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Modified gravity black holes and their observable shadows
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Abstract The shadows cast by non-rotating and rotating
modified gravity black holes are determined by the two
parameters mass M and angular momentum J = Ma. The
sizes of the shadows cast by the spherically symmetric static
modified gravity–Schwarzschild and modified gravity–Kerr
rotating black holes increase significantly as the free param-
eter α is increased from zero. The Event Horizon Telescope
shadow image measurements can determine whether Ein-
stein’s general relativity is correct or whether it should be
modified in the presence of strong gravitational fields.

1 Introduction and field equations

The static spherically symmetric vacuum solution describ-
ing the final stage of the collapse of a body in terms of an
enhanced gravitational constant G and a gravitational repul-
sive force with a charge Q = √

αGNM , has been derived in
a modified gravitational theory [1,2], where α is a parameter
defined by G = GN (1 + α), and where GN is Newton’s
constant and M is the total mass of the black hole. In the
following, the optical shadows (silhouettes) cast by rotating
and non-rotating black holes are determined.

The modified gravitational field equations are given by

Gμν = −8πGTφμν. (1)

The canonical energy-momentum tensor of matter TMμν in
the gravitational field equations has been set equal to zero,
and Gμν = Rμν − (1/2)gμνR is the Einstein tensor con-
structed from the Riemann tensor and its contractions. More-
over,

Tφμν = − 1

4π

(
Bμ

σ Bνσ − 1

4
gμνB

σβBσβ

)
, (2)

where Bμν = ∂μφν − ∂νφμ and where φμ is the vector field
with the source charge, Q = √

αGNM . We also need the
vacuum field equations:
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∇νB
μν = 1√−g

∂ν(
√−gBμν) = 0 (3)

and

∇σ Bμν + ∇μBνσ + ∇νBσμ = 0, (4)

where ∇ν is the covariant derivative with respect to the metric
tensor gμν .

2 Modified gravity Schwarzschild and Kerr black holes

The static spherically symmetric modified gravity–Schwarzs
child metric obtained from the field equations (1) is given by

ds2 =
(

1 − 2GN (1 + α)M

r
+ G2

Nα(1 + α)M2

r2

)
dt2

−
(

1 − 2GN (1 + α)M

r
+ G2

Nα(1 + α)M2

r2

)−1

dr2

−r2d	2, (5)

where the numerator of the third term in parentheses is
GQ2 = G2

Nα(1 + α)M2 [2] and d	2 = dθ2 + sin2 θdφ2.
The modified gravity–Kerr metric inferred from our gravi-

tational field equations has the form in Boyer–Lindquist coor-
dinates r, θ, φ of

ds2 =
(

1 − rsr − r2
Q

ρ2

)
dt2

−
[
r2 + a2 + a2 sin2 θ

(rgr − r2
Q

ρ2

)]
sin2 θdφ2

+2 sin2 θ

(rgr − r2
Q

ρ2

)
dtdφ − ρ2

�
dr2 − ρ2dθ2, (6)

where

ρ2 = r2 + a2 cos2 θ. (7)
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Moreover, rs = 2GN (1 + α)M , a = J/M , r2
Q = G2

Nα(1 +
α)M2, where J is the spin angular momentum and

� = r2 − rgr + a2 + r2
Q . (8)

In the case of the modified gravity–Kerr metric the
Kretschmann scalar invariant Rμνσβ Rμνσβ is singular for
ρ2 = r2 + a2 cos2 θ = 0 and as in the case of the Kerr–
Newman [3] black hole the singularity takes the form of a
ring for r = 0, θ = π/2 [4].

Horizons are determined by the roots of � = 0:

r± =GN (1+α)M

[
1 ±

√
1− a2

G2
N (1+α)2M2

− α

1+α

]
.

(9)

An ergosphere horizon is determined by g00 = 0:

rE =GN (1 + α)M

[
1+

√
1− a2 cos2 θ

G2
N (1+α)2M2

− α

1+α

]
.

(10)

3 Shadows (silhouettes) of black holes

We shall take it as given that our modified gravity–Schwarzs
child and modified gravity–Kerr black holes are character-
ized by only the two parameters mass M and angular momen-
tum J . They are stationary and asymptotically flat solutions
and they satisfy the “no-hair” theorem. An interesting conse-
quence of these properties of the solution is that the shadow
outline created by the black hole is determined by M and
a = J/M and the relative position of an asymptotic observer.
In the near future, it is expected that observations by the Event
Horizon Telescope (EHT) can observe characteristic features
of a black hole by the shapes of the shadows cast by the black
hole [5–8].

