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Abstract Non-decoupling D-term extensions of the MS-
SM enhance the tree-level Higgs mass compared to the
MSSM; therefore, they relax fine-tuning and may allow
lighter stops with rather low masses even without maximal
mixing. We present the anatomy of various non-decoupling
D-term extensions of the MSSM and explore the potential
of the LHC and of the International Linear Collider (ILC)
to determine their deviations in the Higgs couplings with
respect to the Standard Model. Depending on the mass of the
heavier Higgs mH , such deviations may be constrained at the
LHC and determined at the ILC. We evaluate the Higgs cou-
plings in different models and study the prospects for a model
distinction at the different stages of the ILC at

√
s = 250,

500 and 1000 GeV, including the full luminosity upgrade and
compare it with the prospects at HL-LHC.
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1 Introduction

The mass of the recently discovered scalar particle mh ∼
125.5 GeV at the Large Hadron Collider (LHC) [1,2], as well
as its measured signal strengths, within the current achiev-
able precision, is consistent with the Higgs boson of the Stan-
dard Model (SM). In the context of Supersymmetry (SUSY),
the observed Higgs mass can be obtained within the Minimal
Supersymmetric Standard Model (MSSM), as well as a num-
ber of well-defined extensions of the MSSM based on the two
Higgs doublet model [3]. However, having not yet observed
supersymmetric particles at the LHC so far may provide cir-
cumstantial evidence that the MSSM is fine-tuned to some
degree. The generation of such a heavy mass for the lightest
CP-even Higgs, indeed, often requires heavy stops, posing a
naturalness problem, or large stop mixings.

Motivated by the aesthetic of naturalness and in the
endeavour to uniquely determine the Higgs sector and its
scalar potential, in this paper we explore a number of con-
crete and well-motivated extensions of the MSSM and study
to what degree they lead to deviations from the SM that are
measurable at the LHC or at a future Higgs factory such as
the International Linear Collider (ILC).

There are two main categories of extensions of the MSSM
that may offer extra contributions to the Higgs mass at tree
level, thereby improving fine-tuning. The first category is
given by F-term extensions of the MSSM, in which addi-
tional fields interacting with the MSSM Higgs doublets –
either gauge singlets as in the NMSSM [4–9] (for a review
see [10–12]) or triplets [13–17] – raise the tree-level Higgs
mass via terms in the superpotential resulting in enhanced
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quartic couplings of the Higgs boson. The second cate-
gory that will be studied in this work is given by quiver
or D-term extensions of the MSSM [18,19] and see also
[20]. In these models, an MSSM gauge group extension
provides additional non-decoupling D-terms from the Käh-
ler potential, enhancing the tree-level Higgs mass through
extra contributions to the Higgs quartic couplings. In par-
ticular, at a scale above the TeV-scale, the extended gauge
group under which the Higgs fields are charged is bro-
ken to SU (2)L ⊗ U (1)Y ; the additional D-terms originate
from integrating out the heavier scalar fields that partici-
pate in the breaking of the gauge groups. This category of
MSSM extension is appealing for a series of reasons [18,19]:
the electroweak scale remains stable after running from
higher energies, as there are no log-enhanced 1-loop correc-
tions to Higgs soft masses; additional contributions to elec-
troweak precision observables can be suppressed and gauge
coupling unification is not obviously spoiled. In addition,
these models are consistent and compatible with all frame-
works of supersymmetry breaking, the Higgs enhancement
being largely independent of how SUSY-breaking effects are
parametrised.1

We consider gauge extended MSSM models in which the
gauge group features two copies of the electroweak gauge
group SU (2)⊗U (1), GA in site A and GB in site B. At lower
energies, at a scale �1 TeV, GA ⊗ GB diagonally breaks to
the SM electroweak group SU (2)L ⊗ U (1)Y . In this case,
two main classes of models can be identified. In the first
class, which we will refer to as the “vector Higgs” case, the
two Higgs doublets Hu and Hd are both charged either under
GA or under GB , transforming as a vector representation
(Hu, Hd) of GA ⊗GB . The second class, the “chiral Higgs”
case, instead, has Hu and Hd charged under different copies
of SU (2) ⊗U (1) [21,22].

We supply an anatomy of these types of models, explore
whether they lead to predictions that are experimentally
testable at the LHC and the ILC, and we use them as a pre-
dictive guide concerning the stops masses and the trilinear
At .

The approach we take here will be bottom-up in which
we neglect effects from the renormalisation group equations
(RGE) and focus on these extensions as deformations of the
MSSM. This approach is complementary to that of [23], for
instance, where a fully UV-complete two-loop spectrum gen-
erator is used (and made publicly available, [24]) to analyse
the sparticle spectrum and Higgs physics of such a quiver
model. Other descriptions of quiver models as UV comple-
tions may be found, for example in [21,25–34].

1 At low energies the model is often well described by the MSSM plus
an effective action. Therefore the soft terms can be parametrised largely
independent of the D-terms enhancement, if the scale of diagonal gauge
symmetry breaking is small enough.

The outline of this paper is as follows: in Sect. 2 we com-
pare the minimisation conditions and naturalness between the
MSSM and some of its two-site quiver extensions. In Sect. 3
we explore the LHC’s and ILC’s capabilities to resolve such
D-terms enhancements of the MSSM. In Sect. 4 we present
a discussion and conclude. In Appendix A we supply a more
general derivation of the D-terms for Higgs bosons, squarks
and sleptons applicable to both chiral and vector Higgs mod-
els.

2 A catalogue of non-decoupling D-terms

D-terms extensions of the MSSM were first explored in
[18,19], as they may provide a tree-level enhancement of the
Higgs mass mh through a modification of the Higgs quar-
tic terms in the scalar potential. A higher tree-level mass
requires smaller loop-level corrections to reproduce the mea-
sured Higgs mass with respect to the MSSM, with improved
consequences for naturalness. The main idea is the follow-
ing: the D-terms induced by an extended gauge group diag-
onally breaking to the MSSM’s SU (2)L ⊗U (1)Y contribute
to the Higgs quartic potential. The gauge symmetry break-
ing is caused by the acquisition of VEVs by some linking
fields charged under the gauge group. The minimum of the
potential is in a D-flat direction, leaving the Higgs doublets
massless (at tree level). Once the heavy linking fields are
integrated out, the associated D-terms do not decouple in
the supersymmetric limit as soft masses for the linking fields
are introduced at a scale equal or higher than the breaking
scale, remaining in the Higgs scalar potential at lower ener-
gies. The additional non-decoupling D-terms raise the Higgs
tree-level mass while introducing an effective hard SUSY
breaking in the quartic scalar couplings. For more details of
the generation of non-decoupling D-terms, see [18,19,23]
and Appendix A.

Non-decoupling D-terms extensions of MSSM may arise
in two- (or more) site quiver models, for example with a
single linking field L between the sites, in the bifundamental
representation under the two gauge group copies of SU (2), as
is the case in [27–30]. Alternatively, non-decoupling D-terms
are predicted in two-site quiver models with a bifundamental
and antibifundamental pair of linking fields L , L̃ [23,25,26,
31–36]. Furthermore, as quiver models are related to extra-
dimensional models through deconstruction [32,37],2 non-
decoupling D-terms may also appear in the latter context with
a possible explanation of flavour hierarchies and a squark soft
mass hierarchy (this was pointed out in [23]).

2 A number of models of supersymmetry breaking involve strong cou-
pling or holography and this may be usefully approximated by holo-
graphic deconstruction [38–40], its most elementary example is given
by a three-site quiver model.
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We wish to compare here the minimisation conditions and
the implications for naturalness within the MSSM and some
of its possible quiver extensions.

