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Abstract Recently Grinstein, Jora, and Polosa have studied
a theory of large-N scalar quantum chromodynamics in one
space and one time dimension. This theory admits a Bethe–
Salpeter equation describing the discrete spectrum of quark–
antiquark bound states. They consider gauge fields in the
adjoint representation of SU (N ) and scalar fields in the fun-
damental representation. The theory is asymptotically free
and linearly confining. The theory could possibly provide a
good field theoretic framework for the description of a large
class of diquark–antidiquark (tetra-quark) states. Recently
we have studied the light-front quantization of this theory
without a Higgs potential. In the present work, we study the
light-front Hamiltonian, path integral, and BRST formula-
tions of the theory in the presence of a Higgs potential. The
light-front theory is seen to be gauge invariant, possessing a
set of first-class constraints. The explicit occurrence of spon-
taneous symmetry breaking in the theory is shown in unitary
gauge as well as in the light-front ’t Hooft gauge.

1 Introduction

The study of multi-quark states in quantum chromodynam-
ics (QCD) has been a subject of wide interest for a good
review of the subject; see [1–32]. Their interpretation remains
a challenging task, and a number of phenomenological mod-
els [1–31] have been proposed to understand the various
experimental observations. Some of the notable heavier states
[13–24] which do not fit into the standard classification of
mesons (quark–antiquark (qq̄) states) and baryons (three-
quark states) [1–7] are the exotic charmonium-like X,Y, Z
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resonances [8,13–24]. Even some relatively light states [25–
31] do not find a proper interpretation within the standard
classification of mesons and baryons [25–31].

Various possibilities for understanding hadron structure
beyond the usual mesons and baryons [6–8] have been con-
sidered in the literature [1–31]. Some exotic states find a nat-
ural interpretation in terms of the four-quark or tetra-quark
(qq̄qq̄) states [6,7,13–31]. By now it is widely perceived
that not only heavy states such as the X,Y, Z states have an
exotic structure as tetra-quark states or diquark–antidiquark
states (QQ̄) [6,7,13–24], but even some light scalar mesons
could also be identified as diquark–antidiquark or tetra-quark
systems [25–30].

In the first approximation, even the nonet formed by
f0(980), a0(980), κ(900), σ(500) is interpreted as the low-
est QQ̄ multiplet [25–30], and the decuplet of scalar mesons
with masses above 1 GeV, formed by f0(1370), f0(1500),
f0(1710), a0(1450), K0(1430), is interpreted as the lowest
qq̄ scalar multiplet (cf. Refs. [25–30]).

The multi-quark hadron states can be extremely broad
[13–30], and thus they could escape experimental identi-
fication. In this context the diquark–antidiquark structures
[6,7,13–30] have been suggested to explain several decay
patterns of light scalar mesons [25–31], heavy-light diquarks
have also been introduced to study the X,Y, Z spectroscopy
[13–24].

Further, ’t Hooft et al. [29] and others [25–30] have shown
how one could explain the decays of the light scalar mesons
by assuming a dominant diquark–antidiquark structure for
the lightest scalar mesons [25–30], where the diquark is being
taken to be a spin zero anti-triplet color state [25–30]. Grin-
stein et al. [30] have studied a model of large-N scalar QCD
[25–30] in one space and one time dimension. Their model
admits [30] a Bethe–Salpeter equation describing the discrete
spectrum of qq̄ bound states [25–30].
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The work of Grinstein et al. [30] is seen to further support
this hypothesis. Here, the gauge fields have been considered
in the adjoint representation of SU (N ) and the scalar fields in
the fundamental representation. The theory is asymptotically
free and linearly confining. Various aspects of this theory
have been studied by several authors in various contexts [25–
31].

Also, because there is no spin–statistics connection in one
space and one time dimension, the spinor QCD2 is struc-
turally similar to the scalar QCD2 [9–12]. It is therefore
enough to consider the scalar QCD2 for a study of several
aspects of QCD2 [9–12]. The large-N behavior of scalar
QCD2 has been studied in detail by ’t Hooft and others [8–
12].

In view of the above, the motivations for our present stud-
ies could easily be highlighted. In the first place, the work of
’t Hooft et al. [29] and others [25–30] has clearly shown how
one could achieve a satisfactory explanation of light scalar
meson decays by assuming a dominant diquark–antidiquark
structure for the lightest scalar mesons [25–30] (where the
diquark is being taken to be a spin zero anti-triplet color state).
In this work, a coherent picture of scalar mesons as a mix-
ture of tetra-quark states (dominating the lightest mesons)
and heavy quark–antiquark states (dominating the heavier
mesons) emerges [29].

The studies of Grinstein et al. [30] on large-N scalar
QCD2 [25–30] further support the hypothesis of ’t Hooft
et al. [29] and others [25–30], about the assumption of a domi-
nant diquark–antidiquark structure for the scalar mesons. The
work of Grinstein et al. [30] is based on the assumption that
scalar QCD2 with a large number of colors could be used to
compute the mass spectrum as well as to estimate the mass of
the first radial excitation of the lowest diquark–antidiquark
scalar meson. They have applied a numerical procedure to
solve the Bethe–Salpeter equations and compute the bound
state discrete spectrum of this confining theory. They have
even obtained the possible masses of the spinor and scalar
quarks by imposing the requirement that the ratio of the
ground state eigenvalues of the spinor and scalar Bethe–
Salpeter equations, respectively, is equal to the ratio of the
physical masses mπ/mσ (cf. Ref. [30], for further details).
They have even extended their discussion to the case of spin-
one diquarks.

The above studies of Grinstein et al., based on scalar QCD
with a large number of colors in one space and one time
dimension, clearly point toward some definite possibilities of
gaining some insight, at least at the qualitative level, about
the physical tetra-quark states in three space and one time
dimensions. In addition to this, it may also be possible to
study this theory, in three space and one time dimensions, at
a somewhat later point of time.

In view of the above, it seems reasonable to pursue these
studies further. In fact, in a recent paper [31], we have studied

the light-front (LF) quantization (LFQ) [3,33–40] of this the-
ory (with a mass term for the complex scalar (diquark) field
but without the Higgs potential) on the hyperplanes defined
by the equal light-cone time τ = x+ = (x0+x1)/

√
2 = con-

stant [3,35–40], using the Hamiltonian [33] and path integral
[34–36] formulations.

