massive particles vanish in the long wavelength
limit). Clearly the latter two terms have contributions that
are M2/M2

pl suppressed as per the usual expectation [1,2].
Therefore crossing any particular threshold scale M does not
result in a significant strengthening of gravity around that
scale, whose summed effects accumulate only close to the
scale M∗∗ as per our discussion around (B2).

The situation for massive KK gravitons is markedly dif-
ferent, however, as these resonances couple universally to
all conserved sources and can therefore correct their grav-
itational interactions at tree level through the diagrams in
Fig. 3.

Let us say there were n KK resonances with mass M ,
then it is straightforward to calculate the correction to the
gravitational interaction,

1

M2
pl p

2
→ 1

M2
pl p

2
+ n

M2
pl(p

2 + M2)
. (B9)

Unlike the case for (B2), we see that the regime M2 � p2 �
M2

pl/n the strength of gravity is modified immediately above
p = M as

1

M2
pl p

2
+ n

M2
pl p

2
(

1 + M2/p2
) → n + 1

M2
pl p

2
, (B10)

that is, as each threshold corresponding to a massive KK res-
onance is crossed, the effective strength of gravity increases
immediately as M2

pl/n → M2
pl/(n + 1), where n counts the

number of massive species that contribute to the tree level dia-
gram Fig. 3. We also note that effective interactions of gravi-

tational strength can also be generated from universally cou-
pled species such as the Higgs through higher-dimensional
operators of the form

�Leff ∼c1
H†H

M2
pl

∂μϕ∂μϕ+c2
H†H

M2
pl

ψ̄ /∂ψ ∼c{1,2}
H†H

M2
pl

Tμ
μ ,

(B11)

where the ci are generic Wilson coefficients. Expanding the
singlet operator H†H around some vev v as H†H = v2 +
2vh generates a vertex that contributes another channel to
the diagram Fig. 3,

�Leff ∼ ci
v h

M2
pl

Tμ
μ , (B12)

so that above the effective Higgs mass mH , in addition to
the usual massless graviton exchange, one mediates an extra
gravitational strength force,

1

M2
pl p

2
→ 1

M2
pl p

2
+ g2

i

M2
pl(p

2 + m2
H )

, (B13)

with

g2
i := c2

i v
2/M2

pl. (B14)

Just as in the case for massive KK gravitons, one finds that
in the regime m2

H � p2 � M2
pl the effective strength of

gravity is enhanced as

M2
pl → M2

pl
(

1 + ∑

i g
2
i

) . (B15)

We realize that perhaps this should not be too surprising,
as one can always field redefine the operators (B11) via the
trace of the (two derivative) background equations of motion
[33] R = −Tμ

μ /M2
pl so that the effective interactions are

equivalent to

�Leff ∼ c{1,2}H†HR. (B16)

Therefore we see that it is not just the Higgs, but any non-
minimally coupled massive scalar18 that can enhance the
effective strength of gravity as (B15), where the Wilson coef-
ficients ci are now replaced with non-minimal couplings ξi .
We stress that such additional effective interactions gener-
ate extra gravitational strength scalar forces that violate the
equivalence principle at very high energies; but this is not
in conflict with any presently accessible observations. To
briefly recap, the physical basis of the differing effects of non-
universally coupled compared to universally coupled massive
species on the strength of gravity as you cross each threshold

18 Order unity non-minimal couplings will generically be generated
through renormalization group (RG) flow for the singlet component of
the Higgs and any other massive scalars present in the early universe
[34].
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can be readily understood through the former being a loop
effect and the latter being a tree level effect; cf. Figs. 2 and
3.