The gauge group of the MSSM extensions we consider
is given by G = SU (3)c ⊗ GA ⊗ GB , where GA, GB are
copies of SU (2) ⊗U (1), respectively, located in sites A and
B. Regardless of how supersymmetry is broken, mediated
either by gauge, gravity or some other effect, it is reason-
able to approximate the low energy theory of these two-site
models with the MSSM supplemented by an effective action
to account for the D-terms. This approach neglects RGE
effects, while the full implementations of the UV comple-
tions, although warranted such as in [23], are beyond the
scope of this work.

2.1 Minimal supersymmetric Standard Model (MSSM)

It is useful, in the context of the MSSM and its D-term exten-
sions, to use the most general renormalisable scalar potential
for a two Higgs-doublet model (2HDM) [3],

V = m2
1|Hu|2 + m2

2|Hd|2 + m2
12(HuHd + H†

u H
†
d )

+ λ1

2
|Hd|4 + λ2

2
|Hu|4 + λ3|Hu|2|Hd|2

+ λ4|H†
d Hu|2 + λ5

2
[(Hu · Hd)

2 + c.c.]
+ λ6|Hd|2[(Hu · Hd) + c.c.]
+ λ7|Hu|2[(Hu · Hd) + c.c.], (2.1)

with all parameters real and CP-conserving. To recover the
MSSM Higgs scalar potential, we take

m2
1 = (|μ|2 + m2

Hu
), m2

2 = (|μ|2 + m2
Hd

), m2
12 = Bμ,

λ1 = λ2 = g2 + g′ 2

4
, −λ3 = g2 + g′ 2

4
, λ4 = 1

2
g2,

λ5 = λ6 = λ7 = 0, (2.2)

with g′, g, respectively, being the Standard Model hyper-
charge and the SU (2)L coupling constants.3

The up- and down-Higgs doublet scalar fields may be
written in terms of their charged and neutral components,
Hu = (H+

u , H0
u ), Hd = (H0

d , H−
d ). The minimisation con-

ditions ∂V
∂H0

d
= 0 = ∂V

∂H0
u

should be fulfilled for the consis-

tency of the electroweak breaking minimum of the potential.
The VEVs of the neutral components are defined as [41]

〈H0
u 〉 = vu√

2
, 〈H0

d 〉 = vd√
2
, (2.3)

3 In the following, we take g1 to be SU (5) GUT-normalised, such that
g1 = g1, GUT = √

5/3g′, g2 = g and m2
Z = 1

4 ( 3
5 g

2
1 + g2

2)(v2
u + v2

d).

v2 ≡ v2
u + v2

d = (246 GeV)2,
vu

vd
≡ v sin β

v cos β
= tan β.

(2.4)

The minimisation condition equations then read

m2
Hu

+ |μ|2 − Bμ cot β − m2
Z

2
cos(2β) = 0, (2.5)

m2
Hd

+ |μ|2 − Bμ tan β + m2
Z

2
cos(2β) = 0, (2.6)

where mHu and mHd are the Higgs soft masses and Bμ is the
MSSM b-term. Taking m2

Z and tan β as output parameters,
Eqs. (2.5), (2.6) can be rewritten as

sin(2β) = 2Bμ

m2
Hu

+ m2
Hd

+ 2|μ|2 , (2.7)

m2
Z = |m2

Hd
− m2

Hu
|

√
1 − sin2(2β)

− m2
Hu

− m2
Hd

− 2|μ|2. (2.8)

In the MSSM, after electroweak symmetry breaking there
are five physical scalar states: the two CP-even neutral scalars
h and H , the CP odd neutral scalar A0, and the conjugate
charged Higgses H+, H−. Using the tree-level scalar poten-
tial minimised around the VEVs vu and vd, one obtains the
set of masses

m2,MSSM
h,H = 1

2

(
m2

A0 + m2
Z

∓
√

(m2
A0 − m2

Z )2+ 4m2
Zm

2
A0 sin2(2β)

)
, (2.9)

m2,MSSM
A0 ≡ 2Bμ

sin 2β
= 2|μ|2 + m2

Hu
+ m2

Hd
, (2.10)

m2,MSSM
H± = m2

A0 + m2
W. (2.11)

The tree-level Higgs mass is bounded by m2
h,0 ≤

m2
Z cos2 2β, requiring large loop corrections to reproduce the

measured SM-like Higgs mass at ∼125.5 GeV. The MSSM
Higgs mass squared in the decoupling limit mA0 � mZ

can be approximated at one loop (with two-loop leading-log
effects included) by [12,42–46]

m2, MSSM
h,1 � m2

z cos2 2β + 3

2π2v2

[

m4
t, r (

√
mtMt̃ ) ln

M2
t̃

m2
t

+m4
t, r (Mt̃ )

X2
t

M2
t̃

(

1 − X2
t

12M2
t̃

)]

, (2.12)

where mt, r (�) is the running top mass at the scale � and
M2

t̃
= mt̃1mt̃2 ; Xt = At − μ∗ cot β, with At the stop soft

SUSY-breaking trilinear coupling, quantifies stop mixing.4

This expression assumes that the left and right soft parame-
ters of the stops are equal mQ3 = mUR .

4 In the following we assume μ to be real.
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GA

L

˜L
Hu Hd

SSMgenerations

GB

Fig. 1 The quiver module of the electroweak sector which leads to
the vector-Higgs D-term, as in Table 1. The supersymmetric standard
model is on site A, the linking fields (L , L̃) connect the two sites. The
singlet field (K ) is not shown. The resulting non-decoupling vector-
Higgs D-term is displayed in Eq. (2.13)

Table 1 The matter content of the theory that may lead to a vector-
Higgs non-decoupled D-term for both SU (2)L and U (1)Y , with the
Higgs doublets on site A. f = 1, 2, 3 labels the generations. The singlet
K̂ couples to the linking fields in the superpotential and it is introduced
to generate a suitable scalar potential for the linking fields; see also [23].
This model is represented in Fig. 1

Superfields Spin 0 Spin 1
2 GA ⊗ GB ⊗ SU (3)c

q̂ f q̃ f q f (2, 1
6 , 1, 0, 3)

d̂ f d̃ f ∗
R d f ∗

R (1, 1
3 , 1, 0, 3)

û f ũ f ∗
R u f ∗

R (1,− 2
3 , 1, 0, 3)

l̂ f l̃ f l f (2,− 1
2 , 1, 0, 1)

ê f ẽ f ∗
R e f ∗

R (1, 1, 1, 0, 1)

Ĥd Hd H̃d (2,− 1
2 , 1, 0, 1)

Ĥu Hu H̃u (2, 1
2 , 1, 0, 1)

L̂ L ψL (2,− 1
2 , 2, 1

2 , 1)

ˆ̃L L̃ ψL̃ (2, 1
2 , 2,− 1

2 , 1)

K̂ K ψK (1, 0, 1, 0, 1)

2.2 Vector Higgs Quiver Model

The first class of two-sites quiver models that we consider
is given by the “vector Higgs” case, in which both Higgs
doublets of the MSSM are on the same site [18,19]. The
particular scenario in which the Higgs doublets as well as the
other MSSM matter fields are on site A, i.e. charged under
GA, is depicted in Fig. 1, as described in Table 1.