In the present work, we study the LF Hamiltonian, path
integral, and Becchi–Rouet–Stora and Tyutin (BRST) [41–
43] formulations of this theory in the presence of a Higgs
potential [3,37–40] under appropriate light-cone gauge-
fixing conditions. The LF theory is seen to be gauge invariant
(GI), possessing a set of first-class constraints. We absorb the
mass term for the complex scalar (diquark) field φ in the def-
inition of our Higgs potential [30,31], and then we study the
action of the theory.

One of the important motivations for introducing the
Higgs potential is to study the aspects related to the spon-
taneous symmetry breaking (SSB) [37–39] in the theory.
Another important motivation for introducing the Higgs
potential in the theory is related to our long-term goal related
to the study of this theory using the discrete light-cone (LC)
quantization (DLCQ) along with the coherent state formal-
ism [44–52], where we wish not only to study the aspects of
the SSB but we also wish to make contact with the exper-
imentally observational aspects of this theory using the LF
Hamiltonian approach to study the two- and three-body rel-
ativistic bound state problems [30,44–52]. This work there-
fore constitutes a part of our bigger project, which involves a
study of some aspects related to the spontaneous symmetry
breaking as well as to a study of its DLCQ using the coherent
state formalism [44–52], in the LF Hamiltonian approach to
study the two- and three-body relativistic bound state prob-
lems [44–52].

In this sense one could think that the theory under con-
sideration could perhaps provide a good basic field theoretic
framework for a study of a large class of diquark–antidiquark
or the tetra-quark states [4–7,13–31], which have been inves-
tigated in various experiments. These are some of the moti-
vations that necessitate our present studies.

Now, because the theory is GI, we also study its BRST
quantization [41–43] under appropriate BRST light-cone
gauge-fixing. Usually in the Hamiltonian and the path inte-
gral quantization of a theory the gauge invariance of the the-
ory gets broken because the procedure of gauge-fixing con-
verts the set of first-class constraints of the theory into a set
of second-class constraints. A possible way to achieve the
quantization of a GI theory, such that the gauge invariance
of the theory is maintained even under gauge-fixing is to use
a generalized procedure, called BRST quantization [41–43],
where the extended gauge symmetry, called the BRST sym-
metry, is maintained even under gauge-fixing.

In the next section, we briefly recap some basics of the
instant-form (IF) quantization (IFQ) of this theory in the
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presence of a Higgs potential. Its LFQ in the presence of
a Higgs potential is then considered in Sect. 3, using the
Hamiltonian and path integral formulations. The light-front
BRST formulation of the theory is studied in Sect. 4, under
the appropriate BRST light-cone gauge-fixing. Finally, the
summary and discussion are given in Sect. 5.

2 Some basics of the theory

In this section we recap some of the basics of this theory of
large-N scalar QCD2 in the presence of a Higgs potential,
studied earlier by Grinstein et al. without a Higgs potential
[but with a mass term for the complex scalar (diquark) field
φ] [30] (the mass term for the complex scalar (diquark) field
φ is absorbed in the definition of our Higgs potential [30,31]).
The theory of large-N scalar QCD2 that we propose to study
is defined by the action [30]

S =
∫

L(φ, φ†, Aμ)d2x

L =
[
−1

4
FμνF

μν + ∂μφ†∂μφ + [iρ(φAμ∂μφ†

−φ†Aμ∂μφ) + ρ2φ†φAμA
μ] − V (|φ|2)

]

V (|φ|2) =
[
μ2(φ†φ) + λ

6
(φ†φ)2

]
, |φ|2 = φ†φ,

φ0 �= 0, (−μ2 > 0, λ > 0)

g2 := (4παs), ρ = g√
N

gμν = gμν :=
(

1 0
0 −1

)
, μ, ν = 0, 1 (I F),

gμν = gμν :=
(

0 1
1 0

)
, μ, ν = +,− (FF). (1)

Here αs is the QCD coupling constant. The covariant deriva-
tive in our considerations is defined as

Dμ = (∂μ + iρAa
μT

a) = (∂μ + iρAμ) (2)

where Aμ(≡ Aa
μT

a) are the gluon gauge fields and T a are
the generators of the Lie algebra corresponding to the group
SU (Nc) obeying the commutation relations

[T a, T b] = i f abcT c; a, b, c = 1, 2, . . . , (N 2
c − 1) (3)

with Nc = 2 for SU (2) and Nc = 3 for SU (3). The structure
constants f abc are antisymmetric in all indices. The gluon
gauge field strength Fa

μν is defined as

Fa
μν = [(∂μA

a
ν − ∂ν A

a
μ) + ρ(Aμ × Aν)

a]
= [(∂μA

a
ν − ∂ν A

a
μ) + ρ f abc Ab

μA
c
ν]. (4)

Here (Aμ × Aν)
a = f abc Ab

μA
c
ν defines the cross product for

any two “isotopic” vectors: Aa
μ and Aa

ν [12].
Further, the scalar fields φ and φ† transform as the N

and N̄ representations of the U (N ) color group, respectively
[4,5]. Also, following the work of Grinstein et al. [30], we
ignore all gluon self-coupling terms that arise from our cho-
sen Lagrangian.

In the Lagrangian density of our theory (defined by Eq.
1), the first term represents the kinetic energy of the gluon
field, the second term represents the kinetic energy term for
the scalar (diquark) field, the third term represents the inter-
action term for the scalar (diquark) field with the gluon field,
and the last term represents the Higgs potential which is kept
rather general, without making any specific choice for the
parameters μ2 and λ. However, they are chosen such that the
potential remains a double well potential with the vacuum
expectation value φ0 =< 0|φ(x)|0 >�= 0, so as to allow for
the spontaneous symmetry breaking in the theory. Also, the
mass term for the scalar (diquark) field has been absorbed
in the definition of the Higgs potential. The values μ2 = m2

and λ = 0 reproduce the theory of Grinstein et al. [30].
The Euler–Lagrange equations of motion of the theory

(with μ, ν = 0, 1 for IFQ and μ, ν = +,− for LFQ) are
obtained as

[∂μF
μν + iρ(φ∂νφ† − φ†∂νφ) + 2ρ2φ†φAν] = 0[

−μ2φ† − λ

3
(φ†φ)φ† + ρ2φ†AμA

μ + iρAμ∂μφ†

+ iρ∂μ(φ†Aμ) − ∂μ∂μφ†
]

= 0

[
−μ2φ − λ

3
(φ†φ)φ + ρ2φAμA

μ − iρAμ∂μφ

− iρ∂μ(φAμ) − ∂μ∂μφ

]
= 0. (5)

3 Instant-form quantization

We now consider the instant-form (IF) quantization (IFQ)
of the theory. The action of the above theory in the IF of
dynamics (with A0 ≡ Aa

0T
a, A1 ≡ Aa

1T
a) reads [30]

S =
∫

L dtdx

L =
[

1

2
(∂0A1 − ∂1A0)

2 + (∂0φ
†∂0φ − ∂1φ

†∂1φ)

+ ρ2φ†φ(A2
0 − A2

1) + iρ(φA0∂0φ
† − φA1∂1φ

†

−φ†A0∂0φ + φ†A1∂1φ) − μ2(φ†φ) − λ

6
(φ†φ)2

]
.