One can complement this understanding of how regular
massive species do not affect the strength of gravity as seen by
curvature quanta during inflation through the simple exercise
of computing the action forR, given the fact that the effects of
massive particles in Fig. 2 can be reproduced by the effective
action

S = M2
R

2

∫

d4x
√−g R+

∫

d4x
√−g

[

c1R
2+c2R

μνRμν

]

+
∫

d4x
√−gL [φ0] (B17)

where the last term in the above is the action for the back-
ground that sources the quasi-de Sitter phase, and the sub-
script on φ0 anticipates that we will work in a gauge where
all inflaton fluctuations have been gauged away. The dimen-
sionful prefactor M2

R emphasizes that the above is the net
result of having subtracted the usual divergences that result
after integrating out the fields in question and that are fixed by
renormalization conditions at some particular scale, necessi-
tating the introduction of a bare cosmological constant term
that is canceled by tadpole contributions. One can straight-
forwardly deduce that the effect of the higher curvature terms
will be to modify the usual action for the comoving curvature
perturbation from

S2 = M2
pl

∫

d4x a3ε

[

Ṙ2 − (∂R)2

a2

]

(B18)

to

S2 = M2∗
∫

d4x a3ε

[

Ṙ2

c2
s

− (∂R)2

a2 + λ

M2∗
(∂R)4

a4 + ...

]

(B19)

where we see from (B17) that the corrections from the cur-
vature squared terms to the quadratic action for R must have
two derivatives acting on background quantities,19 so that, for
example, the operator (∂R)2 gets a correction of the form

�L2 ∼ c1,2M
2
R

(∂R)2

a2

H2

M2
R

(B20)

where c1, c2 ∼ O(N ) so that the overall dimensionful coef-
ficient of the quadratic action (B19) becomes

M2∗ = M2
R

(

1 − c̃N H2

16π2M2
R

)

(B21)

where c̃ is some positive number (by unitarity) of order
unity. Furthermore, we note that integrating out massive

19 In full generality we allow for the generation of a non-trivial the
adiabatic sound speed cs < 1 as well as higher spatial derivative terms
from the curvature squared corrections.

particles can only additively renormalize Newton’s constant
such that at the scale of inflation, M2

R(μ) = M2(μref) +
∑

i dim
2
i log(μ2/μ2

ref) where the di are spin dependent
weights each suppressed by a factor of 1/(16π2). Impos-
ing the renormalization conditions at macroscopic scales,
M2(μref) = M2

pl so that

M2
R(μ)=M2

pl

(

1+
∑

i

di
m2

i

M2
pl

log(μ2/μ2
ref)

)

≈ M2
pl (B22)

within the domain of validity of our approximation. There-
fore in the context of (B21), we see that unless H2 ∼
M2

pl/
√
N , the correction to the effective strength of grav-

ity as seen by the curvature perturbations is negligible and
M∗ ∼ Mpl for curvature quanta above the scale of any mas-
sive (non-universally coupled) species.

Appendix C: Moduli dynamics during inflation

In this appendix, we consider the dynamics of moduli fields
during inflation in the case where H∗ > μc, where μc is
the characteristic mass of the moduli. We wish to show that
are regimes where the moduli are effectively frozen, even if
they are dynamically displaced off their minima, allowing us
to treat the extra-dimensional volume as effectively constant
during inflation. We begin by considering the following D-
dimensional action:

S = MD−2∗
2

∫

dDx
√−G R(D)

−
∫

dDx
√−G

[

1

2
(∂φ)2 + V (φ)

]

(C1)

where R(D) is the D-dimensional Ricci scalar constructed out
of the metric GAB . We now consider a D = 4 +n decompo-
sition with Greek indices denoting four non-compact coordi-
nates and lower case Latin indices denoting n periodic extra-
dimensional coordinates that range from 0 ≤ ya ≤ 2πR and
where we furthermore presume the metric tensor GAB to be
defined through the block diagonal form,

ds2 = gμν(x)dx
μdxν + e2ω(x)γabdyadyb. (C2)

If we assume γab = δab, and if no other quantity depends on
the ya , then

√−G = √−g enω (C3)

and

R(D)[G] = R(4)[g] − 2ne−ωgμν∇μ∇νe
ω

−n(n − 1)gμν∇μω∇νω. (C4)
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Substituting into the above, integrating over the compact
dimensions and doing a few integrations by part result in

S = MD−2∗
2

Vn

∫

d4x
√−g enω

[

R(D) + n(n − 1)(∂ω)2
]

−Vn

∫

d4x
√−g enω

[

1

2
(∂φ)2 + V (φ)

]