As outlined at the beginning of the section, after the sym-
metry breaking of GA ⊗ GB to SU (2)L ⊗ U (1)Y , the real
uneaten scalar components of the linking fields appear in
both the A and the B site scalar D-term potential. When
these components are integrated out, in the effective theory
the following relevant terms are added to the MSSM Higgs
potential:

δL = −3

5

g2
1	1

8
(H†

u Hu − H†
d Hd)

2

−g2
2	2

8

∑

a

(H†
u σ aHu + H†

d σ aHd)
2 + · · · . (2.13)

The ellipsis denote terms involving other scalars of the model
as explained in Appendix A. 	1 and 	2 are respectively
given by

	A
1 =

(
g2
A1

g2
B1

)
m2

L

m2
v1 + m2

L

, 	A
2 =

(
g2
A2

g2
B2

)
m2

L

m2
v2 + m2

L

,

(2.14)

where gA1, gB1 are the U (1) couplings on site A and B
while gA2, gB2 are the SU (2) couplings;mL is the soft mass,
which we assume equal for both linking fields L , L̃ , and
mv1, mv2 are the masses of the heavy gauge bosons after
the symmetry breaking to SU (2)L ⊗ U (1)Y . The relation
between the MSSM gauge couplings and that of the extended
gauge groups takes the form

cos θi = gi
gAi

, sin θi = gi
gBi

. (2.15)

To enhance the D-terms one requires g2
A i > g2

B i , a condi-
tion that in some cases can be problematic for perturbative
unification, because, if most of the matter is charged under
GA, then a Landau pole may be reached below the GUT
scale (see Sect. 2.2.3). If we are not concerned by coupling
unification, then 	1 and 	2 may arise independently and in
general are not equal in value.

For the vector Higgs extension of the MSSM, the minimi-
sation conditions are given by

m2
Hu

+ |μ|2 − Bμ cot β − m2
Z + m2

	

2
cos(2β) = 0, (2.16)

m2
Hd

+ |μ|2 − Bμ tan β + m2
Z + m2

	

2
cos(2β) = 0, (2.17)

where we defined 4m2
	 = ( 3

5g
2
1	1 + g2

2	2)v
2. Equations

(2.16), (2.17) solved for m2
Z and tan β read

sin(2β) = 2Bμ

m2
Hu

+ m2
Hd

+ 2|μ|2 , (2.18)

m2
Z + m2

	 = |m2
Hd

− m2
Hu

|
√

1 − sin2(2β)
− m2

Hu
− m2

Hd
− 2|μ|2.

(2.19)

The tree-level Higgs masses are found simply by replacing
m2

Z → m2
Z + m2

	 and m2
W → m2

W(1 + 	2) in (2.9)–(2.11).
We report here for completeness the Higgs mass matrices,
and for brevity we set

g2
12 = 3

5
g2

1(1 + 	2
1) + g2

2(1 + 	2
2),

ĝ2
12 = −3

5
g2

1(1 + 	2
1) + g2

2(1 + 	2
2). (2.20)

The mass matrix for the CP-even Higgses, in the basis of the
real components of (H0

d , H0
u ) is given by
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m2
h =

(
mh,11 − 1

4g
2
12vdvu − Re[Bμ]

− 1
4g

2
12vdvu − Re[Bμ] mh,22

)
,

(2.21)

where

mh,11 = 1

8
(8m2

Hd
+ 8|μ|2 + g2

12(3v2
d − v2

u)), (2.22)

mh,22 = 1

8
(8m2

Hu
+ 8|μ|2 − g2

12(−3v2
u + v2

d)). (2.23)

For the pseudo-scalar Higgses, the mass matrix in the basis
of the imaginary components of (H0

d , H0
u ) reads

m2
A0 =

(
mA0,11 Re[Bμ]
Re[Bμ] mA0,22

)
, (2.24)

where

mA0,11 = 1

8
(8m2

Hd
+ 8|μ|2 + g2

12(−v2
u + v2

d)), (2.25)

mA0,22 = 1

8
(8m2

Hu
+ 8|μ|2 − g2

12(−v2
u + v2

d)). (2.26)

The mass matrix for the charged Higgses (H−
d , H+,∗

u ),

(H−,∗
d , H+

u ) reads

m2
H− =

(
mH−,11

1
4 (4B∗

μ+ (g2
2 + g2

2	2
2)vdvu)

1
4 (4Bμ+ (g2

2 + g2
2	2

2)vdvu) mH−,22

)
,

(2.27)

with

mH−,11 = 1

8
(8m2

Hd
+ 8|μ|2 + g2

12v
2
d + ĝ2

12v
2
u), (2.28)

mH−,22 = 1

8
(8m2

Hu
+ 8|μ|2 + g2

12v
2
u + ĝ2

12v
2
d). (2.29)

The non-decoupling D-terms contribution causes a shift
in the tree-level Higgs mass squaredm2

h,0 which in the decou-
pling limit results in

m2, vec
h,0 =

[

m2
Z +

(
3
5g

2
1	1 + g2

2	2

4

)

v2

]

cos2 2β. (2.30)

Also the masses of the other scalar of the model, the
sfermions, are affected by additional D-terms; see Appendix A.
For the analysed case with matter as in Table 1, the mixing
matrix M f̃ of a generic sfermion f̃ is given by

M2
f̃

=
⎛

⎝
m2

f̃L
+ m2

f + M̂2
Z (I f

3 − Q f s2
W) m f X∗

f

m f X f m2
f̃ R

+ m2
f + M̂2

Z Q f s2
W

⎞

⎠,

(2.31)

denoting sw = sin θW where θW is the Weinberg weak mixing
angle, and the useful abbreviation M̂2

Z ≡ (m2
Z +m2

	) cos 2β,
wherem2

	 = 1
2 ( 3

5g
2
1	1+g2

2	2)v
2. The off-diagonal element

X f is defined in terms of the soft SUSY-breaking trilinear
coupling A f via

X f = A f − μ∗{cot β, tan β}, (2.32)

where cot β applies for the up-type quarks, f = u, c, t , and
tan β applies for the down-type fermions, f = d, s, b, e, μ, τ .
Note that m f , Q f and I f

3 are the mass, charge and isospin
projection of the fermion f , respectively. Once diagonalised
this matrix leads to the light and heavy sfermion masses m f̃1
and m f̃2

. In particular the stop masses are given by

m2
t̃1, 2

= m2
t + 1

2

⎡

⎣M2
Q̃3

+ M2
U3

+ 1

2
M̂2

Z cos 2β

∓
√[

M2
Q3

− M2
U3

+ M̂2
Z cos 2β

(
1

2
− 4

3
sin2 θW

)]2

+ 4m2
t X

2
t

⎤

⎦,

(2.33)

writing mt̃L = MQ3 ,mt̃R = MU3 . To obtain the MSSM
mass expression one has just to set m	 = 0. For a light stop
scenario, this may have an appreciable effect and similarly,
for the stau which may be the NLSP (for a Goldstino LSP
scenario such as GMSB). In the case that the gA > gB , even
for the case of split families the above mixing matrix will
still apply to the third generation scalars on Site A. For the
sneutrinos the mass matrix is given by

m2
ν̃ = M2

L + 1

2
(m2

Z + m2
	) cos(2β). (2.34)

2.2.1 Higgs mass enhancement in the vector Higgs case

In the following discussion of the impact of non-decoupling
D-terms in the vector Higgs case on the Higgs mass, we take
for simplicity 	1 = 	2 ≡ 	. The effect of the tree-level
shift of the Higgs mass can significantly reduce fine-tuning
in the top-stop sector and allows for a reduced average stop
mass. This can be seen in Fig. 2 (similarly to [36]), where we
plot in the (mQ3, Xt ) and (mt̃1, Xt ) planes the Higgs mass
from Eq. (2.12) with the tree-level D-terms corrections from
Eq. (2.30), for different values of 	. While at the MSSM limit
	 = 0, for Xt = 0 GeV, we need mt̃1 � 4 TeV to reproduce
the correct Higgs, at 	 = 0.3 this is possible with mt̃1 � 1
TeV. One can also note that the value of the maximal mixing
scenario (the sharply acute concave kink in the contours for
|At | � √

6Ms) can further allow for a significantly smaller
Xt for increasing 	.