(6)

Here t = x0 = x0 and x = x1 = −x1. The canonical
momenta obtained from the above action are
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π := ∂L
∂(∂0φ)

= (∂0φ
† − iρA0φ

†),

π† := ∂L
∂(∂0φ†)

= (∂0φ + iρA0φ)

�0 := ∂L
∂(∂0A0)

= 0,

E(= �1) := ∂L
∂(∂0A1)

= (∂0A1 − ∂1A0). (7)

Here π, π†, �0(≡ �0aT a) and E := �1(≡ �1aT a) are the
momenta canonically conjugate, respectively, to φ, φ†, A0,
and A1. The above equations, however, imply that the theory
possesses only one primary constraint:

χ1 = �0 ≈ 0. (8)

The symbol ≈ here denotes a weak equality in the sense of
Dirac [33], and it implies that the constraints hold as a strong
equality only on the reduced hyper surface of the constraints
and not in the rest of the phase space of the classical theory
(similarly one can consider it as a weak operator equality for
the corresponding quantum theory).

The canonical Hamiltonian density corresponding to L is

Hc := [π∂0φ + π†∂0φ
† + �0∂0A0 + E∂0A1 − L]

=
[

1

2
(E)2 − A0∂1E + π†π + ∂1φ

†∂1φ + ρ2A2
1φ

†φ

−iρA0(φπ − φ†π†) − iρA1(φ
†∂1φ − φ∂1φ

†)

+μ2(φ†φ) + λ

6
(φ†φ)2

]
. (9)

After including the primary constraint χ1 in the canonical
Hamiltonian density Hc with the help of the Lagrange mul-
tiplier field u, the total Hamiltonian density HT could be
written as

HT =
[
�0u + 1

2
(E)2 − A0∂1E + π†π + ∂1φ

†∂1φ

+ρ2A2
1φ

†φ − iρA0(φπ − φ†π†) − iρA1(φ
†∂1φ

−φ∂1φ
†) + μ2(φ†φ) + λ

6
(φ†φ)2

]
. (10)

Hamilton’s equations of motion of the theory that preserve
the constraints of the theory in the course of time could be
obtained from the total Hamiltonian: HT = ∫ HT dx1 (and
are omitted here for the sake of brevity). Demanding that the
primary constraint χ1 be preserved in the course of time, one
obtains the secondary Gauss-law constraint of the theory as

χ2 = [∂1E + iρ(φπ − φ†π†)] ≈ 0. (11)

The preservation of χ2 for all times gives rise to one further
constraint:

χ3 = [2ρ2A0π
†φ† + iρA1(φ∂1φ

† + φ†∂1φ)] ≈ 0. (12)

The theory is thus seen to possess only three constraints, χi

(with i = 1, 2, 3). The matrix Rαβ of the Poisson brackets
among the set of constraints χi with (i = 1, 2, 3) is seen
to be singular (the other details of the matrix Rαβ are omit-
ted here for the sake of brevity). This implies that the set of
constraints χi is first class and that the theory under consid-
eration is gauge invariant (GI). Consequently the theory is
seen to possess the local vector gauge symmetry defined by
the local vector gauge transformations,

δφ = iρβφ, δφ† = −iρβφ†, δA0 = ∂0β, δA1 = ∂1β

(13)

where β ≡ β(x0, x1) is an arbitrary real function of its
arguments. This theory could now be quantized under some
appropriate gauge-fixing conditions, e.g., under the time-
axial or temporal gauge: A0 ≈ 0. The details of this IFQ
are, however, outside the scope of the present work (actually,
one of the matrix elements of the matrix Rαβ involves a linear
combination of a Dirac distribution function δ(x1 − y1) and
its first derivative and finding its inverse is a rather non-trivial
task). We now proceed with the LFQ of this theory in the next
section.

4 Light-front Hamiltonian and path integral
quantization

In this section we study the LF Hamiltonian and path inte-
gral formulations [30–36] of the above theory [30] under
appropriate LC gauge-fixing. The action for the scalar the-
ory in LF coordinates x± := (x0 ± x1)/

√
2 (with A+ ≡

A+aT a, A− ≡ A−aT a) reads

S =
∫

L dx+dx−

L =
[

1

2
(∂+A+ − ∂−A−)2 + (∂+φ†∂−φ + ∂−φ†∂+φ)

−μ2(φ†φ) − λ

6
(φ†φ)2 + iρA+(φ∂+φ† − φ†∂+φ)

+iρA−(φ∂−φ† − φ†∂−φ) + 2ρ2φ†φA+A−
]
. (14)

In Ref. [30], the authors have studied the above action, after
implementing the gauge-fixing condition (GFC) A+ ≈ 0
“strongly” in the above action. In contrast to this, we propose
to study the theory defined by the above action, following the
standard Dirac quantization procedure [33], and we do not fix
any gauge at this stage. We instead consider this gauge-fixing
condition (A+ ≈ 0) as one of the gauge constraints [33–36],
which becomes strongly equal to zero only on the reduced
hyper surface of the constraints and remains non-zero in the
rest of the phase space of the theory.
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It may be important to note here that one of the salient fea-
tures of the Dirac quantization procedure [33] is that in this
quantization the gauge-fixing conditions should be treated
on a par with other gauge constraints of the theory, which
are only weakly equal to zero in the sense of Dirac [33], and
they become strongly equal to zero only on the reduced hyper
surface of the constraints of the theory and not in the rest of
the phase space of the classical theory (in the correspond-
ing quantum theory these weak equalities become the weak
operator equalities).