, (C5)

where Vn := ∫

dn y. To bring the action above into the usual
Einstein Hilbert form, we further make the conformal trans-
formation

gμν = e−nω g̃μν, (C6)

so that, finally, the action becomes

S = M2
pl

2

∫

d4x
√−̃g

[

R(D)[̃g]− n

2
(n+2)(˜∂ω)2−U (ω)

]

−
∫

d4x
√−g̃

[

1

2
(˜∂˜φ)2 + e−2ωV (˜φ)

]

(C7)

where M2
pl := M (D−2)∗ Vn and ˜φ := √

V nφ, and where we
have explicitly introduced by hand the Einstein frame poten-
tial U , which is responsible for stabilizing the ω modulus.20

Restricting ourselves to spatially homogeneous solutions, we
make the metric ansatz

ds2 = −dt2 + e2λδi jdx
idx j (C8)

and find the Einstein constraint equation (dropping the tildes
on φ in what follows),

3λ̇2 = n(n + 2)

4
ω̇2 + U (ω)

2
+ φ̇2

2M2
pl

+ e−2ω

M2
pl

V, (C9)

the equation of motion

φ̈ + 3λ̇φ̇ + e−2ωV,φ = 0, (C10)

and the Friedmann equations

λ̈ + n(n + 2)

4
ω̇2 + φ̇2

2M2
pl

= 0, (C11)

ω̈ + 3λ̇ω̇ + U,ω

n(n + 2)
− 4e−2ω

n(n + 2)M2
pl

V = 0. (C12)

We now ask: is there a solution such that the background
inflates, i.e. −Ḣ/H2 � 1? From (C11), this clearly requires

− Ḣ

H2 = −λ̈/λ̇2 = 3

3λ̇2

[

n(n + 2)

4
ω̇2 + φ̇2

2M2
pl

]

� 1

(C13)

20 For a review of mechanisms to stabilize Kähler moduli in the context
of type II and heterotic string theory, see [35,36]. See also [37,38] for
complementary approaches utilizing the energetics of the string free
energy around enhanced symmetry points.

where the denominator on the rhs is given by (C9). Defining
the total kinetic and potential energies

KT := M2
pl
n(n + 2)

4
ω̇2 + φ̇2

2
;

VT := M2
pl
U (ω)

2
+ e−2ωV (φ), (C14)

we find that in general

ε = − Ḣ

H2 = 3KT

KT + VT
, (C15)

so that ε � 1 consistently if KT /VT � 1, i.e. we require the
potential terms to dominate the kinetic terms in the energy
density, as usual. This can be re-expressed using (C10) and
(C12) as a condition on the potential if one neglects the φ̈

and ω̈ terms, which is only possible if

1

n(n + 2)

V 2
T,ω

V 2
T

+ M2
pl

2

V 2
T,φ

V 2
T

� 1, (C16)

where the second term above is the usual ε parameter. We note
from the definition (C14) that requiring U (ω)e2ω/V (φ) �
1 (which is consistent with requiring inflation being above
the effective compactification scale H∗ � μc over a broad
regime) results in

4

n(n + 2)
+ M2

pl

2

V ′(φ)2

V (φ)2 � 1, (C17)

so that in addition we also need a sufficient number of extra
dimensions in order that the second numerical factor can
also be neglected.21 One can understand why this is so—
we see from (C7) that, for the canonically normalized vari-
able ω̃ = √

n(n + 2)ω, the inflationary potential becomes
e−2ω̃/

√
n(n+2)V (φ), and it therefore one flattens the ω̃ depen-

dence of this contribution to the total potential more and more
the greater n is, eventually allowing for the ‘slow-roll’ con-
dition on the moduli field to be satisfied.

Therefore although it is not generally true that we can have
inflation without the moduli undergoing non-trivial excur-
sions, we see that in certain limits, this can indeed be accom-
plished consistently allowing us to treat them as effectively
fixed even though they are displaced from their minima. In
this situation, the characteristic masses of the associated KK
states remain almost constant during inflation and the usual
analysis can be implemented.

21 With six extra dimensions for example, this factor equals 1/12.
One may be tempted to redefine ω in (C7) to absorb the factor of
n(n + 2), however, this appropriately rescales the arguments of the
potential energy contributions such that (C17) also results for the rede-
fined variables.
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