Discussing the expected order of the size of these D-
terms one can observe that with 	 ∼ O(1) the tree-level
Higgs mass would already be sufficiently large to account
for the observed 125.5 GeV Higgs mass. In [36] was shown
that demanding fine-tuning no worse than 1/10 together with
light stops one would expect 	 � 0.5. On the other hand,
in [23] it was found that O(0.1) 	 is more easily obtainable
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Fig. 2 Contours of the Higgs mass mh = 125.5 GeV in the (mQ3 , Xt ) plane (left panel) and in the (mt̃1 , Xt ) plane (right panel) for different values
of 	1 = 	2. We set mQ3 = mU3 , tan β = 10. The one-loop Higgs mass with tree-level D-terms corrections mh, 1 is plotted

Fig. 3 One-loop Higgs mass mh,1 with tree-level D-terms corrections vs. tan β for different values of 	1 = 	2 with Xt = 0 (left panel) and
Xt = −1 TeV (right panel), and with mt̃1 = 500 GeV. For comparison, 125.5 ± 3 GeV grid lines are plotted

and preferable if one is to accommodate perturbative unifi-
cation (see also Sect. 2.2.3). As these O(0.1)	 can still have
a noticeable effect on the Higgs mass but may have a less
easily observable deviation from the MSSM, we study here
the degree to which their effects can be determined at the
LHC and ILC.

In Figs. 3 and 4 one can see how enhancements due to
the non-decoupling D-terms arise significantly for tan β ∈
[1, 10], where it is harder to reproducemh = 125.5 GeV, and
stabilises for tan β � 10. Such results are similarly repro-
duced using the RG-evolution approach as in [23]. In partic-
ular in Fig. 4 it is evident that for an increasing value of 	,
a lower mt̃1 is required to get mh = 125.5 GeV, especially
compared to the MSSM limit of 	 = 0.

In the left panel of Fig. 5 we can see that to have null
mixing Xt = 0 GeV with tan β = 10, mt̃1 has to be in the
1–4 TeV range for 	 ∈ [0.01, 0.3]. On the right panel we

see that for the same values of 	 with a lower stop mass
(mt̃1 ∼ 500 GeV) still a |Xt | ∼ 1 TeV is required, with
negative values of Xt preferred by theory due to RGE effects,
which makes At = Xt + μ cot β run negative. In summary,
whilst the maximal mixing scenario is favoured, it is now
much more achievable, due to the D-term effects, for smaller
values of At , and even allows sub 2 TeV stops for the null or
small mixing scenario, when 	 ≥ 0.3.

The vector Higgs D-term extensions of the MSSM may
feature different generations of matter located on different
sites, for example having the first two generation matters on
site B [27,28], while typically the third generation is on the
same site as Hu since the stop mixing parameter Xt helps to
trigger EWSB. In an alternative version of the vector-Higgs
D-terms, the Higgses are both on site B. The correspond-
ing D-terms are now given by Eq. (2.13) with 	1 and 	2,
respectively, equal to
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Fig. 4 One-loop Higgs mass mh,1 with tree-level D-terms corrections vs. tan β for different values of mt̃1 with 	1 = 	2 = 0.1 (left panel) and
	1 = 	2 = 0.2 (right panel), with Xt = −500 GeV. For comparison, 125.5 ± 3 GeV grid lines are plotted

Fig. 5 One-loop Higgs mass mh,1 with tree-level D-terms corrections for different values of 	1 = 	2, with tan β = 10 and 125.5 ± 3 GeV grid
lines plotted for comparison. On the left panel, mh,1 vs. mt̃1 with Xt = 0 GeV; on the right panel, mh,1 vs. Xt with mt̃1 = 500 GeV

	B
1 =

(
g2
B1

g2
A1

)
m2

L

m2
v1 + m2

L

, 	B
2 =

(
g2
B2

g2
A2

)
m2

L

m2
v2 + m2

L

.

(2.35)

Notice that the role of the gauge couplings are reversed with
respect to the model of Table 1, having g2

B1 > g2
A1. This

can result in an easier perturbative unification if more mat-
ter is on site A than site B [19], although this can gener-
ate problems with EWSB. This has effects on naturalness
too, depending on where the source of supersymmetry break-
ing is introduced, in the context of supersymmetry breaking,
for instance Non-universal UV Higgs soft masses may be
required to trigger EWSB at low scales.

2.2.2 Additional fine-tuning and the Higgs mass

We should also consider the effect on naturalness of the
explicit breaking of supersymmetry from the non-decoupled
D-terms in the EFT we restrict to. Using a cut-off, the non-
decoupled D-terms in the vector case will lead to a quadratic
divergence that contributes to the Higgs mass counterterm at
one loop [19,36]:

δm2,vec
h,1 =

(
α 3

5g
2
1	1 + βg2

2	2

4

)
M2

16π2 , (2.36)

where α, β are determined by the precise matter content that
appears in the non-decoupling D-term, each generating a
one-loop contribution (see Sect. A), and M2 = m2

L . Such an
effect may arise both in the Higgs tadpole equations and in the
one-loop Higgs self energies. In a supersymmetric theory that
is only softly broken all quadratic divergences cancel exactly
at all orders in perturbation theory. In this case, Eq. (2.36)
gives an additional contribution depending on the size of
M2, which should then not be too large in order not to have
too much additional fine-tuning. This fine-tuning, F , may be
quantified as

δm2,vec
h,1

m2
h

= 1/F. (2.37)

In either case we have assumed in this paper, as in [19,36],
that M is small enough (3–10 TeV) such that this contribution
is neglected. It is interesting to consider the inclusion of these
terms if one considers larger values of M2 such as might arise
from future Z ′ exclusions.

123



150 Page 8 of 18 Eur. Phys. J. C (2015) 75 :150

2.2.3 Perturbative unification and the size of the D-terms

Here we briefly discuss gauge unification in these models as
a guide to constrain the maximum possible size of D-terms.

To maximise the effect of the vector-like D-terms such as
Eq. (2.14), one requires that the ratio of gauge couplings

Ri = g2
Ai/g

2
Bi , (2.38)

is as large as possible, however, making certain gauge cou-
plings large at low energies and including additional matter
fields will certainly effect perturbativity of the gauge cou-
plings at higher energies. In addition, whilst these models do
not (yet) have full GUT multiplets of matter, particularly for
the linking fields, but also for the MSSM matter content, we
can still explore the possibility of unification in these mod-
els as usual. For definiteness we take the model outlined in
Table 1.

The beta functions at one loop are given by

βga = d

dt
ga = ba

16π2 g
3
a with ba =

(
2,

39

5
,−5,

6

5
,−3

)
,

(2.39)

The restriction that αi (MGUT) < 1 and that

αg1A (MGUT) = αg2A (MGUT) = αg3(MGUT), (2.40)

with

αg1B (MGUT) = αg2B (MGUT), (2.41)

restricts the parameter space significantly. The results of per-
turbative unification for the largest values of R’s are plotted
in Fig. 6. We find R1 ∼ 0.6 and R2 ∼ 0.86, such that even

allowing for
m2

L
m2

v+m2
L

∼ 1 this gives

Fig. 6 Perturbative unification of the GA ⊗ SU (3)c and GB sites sep-
arately, allowing for the maximal value of the ratios Ri . These also give
a prediction of the values of the mixing angles, θi ’s in Eq. (2.15)

	 =
(
g2
A

g2
B

)
m2

L

m2
v + m2

L

< R which implies that

(	Max
1 ,	Max

2 ) = (0.6, 0.86), (2.42)

respectively. Larger	’s are also possible if SU (3) is quivered
to SU (3)A⊗SU (3)B as then α−1

3A can be made weaker allow-
ing for unification at a later scale and therefore larger R’s. Of
course abandoning perturbativity altogether will allow for a
larger D-term enhancement too.