Another thing to be noted here is that we have introduced
the Higgs potential in our present work and we have absorbed
the mass term for the scalar (diquark) field in the definition of
our Higgs potential [30,31,37–39]. We now proceed to study
the LF Hamiltonian and path integral formulations of the
theory defined by the above action. The LF Euler–Lagrange
equations of motion of the theory are

[(∂+∂−A− − ∂+∂+A+) + iρ(φ∂+φ† − φ†∂+φ)

+2ρ2φ†φA−] = 0

[(∂+∂−A+ − ∂−∂−A−) + iρ(φ∂−φ† − φ†∂−φ)

+2ρ2φ†φA+] = 0[
−μ2φ† − λ

3
φ†φφ†−2∂+∂−φ†+2iρ(A+∂+φ†+A−∂−φ†)

+iρφ†(∂+A+ − ∂−A−) + 2ρ2φ†A+A−
]

= 0

[
−μ2φ − λ

3
φ†φφ − 2∂+∂−φ − 2iρ(A+∂+φ + A−∂−φ)

−iρφ(∂+A+ − ∂−A−) + 2ρ2φA+A−
]

= 0. (15)

In the following, we consider the Hamiltonian formulation
of the theory described by the above action. The canonical
momenta obtained from the above action are

π := ∂L
∂(∂+φ)

= (∂−φ† − iρA+φ†),

π† := ∂L
∂(∂+φ†)

= (∂−φ + iρA+φ)

�+ := ∂L
∂(∂+A−)

= 0,

�− := ∂L
∂(∂+A+)

= (∂+A+ − ∂−A−). (16)

Here π, π†, �+(≡ �+aT a) and �−(≡ �−aT a) are the
momenta canonically conjugate, respectively, to φ, φ†, A−,
and A+.

The above equations, however, imply that the theory pos-
sesses three primary constraints:

χ1 = �+ ≈ 0, χ2 = [π − ∂−φ† + iρA+φ†] ≈ 0,

χ3 = [π† − ∂−φ − iρA+φ] ≈ 0. (17)

The canonical Hamiltonian density corresponding to L is

Hc = [π∂+φ + π†∂+φ† + �+∂+A− + �−∂+A+ − L]
=

[
1

2
(�−)2 + �−(∂−A−) + μ2(φ†φ) + λ

6
(φ†φ)2

−iρA−(φ∂−φ† − φ†∂−φ) − 2ρ2φ†φA+A−
]
.

(18)

After including the primary constraints χ1, χ2, and χ3 in
the canonical Hamiltonian density Hc with the help of the
Lagrange multiplier fields u, v, and w, the total Hamiltonian
density HT could be written

HT =
[
(�+)u + (π − ∂−φ† + iρA+φ†)v

+ (π† − ∂−φ − iρA+φ)w + μ2(φ†φ) + λ

6
(φ†φ)2

+ 1

2
(�−)2 + �−∂−A− − iρA−(φ∂−φ† − φ†∂−φ)

− 2ρ2φ†φA+A−
]
. (19)

Hamilton’s equations of motion of the theory that preserve
the constraints of the theory in the course of time could be
obtained from the total Hamiltonian (and are omitted here
for the sake of brevity): HT = ∫ HT dx−. Demanding that
the primary constraint χ1 be preserved in the course of time,
one obtains the secondary Gauss-law constraint of the theory
as

χ4 = [∂−�− + iρ(φ∂−φ† − φ†∂−φ) + 2ρ2φ†φA+] ≈ 0.

(20)

The preservation of χ2, χ3, and χ4, for all times does not
give rise to any further constraints. The theory is thus seen
to possess only four constraints χi (with i = 1, 2, 3, 4). The
constraints χ2, χ3, and χ4 could, however, be combined into
a single constraint:

ψ = [∂−�− + iρ(φπ − φ†π†)] ≈ 0, (21)

and with this modification the new set of constraints of the
theory could be written as

�1 = χ1 = �+ ≈ 0,

�2 = ψ = [∂−�− + iρ(φπ − φ†π†)] ≈ 0. (22)

Further, the matrix of the Poisson brackets among the con-
straints �i , with (i = 1, 2) is seen to be a singular matrix,
implying that the set of constraints �i is first class and that
the theory under consideration is gauge invariant. Expres-
sions for the components of the vector gauge current density
of the theory are obtained as
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j+ = [−iρβφ∂−φ† + iρβφ†∂−φ − 2ρ2βA+φ†φ

−β(∂−∂+A+ − ∂−∂−A−)]
j− = [−iρβφ∂+φ† + iρβφ†∂+φ − 2ρ2βA−φ†φ

+β(∂+∂+A+ − ∂+∂−A−)]. (23)

The divergence of the vector gauge current density of the
theory could now easily be seen to vanish satisfying the con-
tinuity equation: ∂μ jμ = 0, implying that the theory pos-
sesses at the classical level a local vector gauge symmetry.
The action of the theory is indeed seen to be invariant under
the local vector gauge transformations:

δφ = −iρβφ, δφ† = iρβφ†, δA− = ∂+β, δA+ = ∂−β,

(24a)

δπ = [ρ2βφ†A++iρβ∂−φ†], δπ† =[ρ2βφA+−iρβ∂−φ],
(24b)

δu = δv = δw = δ�+ = δ�− = δ�u = δ�v = δ�w = 0

(24c)

where β ≡ β(x+, x−) is an arbitrary real function of its
arguments and �u,�v , and �w are the momenta canoni-
cally conjugate to the Lagrange multiplier fields u, v, and
w, respectively, which are treated here as dynamical fields.
Using the Euler–Lagrange equations of motion of the theory
and the expressions for the components of the vector gauge
current density of the theory, one could now easily show that

j+ = β(1 + ρ)[∂−∂−A− − ∂+∂−A+]. (25)

It may be important to point out here that Grinstein et al.
[30] have obtained an equation (under the gauge A+ = 0)
analogous to the above equation connecting ∂−∂−A− and j+
(cf. Eq. (5) of Ref. [30]), which has been shown [30] to admit
a solution (in the absence of background fields) [30], which
when substituted into the Lagrangian density of the theory
implies a linear potential between the charges (for further
details, we refer to Ref. [30]).

In order to quantize the theory using Dirac’s procedure we
now convert the set of first-class constraints of the theory ηi
into a set of second-class constraints, by imposing, arbitrarily,
some additional constraints on the system called gauge-fixing
conditions (GFCs) or the gauge constraints [33–36]. For the
present theory, we could choose, for example, the following
set of GFCs: ζ1 = A+ ≈ 0, ζ2 = A− ≈ 0. Here the gauge
A+ ≈ 0 represents the LC time-axial or temporal gauge and
the gauge A− ≈ 0 represents the LC coulomb gauge and
both of these gauges are physically important gauges. Corre-
sponding to this gauge choice, the theory has the following
set of constraints under which the quantization of the theory
could for example be studied:

ξ1 = �1 = χ1 = �+ ≈ 0, (26a)

ξ2 = �2 = ψ = [∂−�− + iρ(φπ − φ†π†)] ≈ 0, (26b)

ξ3 = ζ1 = A+ ≈ 0, (26c)

ξ4 = ζ2 = A− ≈ 0. (26d)

The matrix Rαβ of the Poisson brackets among the set of
constraints ξi with (i = 1, 2, 3, 4) is seen to be nonsingular
with the determinant given by

[||det(Rαβ)||] 1
2 = [∂−δ(x− − y−) δ(x− − y−)]. (27)

The other details of the matrix Rαβ are omitted here for the
sake of brevity. Finally, following the Dirac quantization pro-
cedure, the nonvanishing equal light-cone-time commutators
of the theory, under the GFCs A+ ≈ 0 and A− ≈ 0, are
obtained as

[φ(x+, x−), π(x+, y−)] = i δ(x− − y−), (28a)

[φ†(x+, x−), π†(x+, y−)] = i δ(x− − y−), (28b)

[φ(x+, x−), �−(x+, y−)] = 1

2
ρφ ε(x− − y−), (28c)

[φ†(x+, x−), �−(x+, y−)] = − 1

2
ρφ† ε(x− − y−),

(28d)

[π(x+, x−), �−(x+, y−)] = 1

2
ρ π ε(x− − y−), (28e)

[π†(x+, x−), �−(x+, y−)] = − 1

2
ρ π† ε(x− − y−),

(28f)

[�−(x+, x−), φ(x+, y−)] = 1

2
ρφ ε(x− − y−), (28g)

[�−(x+, x−), φ†(x+, y−)] = − 1

2
ρφ† ε(x− − y−),

(28h)

[�−(x+, x−), π(x+, y−)] = − 1

2
ρπ ε(x− − y−), (28i)

[�−(x+, x−), π†(x+, y−)] = 1

2
ρπ† ε(x− − y−). (28j)

The first-order Lagrangian density LI0 of the theory is

LI0 := [π(∂+φ) + π†(∂+φ†) + �+(∂+A−) + �−(∂+A+)

+�u(∂+u) + �v(∂+v) + �w(∂+w) − HT ]
=

[
1

2
(�−)2+∂+φ†∂−φ+∂−φ†∂+φ+2ρ2φ†φA+A−

−iρA−(φ†∂−φ − φ∂−φ†)

−iρA+(φ†∂+φ−φ∂+φ†)−μ2φ†φ− λ

6
(φ†φ)2

]
.

(29)

In the path integral formulation [34–36], the transition to
quantum theory is made by writing the vacuum to vacuum
transition amplitude for the theory called the generating func-
tional Z [Jk]. For the present theory [30], under the GFCs
ζ1 = A+ ≈ 0 and ζ2 = A− ≈ 0 and in the presence of the
external sources Jk , it reads
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Z [Jk] =
∫

[dμ] exp

[
i
∫

d2x[Jk�k + π∂+φ + π†∂+φ†

+�+∂+A− + �−∂+A+ + �u∂+u

+�v∂+v + �w∂+w − HT ]
]
. (30)

Here, the phase space variables of the theory are �k ≡
(φ, φ†, A−, A+, u, v, w) with the corresponding respective
canonical conjugate momenta �k ≡ (π, π†,�+,�−,�u,

�v,�w). The functional measure [dμ] of the generating
functional Z [Jk] under the above gauge-fixing is obtained
as

[dμ] = [∂−δ(x− − y−) δ(x− − y−)][dφ][dφ†][dA+]
×[dA−][du][dv][dw]

[dπ ][dπ†][d�−][d�+][d�u][d�v][d�w]
×δ[�+ ≈ 0]δ[A− ≈ 0]

δ[(∂−�− + iρ(φπ − φ†π†)) ≈ 0]δ[A+ ≈ 0]. (31)

The LF Hamiltonian and path integral quantization of the
theory under the set of GFCs: A+ ≈ 0 and A− ≈ 0 is now
complete.

5 Spontaneous symmetry breaking

In this section, we consider the spontaneous symmetry break-
ing (SSB) in the theory in (i) the so-called unitary gauge and
(ii) in the ’t Hooft gauge and show explicitly the existence of
SSB [37–39] in the theory in both cases.

Our Higgs potential possesses a local maximum at

φ(x) = φ0 =
√(−3μ2

λ

)
eiθ , 0 ≤ θ < 2π (32)

where the phase angle θ defines a direction in the complex
φ-plane. Here the vacuum state (or the ground state) of the
system is clearly non-unique, and the SSB will occur for any
particular choice of the value of θ . In our considerations we,
however, choose θ = 0, which in turn implies

φ0 =
√(−3μ2

λ

)
= v√

2
(33)

where we choose v > 0. We now parameterize the field
φ(x) in terms of its deviations from its vacuum expectation
value (VEV): < 0| φ(x) |0 >= φ0 = (v/

√
2) > 0

in terms of two real fields σ(x)and η(x), which measure the
deviations of the field φ(x) from the equilibrium ground state
configuration φ(x) = φ0. For this we expand our complex
scalar field φ(x) in terms of two real fields σ(x) and η(x) as

φ(x) = [ϕ0 + ϕ(x)] = 1√
2
[(v + σ(x)) + iη(x)] (34)

with

ϕ0 = v√
2
, ϕ(x) = 1√

2
[(σ (x)) + iη(x)], (35)

such that the real fields σ(x) and η(x) have vanishing vac-
uum expectation values. In fact, the term ϕ0 here could be
interpreted as the zero mode of the theory [37–39] and the
fluctuation field ϕ(x) could be interpreted as the normal mode
of the theory [37–39].