The dynamics of the Yukawa couplings are also of interest.
The superpotential, including K , is given by

W = WMSSM + Yk
2
K (L L̃ − V 2), (2.43)

in which Yk is taken to be real. The Yukawa coupling one-
loop beta functions (for the third generation only) are given
by

β(1)
yt ≡ d

dt
yt

� yt
16π2

[
3y∗

t yt + y∗
b yb − 16

3
g2

3 − 3g2
A2 − 13

15
g2
A1

]
,

(2.44)

β(1)
yb ≡ d

dt
yb

� yb
16π2

[
y∗
t yt +y∗

τ yτ + 3y∗
b yb − 16

3
g2

3 − 3g2
A2 − 7

15
g2
A1

]
,

(2.45)

β(1)
yτ ≡ d

dt
yτ

� yτ
16π2

[
4y∗

τ yτ + y∗
t yt − 16

3
g2

3 − 3g2
A2 − 7

15
g2
A1

]
,

(2.46)

and

β(1)
yk ≡ d

dt
yk

� yk
16π2

[
15

10
y∗
k yk−10g2

B2−10g2
A2−6g2

A1−6g2
B1

]
.

(2.47)

For the same choice of parameters as before, the results are
presented in Fig. 7, where one can see that as αA1 hits a Lan-
dau pole at around 1014 GeV, which is after both GUT scales,
the Yukawa couplings become very small and run to oppo-
site signed values. This is reminiscent of five-dimensional
extensions of the MSSM [47,48], where power law running
is used to argue for an explanation of the order O(1) top
Yukawa from an initially small coupling in the UV.

2.3 Chiral Higgs Quiver Model

Another possible two-sites quiver is the chiral Higgs case
[21,22], in which the two MSSM Higgs doublets are on two
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Fig. 7 Renormalisation group evolution for the Yukawa couplings

Fig. 8 The quiver module of the electroweak sector for the chiral Higgs
case. The resulting chiral-Higgs-like non-decoupling D-term is reported
in Eq. (2.48) and whose matter content is in Table 2. The model requires
additional fields carrying Higgs-like charges or leptons multiplets on
site B instead of A, for anomaly cancellation

Table 2 The matter content of a quiver model that may lead to the
Chiral Higgs case and the D-term enhancement of Eq. (2.48). This is
pictured in Fig. 8. The model requires additional fields carrying Higgs-
like charges or leptons multiplets on site B instead of A, for anomaly
cancellation

Superfields Spin 0 Spin 1
2 GA ⊗ GB ⊗ SU (3)c

q̂ f q̃ f q f (2, 1
6 , 1, 0, 3)

d̂ f d̃ f ∗
R d f ∗

R (1, 1
3 , 1, 0, 3)

û f ũ f ∗
R u f ∗

R (1,− 2
3 , 1, 0, 3)

l̂ f l̃ f l f (2,− 1
2 , 1, 0, 1)

ê f ẽ f ∗
R e f ∗

R (1, 1, 1, 0, 1)

Ĥu Hu H̃u (2, 1
2 , 1, 0, 1)

Ĥd Hd H̃d (1, 0, 2,− 1
2 , 1)

L̂ L ψL (2,− 1
2 , 2, 1

2 , 1)

ˆ̃L L̃ ψL̃ (2, 1
2 , 2,− 1

2 , 1)

K̂ K ψK (1, 0, 1, 0, 1)

alternate sites. This is pictured in Fig. 8 and in Table 2, in
which the up-type Higgs doublet Hu and the three generations
of matter are on site A, while the down-type Higgs doublet
Hd is on site B.

The chiral Higgs case may be quite naturally achieved
from a four-Higgs doublet model in which each site has two
Higgs doublets and then at lower energies a Higgs doublet for

each site is integrated out, resulting in a two-Higgs doublet
model. In the chiral Higgs model the non-decoupling D-
terms that are added to the scalar potential of the MSSM, at
low energies, are given by

δL = −3

5

g2
1�1

8

(
ξ1H

†
u Hu + 1

ξ1
H†

d Hd

)2

−g2
2�2

8

∑

a

(
ξ2H

†
u σ aHu − 1

ξ2
H†

d σ aHd

)2

+ · · · .

(2.48)

The ellipses represent terms involving other scalar particles
as reported in Appendix A, while

ξi = gAi
gBi

, �1 = m2
L

m2
v1 + m2

L

, �2 = m2
L

m2
v2 + m2

L

, (2.49)

and 	i = ξ2
i ·�i , with i = 1, 2. The minimisation conditions

now take the form

m2
Hu

+ |μ|2− Bμ cot β−m2
Z

2
cos(2β)+m2

� cos2 β+C=0,

(2.50)

m2
Hd

+|μ|2− Bμ tan β+m2
Z

2
cos(2β)+ m2

� sin2 β+D=0,

(2.51)

where

m2
� = v2

8

∑

i=1,2

ki g
2
i �i , (2.52)

with ki = (3/5, 1) and

C = v2

8

∑

i=1,2

ki g
2
i �iξ

2
i sin2 β,

D = v2

8

∑

i=1,2

ki g
2
i �i

cos2 β

ξ2
i

. (2.53)

Equations (2.50), (2.51) then give

sin(2β) = 2Bμ

m2
Hu

+ m2
Hd

+ 2|μ|2 + C + D + m2
�

, (2.54)

m2
Z = 2

1 − tan2 β
[(C + m2

Hu
) tan2 β

− (D + m2
Hd

)] − 2|μ|2. (2.55)

The following Higgs mass matrices may be derived. In the
basis of the real components of (H0

d , H0
u ), the mass matrix

for the CP-even Higgses given by

m2
h =
(

mh,11
vdvu

4

∑
i ki g

2
i (�i −1)−Re[Bμ]

vdvu
4

∑
i ki g

2
i (�i −1)−Re[Bμ] mh,22

)
,

(2.56)
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Fig. 9 Contours of the Higgs mass mh = 125.5 GeV in the (mt̃1 , Xt ) plane for different values of ξ (left panel) and � (right panel), with
mQ3 = mU3 , tan β = 10. The one-loop Higgs mass with tree-level D-terms corrections mh, 1 is plotted

with

mh,11 = Bμ tan β + m2
Z cos2 β + v2

4
cos2 β

∑

i

ki g
2
i

�i

ξ2
i

,

(2.57)

mh,22 = Bμ cot β + m2
Z sin2 β + v2

4
sin2 β

∑

i

ki g
2
i �iξ

2
i .

(2.58)

For the pseudo-scalar Higgses, the mass matrix in the basis
of the imaginary components of (H0

d , H0
u ) reads

m2
A0 =

(
mA0,11 Re[Bμ]
Re[Bμ] mA0,22

)
, (2.59)

with

mA0,11 = Bμ cot β, mA0,22 = Bμ tan β. (2.60)

The mass matrix for charged Higgses (H−
d , H+,∗

u ),

(H−,∗
d , H+

u ) is

m2
H− =

(
mH−,11

1
4g

2
2(1− �2)vdvu+B∗

μ
1
4g

2
2(1 − �2)vdvu + Bμ mH−,22

)
,

(2.61)

with

mH−,11 = Bμ tan β + m2
W sin2 β(1 − �2), (2.62)

mH−,22 = Bμ cot β + m2
W cos2 β(1 − �2). (2.63)

The masses of the Higgs states are adjusted accordingly

m2, chir
h0,H0 = 1

2
(m2

A + m2
Z ) + (C + D)

∓ 1

2

√(
m2

A− m2
Z + 2(C−D)

cos(2β)

)2

c2(2β)+(m2
A+m2

Z −2m2
�)2s2(2β),

(2.64)

m2, chir
A ≡ 2Bμ

sin 2β
= m2

Hu
+ m2

Hd
+ 2|μ|2 + C + D + m2

�, (2.65)

m2, chir
H± = m2

A + m2
W(1 − �2), (2.66)

where c2(2β) = cos2(2β), s2(2β) = sin2(2β). The non-
decoupling D-terms in this model lead to a shift to the tree-
level mass, which in the leading order in the 1/ tan β expan-
sion is given by

m2
h,0 �

[

m2
Z +

(
3
5g

2
1ξ2

1 �1+g2
2ξ2

2 �2

4

)

v2

]

+ O
(

1

tan2 β
, ξi

)
.