The Lagrangian density of our LF theory in terms of the
real fields σ(x) and η(x) (after dropping the terms which are
irrelevant for our discussions namely, a constant term, a term
linear in the field σ(x) and all the quartic interaction terms in
the fields) (with mσ = √

(2μ2 + λv2)/2 and mv = |vρ|)
becomes

L =
[

1

2
(∂+A+ − ∂−A−)2 + 2∂+σ∂−σ + 2∂+η∂−η

−1

2
m2

σ σ 2 + vρ[A+(x)∂+η(x) + A−(x)∂−η(x)]

− 1

12
(6μ2 + λv2)η2 + m2

vA
+A− + ρσ [A+(x)∂+η(x)

+A−(x)∂−η(x)]−ρη[A+(x)∂+σ(x)−A−(x)∂−σ(x)]
+2vρ2σ A+A− − 1

6
λvσ(σ 2 + η2)

]
. (36)

The first term in the above Lagrangian density represents the
kinetic energy of the electromagnetic field; the second term
represents the kinetic energy of the real scalar field σ(x); the
third term represents the kinetic energy of the real scalar field
η(x); the fourth term represents the mass term for the real
scalar field σ(x); the fifth term, which involves the product of
the fields A+(x) and A−(x) with the derivatives of the field
η(x), represents a quadratic interaction term involving the
fields A+(x), A−(x), and η(x), and it implies that the fields
A+(x), A−(x), and η(x) are not independent normal coordi-
nates and are therefore not free fields; consequently the sixth
and seventh terms cannot be interpreted as the mass terms
for the real scalar field η(x) and the electromagnetic field,
respectively. It also implies that the above Lagrangian density
contains an unphysical field; we will eliminate it under some
suitable gauge. The last four terms in the above Lagrangian
density represent simply the cubic interaction terms of the
theory, which will be needed for our later discussions.

5.1 The unitary gauge and SSB

We now consider this theory in the so-called unitary gauge.
In fact, for any complex field φ(x), a gauge transformation
can be found which transforms φ(x) into a real field such as

φ(x) = 1√
2
[v + σ(x)]. (37)
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The gauge in which the transformed field has this form is
called the unitary gauge. With this substitution the trans-
formed Lagrangian density in the so-called unitary gauge
(after dropping, as before, the terms which are irrelevant for
our discussion, namely, a constant term, a term linear in the
field σ(x), and the quartic interaction terms) becomes

LU = L0
U + Lint

U ,

L0
U =

[
1

2
(∂+A+ − ∂−A−)2 + 2∂+σ∂−σ

−1

2
m2

σ σ 2 + m2
vA

+A−
]

Lint
U =

[
2vρ2A+A−σ − λ

6
vσ 3

]
. (38)

The interaction part of the above Lagrangian density, how-
ever, does not contain any quadratic coupling terms involv-
ing the coupling of the fields σ(x), A+(x) and A−(x). Hence
treating the interaction part of the Lagrangian densityLint

U (x),
in perturbation theory, one could interpretL0

U as the free-field
Lagrangian density of a real Klein–Gordon field σ(x) and a
real massive vector field Aμ(x). Upon quantizing the the-
ory, the field σ(x) gives rise to neutral scalar bosons of mass
mσ = √

(2μ2 + λv2)/2 and the field Aμ(x) gives rise to
neutral vector bosons of mass mv = |vρ|. This is an explicit
demonstration of the SSB in the theory through the Higgs
mechanism where the massive spin 0 boson associated with
the field σ(x) is the Higgs boson (or Higgs scalar) of the
theory. Here the vector field Aμ(x) has become massive in
the process of SSB through the Higgs mechanism.

5.2 The light-front ’t Hooft gauge and SSB

We consider the LF ’t Hooft gauge defined by

[∂+A+ + ∂−A− − ρvη(x)] ≈ 0 (39)

and construct the LF ’t Hooft gauge-fixed Lagrangian density
of the theory L̃:

L̃ = [L + L′tH] (40)

by adding the LF ’t Hooft gauge-fixing term L′tH

L′t H =
[
−1

2
[∂+A+ + ∂−A− − ρvη(x)]2

]
(41)

to the Lagrangian density of the theory expressed in terms of
the real scalar fields σ and η given by Eq. (33) and ignoring
the terms irrelevant for our discussion as explained in the
foregoing. The LF ’t Hooft gauge-fixed action of the theory
S̃ could now be written after a partial integration (and with

mη = √
(6μ2 + λv2)/6) as

S̃ =
∫

L̃ dx+ dx−

L̃ =
[

1

2
(∂+A+ − ∂−A−)2 + 2∂+σ∂−σ + 2∂+η∂−η

−1

2
m2

σ σ 2 − 1

2
m2

ηη
2 + m2

vA
+A−

]
. (42)

The fields σ(x), η(x), and Aμ(x) could now be treated in
perturbation theory as three independent fields which could
be quantized in the usual manner. The LF ’t Hooft gauge
here reintroduces the field η(x), which gets eliminated in the
so-called unitary gauge. However, there are no real particles
corresponding to the quantized η(x) field and they appear in
a manner akin to the longitudinal and scalar photons of QED
theory.

6 Light-front BRST quantization

For the BRST formulation of the model, we rewrite the theory
as a quantum system that possesses the generalized gauge
invariance called BRST symmetry. For this, we first enlarge
the Hilbert space of our gauge-invariant theory and replace
the notion of gauge transformation, which shifts operators by
c-number functions, by a BRST transformation, which mixes
operators with Bose and Fermi statistics. We then introduce
the new anti-commuting variable c and c̄ (Grassman numbers
on the classical level and operators in the quantized theory)
and a commuting variable b such that [41–43]

δ̂φ = −iρcφ, δ̂φ† = iρcφ†, δ̂A− =∂+c, δ̂A+ =∂−c,
(43a)

δ̂π = [ρ2cφ†A++iρc∂−φ†], δ̂π† =[ρ2cφA+−iρc∂−φ],
(43b)

δ̂u = δ̂v= δ̂w= δ̂�+ = δ̂�− = δ̂�u = δ̂�v = δ̂�w =0,

(43c)

δ̂c = 0, δ̂c̄ = b, δ̂b = 0 (43d)

with the property δ̂2 = 0. We now define a BRST-invariant
function of the dynamical phase space variables of the theory
to be a function f such that δ̂ f = 0. Now the BRST gauge-
fixed quantum Lagrangian densityLBRST for the theory could
be obtained by adding to the first-order Lagrangian density
LI0 a trivial BRST-invariant function, e.g. as follows:

LBRST =
[

1

2
(�−)2 + ∂+φ†∂−φ + ∂−φ†∂+φ

− iρA−(φ†∂−φ − φ∂−φ†) − λ

6
(φ†φ)2 − μ2φ†φ
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+ 2ρ2φ†φA+A− − iρA+(φ†∂+φ − φ∂+φ†)

+ δ̂[c̄
(

∂+A− + 1

2
b

)
]
]
. (44)

The last term in the above equation is the extra BRST-
invariant gauge-fixing term. After one integration by parts,
the above equation could now be written as

LBRST =
[

1

2
(�−)2 + ∂+φ†∂−φ + ∂−φ†∂+φ

−iρA−(φ†∂−φ − φ∂−φ†) − μ2φ†φ − λ

6
(φ†φ)2

+2ρ2φ†φA+A− − iρA+(φ†∂+φ − φ∂+φ†)

+∂+A− + 1

2
b2 + (∂+c̄)(∂+c)

]
. (45)

Proceeding classically, the Euler–Lagrange equation for b
reads

− b = (∂+A−); (46)

the requirement δ̂b = 0 then implies

− δ̂b = [δ̂(∂+A−)], (47)

which in turn implies

∂+∂+c = 0. (48)

The above equation is also an Euler–Lagrange equation
obtained by the variation of LBRST with respect to c̄. In intro-
ducing the momenta one has to be careful in defining those for
the fermionic variables. We thus define the bosonic momenta
in the usual manner so that

�+ := ∂

∂(∂+A−)
LBRST = b, (49)

but for the fermionic momenta with directional derivatives
we set

Πc := LBRST

←−
∂

∂(∂+c)
= ∂+c̄ , Πc̄ :=

−→
∂

∂(∂+c̄)
LBRST = ∂+c

(50)

implying that the variable canonically conjugate to c is (∂+c̄)
and the variable conjugate to c̄ is (∂+c). For writing the
Hamiltonian density from the Lagrangian density in the usual
manner we remember that the former has to be Hermitian,
so that

HBRST = [π∂+φ + π†∂+φ† + �+∂+A− + �−∂+A+

+�b∂+b + �u∂+u + �v∂+v

+�w∂+w + �c(∂+c) + (∂+c̄)�c̄ − LBRST]

=
[

1

2
(�−)2 + �−(∂−A− − 2ρ2φ†φA+A−

+μ2φ†φ + λ

6
(φ†φ)2 − iρA−(φ∂−φ†

−φ†∂−φ) − 1

2
(�+)2 + �c�c̄

]
. (51)

The consistency of the last two equations could now easily
be checked by looking at the Hamilton equations for the
fermionic variables. Also for the operators c, c̄, ∂+c, and ∂+c̄,
one needs to satisfy the anticommutation relations of ∂+c
with c̄ or of ∂+c̄ with c, but not of c, with c̄. In general, c and
c̄ are independent canonical variables and one assumes that
[41–43]

{�c,�c̄}={c̄, c}=∂+{c̄, c} = 0, {∂+c̄, c}=(−1){∂+c, c̄}
(52)

where { , } means an anticommutator. We thus see that the
anticommulators in the above equation are non-trivial and
need to be fixed. In order to fix these, we demand that c
satisfy the Heisenberg equation,

[c,HBRST] = i∂+c, (53)

and using the property c2 = c2 = 0 one obtains

[c,HBRST] = {∂+c̄, c}∂+c. (54)

The last three equations then imply

{∂+c̄, c} = (−1){∂+c, c̄} = i. (55)

Here the minus sign in the above equation is non-trivial and
implies the existence of states with negative norm in the space
of state vectors of the theory. The BRST charge operator Q is
the generator of the BRST transformations. It is nilpotent and
satisfies Q2 = 0. It mixes operators which satisfy Bose and
Fermi statistics. According to its conventional definition, its
commutators with Bose operators and its anti-commutators
with Fermi operators for the present theory satisfy

[φ, Q] = −iρφc, [φ†, Q] = iρφ†c, (56a)

[π, Q] = −iρcπ, [�†, Q] = iρcπ†, (56b)

[A+, Q]=∂−c, [A−, Q]=∂+c, [�+, Q]=[�−, Q]=0,

(56c)

{∂+c̄, Q}=[−∂−�− − iρ(φπ−φ†π†)], {c̄, Q}=(−�+).

(56d)

All other commutators and anti-commutators involving Q
vanish. In view of this, the BRST charge operator of the
present theory can be written as

Q =
∫

dx−[ic ∂−�− − ρc(φπ − φ†π†) − i∂+c �+]
(57)

123



174 Page 10 of 12 Eur. Phys. J. C (2015) 75 :174

This equation implies that the set of states satisfying the con-
ditions

�+|ψ〉 = 0, [∂−�− + iρ(φπ − φ†π†)]|ψ〉 = 0 (58)

belong to the dynamically stable subspace of states |ψ >

satisfying Q|ψ >= 0, i.e., it belongs to the set of BRST-
invariant states. In order to understand the condition needed
for recovering the physical states of the theory we rewrite
the operators c and c̄ in terms of fermionic annihilation and
creation operators. For this purpose we consider the Euler–
Lagrange equation for the variable c derived earlier. The solu-
tion of this equation gives (for the light-cone time x+ ≡ τ)

the Heisenberg operators c(τ ) and correspondingly c̄(τ ) in
terms of the fermionic annihilation and creation operators as

c(τ ) = G(τ ) + F(τ ), c̄(τ ) = G†(τ ) + F†(τ ). (59)

This at the light-cone time τ = 0 implies

c ≡ c(0) = F, c̄(τ ) ≡ c̄(0) = F†, (60a)

∂+c(τ ) ≡ ∂+c(0) = G, ∂+c̄(τ ) ≡ ∂+c̄(0) = G†. (60b)

By imposing the conditions (obtained earlier)

c2 = c̄2 = {c̄, c} = {∂+c̄, ∂+c} = 0, (61a)

{∂+c̄, c} = (−1){∂+c, c̄} = i, (61b)

we then obtain

F2 = (F†)2 = {F†, F} = {G†,G} = 0,

{G†, F} = (−1){G, F†} = i. (62)

Now let |0 > denote the fermionic vacuum for which

G|0 >= F |0 >= 0. (63)

Defining |0 > to have norm one, the last three equations
imply

< 0|FG†|0 >= i, < 0|GF†|0 >= −i, (64)

so that

G†|0 >�= 0, F†|0 >�= 0. (65)

The theory is thus seen to possess negative norm states in the
fermionic sector. The existence of these negative norm states
as free states of the fermionic part of HBRST is, however,
irrelevant to the existence of physical states in the orthogonal
subspace of the Hilbert space. In terms of annihilation and
creation operators HBRST is