(2.67)

2.3.1 Higgs mass enhancement in the chiral Higgs case

We discuss the impact of non-decoupling D-terms in the
chiral Higgs case on the Higgs mass, taking for simplicity
� ≡ �1 = �2 and ξ ≡ ξ1 = ξ2. In Fig. 9 is plotted
the Higgs mass from Eq. (2.12) with the tree-level D-term
corrections from (2.67) in the (mt̃1 , Xt ) plane for different
values of ξ or �. Also in this case the 125.5 GeV contour
lines show that the D-term contribution lower the minimal
stop masses required for a given value of Xt . In Fig. 10, in
a fashion similar to [22],5 we show the mh contour lines in
the (ξ , �)-plane for mt̃1 = 500 GeV and 1 TeV.

In the chiral Higgs case, too, the explicit supersymmetry
breaking in the low energy effective theory leads to a reason-
ing similar to the one discussed in Sect. 2.2.2.

5 Note the different notation.
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Fig. 10 The Higgs mass in the (ξ1 = ξ2, �1 = �2) plane, for the chiral Higgs case, with mt̃1 = 500 GeV (left panel) and mt̃1 = 1 TeV (right
panel), while tan β = 10, At = −400 GeV. The one-loop Higgs mass with tree-level D-terms corrections mh, 1 is plotted

3 Higgs couplings determination at the LHC and ILC

Non-decoupling D-terms induced by the quiver extensions
of the MSSM, apart from shifting the tree-level masses of the
scalars of the theory (see Appendix A), have direct impact
also on several physical quantities as, for instance, the h →
γ γ decay branching ratio [30] or the Higgs boson couplings
to fermions and gauge bosons [22,36,49–51]. We will study
the latter effects, estimating the dependence of the deviations
from the SM couplings on the additional D-terms, in the
light of the precise determination of Higgs boson couplings
at current and future colliders. Let us then first define the ratio
of the Higgs (the lightest eigenstate h) coupling normalised
by that of the Standard Model couplings:

κU = gU/gSM
U , κD = gD/gSM

D , κV = gV /gSM
V , (3.1)

for any up(down)-type fermion U = u, c, t (D = d, s, b, e,
μ, τ ), or gauge boson V = W±, Z .

A standard way to express these ratios, or scaling factors,
in a 2HDM models of type-II such as the MSSM, is to write
them in terms of the angles β and α,

κD ≡ − sin α

cos β
, κU ≡ cos α

sin β
, κV ≡ sin(β − α), (3.2)

where α is defined as the mixing angle of the Higgs mass
eigenstates,

(
h0

H0

)
= √

2

(− sin α cos α

cos α sin α

)(
Re H0

d

Re H0
u

)
. (3.3)

The SM is recovered for sin α = − cos β, cos α = + sin β.
We can express κt , κV in terms of tan β and κb (not consid-
ering wrong mixings 	b coming from loop effects) [36]:

κt =
√

1 − κ2
b − 1

tan2 β
,

κV = tan β

1 + tan2 β

(
κb

tan β
+

√
1 + tan2 β − κ2

b

)
. (3.4)

The relations (3.2) are exact; however, a more transparent
general expression for the scaling factors can be obtained
looking at the specific model considered. We study models
in the decoupling limit for large tan β. A procedure to rewrite
the Higgs couplings in this regime is to start from the general
2HDM Higgs scalar potential, Eq. (2.1) and integrate out
the heavier states identified to the Higgs doublet Hd; see
also [22,36,50]. The Higgs couplings can be read from the
effective Lagrangian after having integrated out H0

d and, after
a perturbative expansion in 1/ tan β, κb = κτ are

κb �
(

1 − m2
h

m2
H

)−1 (

1 − [λ3 + λ5]v2

m2
H − m2

h

)

+ · · · , (3.5)

where we adopt the definitions from Eq. (2.1) and the ellipses
denote non-zero λ7 contributions from F-term like enhance-
ments that are null in the MSSM, O(1/ tan2 β) corrections
and possible “wrong sign” couplings coming from 1-loop
contributions. Finding the right κb expressions for our quiver
models is straightforward, substituting into (3.5) the cor-
responding λ3, λ5. For the vector Higgs case λ3, λ5 are
obtained by the MSSM relations (2.2) with the additional
contributions (2.13), giving λ3 + λ5 = −[g2

2(1 + 	2) +
3
5g

2
1(1 + 	1)]/4, such that

κvector
b �

(

1 − m2
h

m2
H

)−1(

1+ [g2
2(1+	2)+ 3

5g
2
1(1+	1)]v2

4(m2
H − m2

h)

)

.

(3.6)
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(a) (b)

Fig. 11 Vector case: relative enhancements κb−1 of the Higgs bottom
couplings for the chiral-Higgs case with respect to the SM are displayed
in solid lines, in (%) as a function of 	1 = 	2, for different values of
mH (GeV). a In dashed lines, the contours of the expected accuracies
on the scaling factors κb at the LHC, HL-LHC and ILC, from [52] and

Table 3, centred on the SM value 0. The accuracies assume no non-SM
production and decay modes and assumes universality (κu ≡ κt = κc,
κd ≡ κb = κs and κl ≡ κτ = κμ). b In dashed lines, the contours
of the model-independent ILC sensitivities for each run from [53]; see
Table 4, centred on the SM value 0

(a) (b)

Fig. 12 Vector-Higgs case: experimental sensitivity to coupling devi-
ations from the Standard Model, assuming no correlation between κi
measures. a (κb, κτ ) for 	 = 0 (SM limit), 0.1, 0.2, 0.5, at different
values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental
sensitivity, centred in the SM value (κb, κτ ) = 1, is represented by 1σ -

confidence ellipses:black dashed for LHC at 14 TeV and 300 fb−1,black
dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV
and red dotted for ILC at 1000 GeV. b χ2-test of κW, κZ , κτ , κb, κt in
the (mH , 	)-plane at the different experiments: areas on the left of the
solid lines are not consistent with the SM at 3σ -confidence level

For the chiral Higgs case, using instead the additional con-
tributions (2.48), one obtains λ3 + λ5 = −[g2

2(1 − �2) +
3
5g

2
1(1 − �1)]/4, and

κchiral
b �

(

1− m2
h

m2
H

)−1(

1 + [g2
2(1−�2)+ 3

5g
2
1(1−�1)]v2

4(m2
H − m2

h)

)

.

(3.7)

In these two cases, the MSSM limit can be obtained by setting
the non-decoupling D-term contributions to zero, respec-
tively 	i = 0 and �i = 0.

It is important to understand how these D-term enhanced
deviations from the SM couplings could be detected, as a sig-
nature for the considered quiver models at present and future
colliders; see Figs. 11, 12, 13, 14. At the LHC only ratios
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(a) (b)

Fig. 13 Chiral-Higgs case: relative enhancements κb − 1 of the Higgs
bottom couplings for the chiral-Higgs case with respect to the SM are
displayed in solid lines, in (%) as a function of �1 = �2 for different
values of mH (GeV). a In dashed lines, the contours of the expected
accuracies on the scaling factors κb at the LHC, HL-LHC and ILC,
from [52] and Table 3, centred on the SM value 0. The accuracies

assume no non-SM production and decay modes and assumes univer-
sality (κu ≡ κt = κc, κd ≡ κb = κs and κl ≡ κτ = κμ). Correlations
are neglected. b In dashed lines, the contours of the model-independent
ILC sensitivities for each run from [53], see Table 4, centred on the SM
value 0

(b)(a)