HBRST =
[

1

2
(�−)2 + �−(∂−A−) + μ2φ†φ + λ

6
(φ†φ)2

−2ρ2φ†φA+A− − iρA−(φ∂−φ†

−φ†∂−φ) − 1

2
(�+)2 + G†G

]
, (66)

and the BRST charge operator is

Q =
∫

dx−[i F ∂−�− − ρF(φπ − φ†π†) − iG �+].
(67)

Now because Q|ψ >= 0, the set of states annihilated by
Q contains not only the set for which the constraints of the
theory hold but also additional states for which

F |ψ >= G|ψ >= 0, �+|ψ〉 �= 0,

[∂−�− + iρ(φπ − φ†π†)]|ψ〉 �= 0 (68)

The Hamiltonian is also invariant under the anti-BRST trans-
formation given by

¯̂
δφ = iρc̄φ,

¯̂
δφ† = −iρc̄φ†,

¯̂
δA− = −∂+c̄, ¯̂

δA+ = −∂−c̄,
(69a)

¯̂
δπ = [−ρ2c̄φ†A+ − iρc̄∂−φ†], ¯̂

δπ† = [−ρ2c̄φA+ + iρc̄∂−φ],
(69b)

¯̂
δu = ¯̂

δv = ¯̂
δw = ¯̂

δ�+ = ¯̂
δ�− = ¯̂

δ�u = ¯̂
δ�v = ¯̂

δ�w = 0,

(69c)
¯̂
δc = −b, ¯̂

δc̄ = 0,
¯̂
δb = 0 (69d)

with generator or anti-BRST charge

Q̄ =
∫

dx−[−i c̄ ∂−�− − ρc̄(φπ − φ†π†) + i∂+c̄ �+],
(70)

which in terms of annihilation and creation operators reads

Q̄=
∫

dx−[−i F† ∂−�−−ρF†(φπ − φ†π†)+iG† �+].
(71)

We also have

∂+Q = [Q, HBRST] = 0, ∂+ Q̄ = [Q̄, HBRST] = 0 (72)

with

HBRST =
∫

dx−HBRST, (73)

and we further impose the dual condition that both Q and Q̄
annihilate physical states, implying that

Q|ψ >= 0 and Q̄|ψ >= 0. (74)

The states for which the constraints of the theory hold sat-
isfy both of these conditions and are, in fact, the only states
satisfying both of these conditions. This is so because with

G†G = (−1)GG† (75)

there are no states of this operator with G†|ψ >= 0 and
F†|ψ >= 0, and hence no free eigenstates of the fermionic
part of HBRST that are annihilated by each of G, G†, F , and
F†. Thus the only states satisfying Q|ψ >= 0 and Q̄|ψ >=
0 are those that satisfy the constraints of the theory.
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Now because Q|ψ >= 0, the set of states annihilated by
Q contains not only the set of states for which the constraints
of the theory hold but also additional states for which the con-
straints of the theory do not hold. This situation is, however,
easily avoided by additionally imposing on the theory, the
dual condition: Q|ψ >= 0 and Q̄|ψ >= 0. By imposing
both of these conditions on the theory simultaneously, one
finds that the states for which the constraints of the theory
hold are the only states satisfying both of these conditions.
This can be traced to the conditions on the fermionic vari-
ables c and c̄ which constrain the solutions such that one
cannot have simultaneously c, ∂+c, and c̄, ∂+c̄ applied to
|ψ > giving zero. Thus the only states satisfying Q|ψ >= 0
and Q̄|ψ >= 0 are those that satisfy the constraints of the
theory and they belong to the set of BRST-invariant as well
as to the set of anti-BRST-invariant states.

Alternatively, one can understand the above point in terms
of fermionic annihilation and creation operators as follows.
The condition Q|ψ >= 0 implies that the set of states anni-
hilated by Q contains not only the states for which the con-
straints of the theory hold but also additional states for which
the constraints do not hold. However, Q̄|ψ >= 0 guarantees
that the set of states annihilated by Q̄ contains only the states
for which the constraints hold, simply because G†|ψ >�= 0
and F†|ψ >�= 0. This completes the BRST formulation of
the theory.

7 Summary and discussion

Theoretical and experimental studies of multi-quark states
are challenging and a number of phenomenological models
[1–31] have been proposed in order to provide an interpreta-
tion and gain understanding.

Some of the states [4–7,13–24] which do not fit into
the standard classification of mesons (two quark states) and
baryons (three quark states) [1–7] find a rather more nat-
ural interpretation in terms of the tetra-quark states or the
diquark–antidiquark states [4–7,13–30].

In particular, as mentioned in the foregoing, Grinstein et al.
[30] have studied a model of large-N scalar QCD2 [30]. This
theory of Grinstein et al. [25–30] admits a Bethe–Salpeter
equation describing the discrete spectrum of qq̄ bound states.
In the their work, the gauge fields have been considered in
the adjoint representation of SU (N ) and the scalar fields in
the fundamental representation. The theory is asymptotically
free and linearly confining. Various aspects of this theory
have been studied by several authors in various contexts [25–
30].

In Ref. [31], we have studied the LFQ of the theory of
large-N scalar QCD2 studied by Grinstein et al. [30],without
Higgs potential [25–30] on the LF using the Hamiltonian
[33] and path integral [34–36] formulations. In in the present

work, we have studied this theory in the presence of a Higgs
potential and we have studied its LFQ using the Hamiltonian,
path integral, and BRST formulations [41–43]. We have also
shown explicitly the occurrence of the SSB in the theory in
the unitary gauge as well as in the LF ’t Hooft gauge [37–39].

In the Hamiltonian and path integral quantization of the
theory the gauge invariance of the theory gets broken because
of the gauge-fixing. In view of this, we go to a more gener-
alized quantization procedure, called the BRST quantization
[41–43], where the extended gauge symmetry of the theory
is maintained even under gauge-fixing.

In the present work, we have studied the LF-BRST quan-
tization of the theory under some specific LF-BRST gauge-
fixing (where a particular but non-unique gauge has been cho-
sen). In this procedure, we embed the original GI theory into
a BRST system, the quantum Hamiltonian HBRST (which
includes the gauge-fixing contribution) commutes with the
BRST charge as well as with the anti-BRST charge. The new
extended gauge symmetry which replaces the gauge invari-
ance is maintained (even under the BRST gauge-fixing) and
projecting any state onto the sector of BRST- and anti-BRST-
invariant states yields a theory which is isomorphic to the
original GI theory.
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