Fig. 14 Chiral-Higgs case: experimental sensitivity to coupling devi-
ations from the Standard Model, assuming no correlation between κi
measures. a (κb, κτ ) for � = 0 (SM limit), 0.2, 0.5, 1 at different
values of mH = 500, 600, 800, 1000, 1200 GeV. The experimental
sensitivity, centred in the SM value (κb, κτ ) = 1, is represented by 1σ -

confidence ellipses:black dashed for LHC at 14 TeV and 300 fb−1,black
dotted for HL-LHC at 3000 fb−1 at 14 TeV, red dashed ILC at 500 GeV
and red dotted for ILC at 1000 GeV. b χ2-test of κW, κZ , κτ , κb, κt in
the (mH , 	)-plane at the different experiments: areas on the left of the
solid lines are not consistent with the SM at 3σ -confidence level

between different Higgs couplings can be determined, there-
fore coupling determination is possible only in the frame-
work of a specific model. For example, taking some minimal
assumptions on the underlying model, as explained in [52],
one can obtain κb from a constrained 7-parameter fit assum-
ing no non-SM production and decay modes and assuming

generation universality (κu ≡ κt = κc, κd ≡ κb = κs
and κl ≡ κτ = κμ). This is listed in Table 3, where
the coupling determination uncertainties at LHC at 14 TeV
(
∫ L dt = 300fb−1) and High Luminosity LHC (HL-LHC,∫ L dt = 3000fb−1) are compared with some expectations

at the International Linear Collider (ILC).
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Table 3 Expected precisions on κb at 1σ , in %, from a constrained
7-parameter fit assuming no non-SM production and decay modes
and assuming universality (κu ≡ κt = κc, κd ≡ κb = κs and

κl ≡ κτ = κμ), as reported in [52]. LHC corresponds to 300 fb−1

at 14 TeV, HL-LHC at 3000 fb−1 at 14 TeV

LHC 14 (%) HL-LHC (%) ILC500 (%) ILC500−LumUp (%) ILC1000 (%) ILC1000−LumUp (%)

κW 4–6 2–5 0.39 0.21 0.21 0.2

κZ 4–6 2–4 0.49 0.24 0.5 0.3

κl = κτ 6–8 2–5 1.9 0.98 1.3 0.72

κd = κb 10–13 4–7 0.93 0.60 0.51 0.4

κu = κt 14–15 7–10 2.5 1.3 1.3 0.9

Table 4 Expected accuracies on the coupling scaling factors κi at 1σ ,
in %, for a completely model-independent fit assuming theory errors
	Fi/Fi = 0.5 %, from the ILC Higgs White Paper [53]

ILC250 (%) ILC500 (%) ILC1000 (%) ILCLumUp (%)

κW 4.9 1.2 1.1 0.6

κZ 1.3 1.0 1.0 0.5

κτ 5.8 2.4 1.8 1.0

κb 5.3 1.7 1.3 0.8

κt – 14 3.2 2.0

On the other hand, at future e+e−-colliders as the ILC,
the Higgs total width and the Higgs couplings can be deter-
mined in a model-independent way. This is possible by
exploiting the recoil methods that allow for a decay indepen-
dent determination of the Higgsstrahlung process production
e+e− → HZ , a quantity that enters many observables [53].
With respect to estimates with minimal model assumption,
there are slightly higher uncertainties. This is reported in
Table 4, where we show the estimated ILC accuracies on the
Higgs couplings, assuming the theoretical uncertainties to be
equal to 0.5 % for the ILC stages at

√
s = 250, 500, 1000

GeV and for the luminosity upgrade ILCLumUp at 250, 500,
1000 GeV, from [53], which may be further improved [54].
Since ILC measurements are dominated by statistical errors,
they are improved with increasing statistics, in contrast with
Higgs determinations in the High-Luminosity LHC that are
dominated by systematic errors.

In Fig. 11 we plot how the LHC and ILC may detect
deviations from the SM Higgs bottom coupling due to non-
decoupling D-terms in a vector Higgs quiver extension of
the MSSM. The relative enhancement with respect to the
SM Higgs bottom coupling, κb − 1, is plotted as a function
of 	 for different values of the heavier neutral CP-even Higgs
massmH (see Eq. (3.6)). The non-decoupling D-terms in the
vector Higgs case enhance the deviation from the SM with
respect to the MSSM limit 	 = 0, while larger values for
mH clearly suppress these effects. Furthermore, in Fig. 11 a
value of κb − 1 that lies above a contour line corresponds to
a deviation from the SM that can be detected, once the Higgs
bottom coupling at the corresponding machine run is mea-

sured. In Fig. 11a, the horizontal dashed contour lines corre-
spond to the LHC and ILC 1σ -confidence level sensitivities
for κb determination with the minimal model assumptions in
Table 3, centred on the SM value κ SM

b − 1 = 0. In Fig. 11b,
the sensitivities for ILC model-independent κb determination
are displayed. At the LHC at 14 TeV, deviations triggered by
	 ∼ O(1–2) may be detected for a mH � 600 GeV, while
formH ≤ 1 TeV, these deviations may be detected at the HL-
LHC. Coupling enhancements due to 	 ∼ O(0.1–0.2), are
more suitable according to the top–down approach in [23],
are (just) discernible at the HL-LHC formH � 800 GeV. The
ILC running at 500 GeV may be sensitive to these ranges of
	 for mH ∼ 1 TeV, while for the high luminosity configura-
tion at 1000 GeV (

∫ L dt = O(5000)fb−1), this is valid up
to mH ∼ 2 TeV, showing the power of this experiment in the
study of the Higgs scalar potential.

The deviation from the SM of κb in Fig. 11 alone cannot
be used for claiming a BSM underlying model, as it might
merely be due to statistical effects. Therefore, in Fig. 12a
we show the non-decoupling D-terms triggered deviations
in κb and κτ : the points lying outside the 1σ -confidence
ellipses for each experiment can be distinguished from the
SM.6 In Fig. 12b we perform a χ2-fit to the SM values
of κW, κZ , κτ , κb, κt in the (mH , 	)-plane: the areas on
the left of the solid lines are not consistent with the SM at
3σ -confidence level. As deviations from the SM value 1 for
κW, κZ , κt are relatively mild in these models, see Eq. (3.4),
in particular considering the achievable accuracy in these
quantities, the main contribution to the χ2 result comes from
κb and κτ , as they present large deviations and a relatively
good resolution. One can see that at the first run of the LHC
deviations from the Standard Model only for a relatively light
H , with mass up to mH � 350–400 GeV are observable and
the luminosity upgrade is needed to explore the parameter
space up to decoupling masses mH � 500 GeV for any
value of 	. At the ILC, instead, deviations from the SM for
mH up to 700 (900) GeV at

√
s = 500 (1000) GeV. In both

6 A similar kind of analysis, for general 2HDM models, may be found
in [55].
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plots in Fig. 12 we do not take into account any experimental
correlations between the determinations of κi .

In the chiral Higgs quiver case, the D-terms triggered devi-
ations of κb (in particular), have an opposite behaviour com-
pared to the vector case. Here, the D-term contributions are
negative, see Eq. (3.7), pushing the Higgs couplings closer
to the SM value. Therefore for increasing �, the deviations
of the couplings from the SM get less detectable with respect
to the MSSM limit (for � = 0); see Figs. 13 and 14a. Fig-
ure 14b shows how, for � ∼ O(1), the sensitivity to the
deviation of couplings is reduced at the LHC by ∼ 50 GeV
and by ∼ 100 GeV at the ILC.

Once a deviation in the couplings from the SM is detected,
one should address the question of which (BSM) supersym-
metric model has been observed. For this, the measurement
of the couplings alone is not sufficient, but also the detection
of H and the measurement of its mass mH are fundamental,
as one can decouple the 	 or � measurement; see Eq. (3.6).

4 Conclusions

In this paper we explored two cases in which non-decoupled
D-terms arise. We studied how the size of this enhancement
affects the light CP-even Higgs mass and its couplings to
fermions and vector bosons in the decoupling limit mA �
mZ with large tan β. We found that:

• In the vector Higgs case, a D-term size parameter 	 of
order ∼ O(1) allows one to reach a Higgs mass of 125.5
GeV at tree level, with consequent relaxation of natural-
ness. On the other hand, 	 ∼ O(0.1) may still provide a
suitable enhancement to the Higgs mass, and seem to be
preferred in the light of perturbative unification, from a
top down approach. Similar conclusions can be drawn in
the chiral Higgs case.

• The Higgs couplings to b and τ are particularly sensitive
to deviations from SM and MSSM values due to non-
decoupling D-terms, and can be studied at the LHC and
ILC. For a more decoupled heavy Higgs H , i.e. largermH ,
the deviations from the SM couplings are smaller. In the
vector Higgs case these deviations increase for larger D-
terms, and can be determined at the HL-LHC for any value
of 	 with mH � 600 GeV. At the ILC at 500 GeV the
sensitivity to deviations is much improved, and deviations
from the SM for 0 ≤ 	 ≤ 0.5 can be seen with mH ≤
800–900 GeV; further improvement is possible with the
ILC 1-TeV upgrade.

• In the chiral Higgs case, instead, contributions from the
non-decoupling D-terms reduce the deviations in the cou-
plings from the SM value and result in a more challeng-
ing experimental determination. At the ILC at 500 TeV,
in correspondence of a maximal D-terms contribution to

the Higgs mass (� = 1), the sensitivity is reduced, the
deviations from the SM being detectable with mH ≤ 650
GeV.

Once deviations from SM couplings are established, in
order to distinguish the model from the MSSM, a precise
measurement ofmH is required to obtain the D-terms param-
eters. Furthermore, combining these results with electroweak
precision measurements where the effects of gauge exten-
sions could be observed, may possibly identify these mod-
els. In order to be sensitive to a vast range of gauge extended
models, we have shown that the precise and largely model-
independent measurements of the Higgs couplings at the lin-
ear collider is needed.
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Appendix A: General derivation of non-decoupling
D-terms

Here we give a derivation of the non-decoupling D-terms
and show how they may arise within a two-site quiver model,
involving scalars charged under the final symmetry: squarks,
sleptons as well as Higgs bosons. We consider the product
of two identical (non-)abelian gauge groups GA ⊗ GB that
breaks to the diagonal subgroup, GD . The canonical kinetic
terms for i chiral superfields Ai , charged under only GA, and
of j chiral superfields Bj , charged under only GB , are given
by

L ⊃
∫

d4θ

⎛

⎝
∑

i

A†
i egaVa Ai +

∑

j

B†
j e

gbVb B j

⎞

⎠ , (A.1)

where ga and gb, respectively, are the gauge couplings for site
A and B and Va, Vb are the corresponding vector multiplets.

After the diagonal breaking GA ⊗GB → GD , Va and Vb
recombine into a massless vector multiplet, VD , and a heavy
one, VH , which can be written as
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VD = gaVb + gbVa√
g2
a + g2

b

, VH = −gaVa + gbVb√
g2
a + g2

b

. (A.2)

VH obtains a mass through the supersymmetric Higgs mech-
anism by eating a (complex) chiral superfield �, in our case
a combination of the linking fields between the sites A and
B,

� = (t + is) + √
2θχ + θ2F�. (A.3)

The real scalar field t is eaten to give the third degree of
freedom to the gauge fields Aμ, s remains uneaten, while the
Weyl fermion χ couples to the gauginoλ to make a supersym-
metric Dirac mass. In the Kähler potential the corresponding
mass term m2

V for VH is given by

L ⊃
∫

d4θ m2
V V

2
H + · · · . (A.4)

Furthermore, the following soft mass terms are added:

L ⊃
∫

d4θ

(
mχm

2
V θ2 + m̄χm

2
V θ̄2 − 1

2
m2

Vm
2
s θ

4
)
V 2
H

+
∫

d2θmλW
2
α +

∫
d2θ̄m̄λW̄

2
α̇ , (A.5)

where the soft masses mχ ,m2
s ,mλ, respectively, parametrise

the soft breaking of the fermion χ , the real uneaten scalar s
and the usual Majorana soft mass for the gauginoλ. Therefore
the Kähler potential may be written to leading order in VH

as

KH ⊃ gd

(
ga
gb

)
JaVH + gd

(
gb
ga

)
JbVH + · · · . (A.6)

Ja/b are the current multiplets, satisfying the constraint
D2J = 0, that contain all the fields charged under site A
or site B:

J c = J c + iθ j c − i θ̄ j̄ c − θσμθ̄ j cμ + 1

2
θθ θ̄ σ̄ μ∂μ j c

−1

2
θ̄ θ̄ θσμ∂μ j̄ c − 1

4
θθ θ̄ θ̄�J c, (A.7)

with the leading term being the current of scalars J c =∑
i φ

†
i T

cφi , where φi are the collection of all scalars charged
under the gauge group and c is the generator index. The effec-
tive lagrangian after integrating out the heavy vector field VH

is then of the form

Leff =
∫

d4θ

⎛

⎝
∑

i

A†
i egDVD Ai +

∑

j

B†
j e

gDVD B j

⎞

⎠ + O.

(A.8)

O is the most general expression for the non-decoupled D-
terms,

O = g2
D

∫
d4θ

(
1

m2
V

− m2
s θ

4

m2
V + m2

s

)

×
∑

A

[(
ga
gb

)
J A
a −

(
gb
ga

)
J A
b

]2

, (A.9)

with a sum over A generators. The associated non-decoupling
D-term corresponds then to the θ4 term in the round brackets
of Eq. (A.9), while the currents in the square brackets reduce
simply to ( 1

8 ) the scalar current for this θ4 term.
Passing explicitly to the case of quiver extensions of the

MSSM, the diagonal gauge group coupling gD corresponds
to the SM coupling gSM and the symmetry breaking consists
in

SU (2)A⊗SU (2)B → SU (2)L , U (1)A ⊗U (1)B →U (1)Y .

(A.10)

In the case of a model in which all MSSM fields are on site
A, charged under GA the scalar currents are given by

JU (1)A = 1

2
H†

u Hu − 1

2
H†

d Hd − 1

2
l̃†l̃ + 1

6
q̃†q̃

+1

3
d̃†d̃ − 2

3
ũ†ũ + ẽ†ẽ,

JU (1)B = 0, (A.11)

J A
SU (2)A

= 1

2
(H†

u σ AHu + H†
d σ AHd + q̃†σ Aq̃ + l̃†σ Al̃),

J A
SU (2)B

= 0, (A.12)

with all flavour and colour indices implicitly traced. For the
case of split generations (see for instance [27]), in which the
third generation and Hu, Hd are charged under GA and the
first two generations under GB , one finds

JU (1)A = 1

2
H†

u Hu − 1

2
H†

d Hd

+
[
−1

2
l̃†l̃ + 1

6
q̃†q̃ + 1

3
d̃†d̃ − 2

3
ũ†ũ + ẽ†ẽ

]

3
,

JU (1)B =
[
−1

2
l̃†l̃ + 1

6
q̃†q̃ + 1

3
d̃†d̃ − 2

3
ũ†ũ + ẽ†ẽ

]

1,2
,

(A.13)

J A
SU (2)A

= 1

2
(H†

u σ AHu+H†
d σ AHd)+ 1

2
[q̃†σ Aq̃ + l̃†σ Al̃]3,

J A
SU (2)B

= +1

2
[q̃†σ Aq̃ + l̃†σ Al̃]1,2. (A.14)

These results may be extended to a four-Higgs doublet model
or to a quiver model with three or more sites, straightfor-
wardly. The sum in (A.9) implies that the D-terms generate
mass shifts to the Higgs doublets, to all charged squarks and
sleptons as well as additional quartic vertices. As a conse-
quence, additional contributions to branching ratios should
be considered in precision studies with Higgs and sfermion
decays. An accurate detection of these effects may allow for
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the determination of the gauge structure and the charges of
matter fields to identify the underlying model.
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