The apparent shape of a black hole and its outline is deter-
mined by geometrical optics. A electromagnetic wave propa-
gates approximately on a congruence of light rays perpendic-
ular to the wave fronts, bent by the curved spacetime geome-
try. For a black hole with a horizon r+ the geometric approx-
imation is valid only if the wavelength λ is small compared
to the typical radius of the spacetime curvature measured in a
local patch. In Fig. 1, we depict the curved light rays reaching
an observer at infinity as if they are emitted from different
directions.

The black hole casts a shadow in front of an illuminated
background in the asymptotically flat region and the shadow
is determined by a set of closed photon orbits. A photon mov-
ing on a closed orbit with radius r in our modified gravity–
Kerr spacetime with nonzero a and M has the apparent posi-

Fig. 1 The apparent position of a light ray with respect to the observer’s
projection plane in the x ,y coordinates containing the center of the
spacetime: x denotes the apparent distance from the rotation axis, and
y the projection of the rotation axis itself (dashed line). The angle θ

denotes the angle of latitude, reaching from the north pole at θ = 0 to
the south pole at θ = π (image by de Vries)

tion in the (x ,y) reference frame of a distant observer located
in the angle of latitude θ (see Fig. 1). The x and y coordinates
are given by [7,8]:

x = r� + rαG2
N (1 + α)M2 − GN (1 + α)M(r2 − a2)

a[r − GN (1 + α)M] sin θ
,

y =
{

4r2�

[r − GN (1 + α)M]2 − (x + a sin θ)2
}1/2

, (11)

where

� = r2 − 2GN (1 + α)Mr + a2 + αG2
N (1 + α)M2. (12)

The variable x in (11) is a monotonic function of r for
r > GN (1 + α)M . By inversion we obtain the formula

r = GN (1 + α)M + 3
√

v +
√

v2 + w3

+ 3
√

v −
√

v2 + w3, (13)

where

v = GN (1 + α)M[G2
N M

2(1 + α) − a2] (14)

and

w = 1

3
[a2 − G2

N M
2(3 + α)(1 + α) − ax sin θ ]. (15)

For the non-rotating case a = 0 we have

� = r2 − 2GN (1 + α)Mr + αG2
N (1 + α)M2, (16)

and

x2 + y2 = r4

�
. (17)
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Fig. 2 a Black hole shadow for GN = 1, M = 1, a = 0, α = 0.
b Black hole shadow for GN = 1, M = 1, a = 0, α = 3. c Black hole
shadow for GN = 1, M = 1, a = 0, α = 9. d Black hole shadow for
GN = 1, M = 1, a = 0.16, α = 0, and θ = 63◦. e Black hole shadow
for GN = 1, M = 1, a = 0.95, α = 0, and θ = 63◦. f Black hole

shadow for GN = 1, M = 1, a = 0.16, α = 3, and θ = 63◦. g Black
hole shadow for GN = 1, M = 1, a = 0.16, α = 9, and θ = 63◦.
h Black hole shadow for GN = 1, M = 1, a = 0.95, α = 3, and
θ = 63◦. i Black hole shadow for GN = 1, M = 1, a = 0.95, α = 9,
and θ = 63◦

The size of the photosphere is determined by [2]

rγ = r = 3

2
GN (1 + α)M

(
1 +

√
1 − 8α

9(1 + α)

)
. (18)

The shadow radius is given by

rshad ≡
√
x2 + y2 = r2

�1/2 , (19)

where the closed photon orbit radius r is given by (18). We
obtain for the shadow radius

rshad

=
[
3(1+α)±√

(9+α)(1+α)
]2

{
4

[
(1+α)±√

(9+α)(1+α)
]2 − 16(1+α)

}1/2 GNM.

(20)

The shadow radius can be approximated by the lin-
ear expression: rshad ∼ (2.59 + 2α)rs . We see that as α

increases from the Schwarzschild black hole shadow radius
with α = 0, the size of the modified gravity black hole
shadow increases. The galaxy rotation curves and the dynam-
ics of galaxy clusters were fitted with the value α = 8.98 ±
0.34 [9,10]. For α = 9 the shadow radius obtained from (20)
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is rshad = 22.68rs . The effect of the M2 contribution in the
modified gravity–Kerr shadow is to decrease the distortion of
the circular shadow for a �= 0 in the Kerr black hole shadow.
The significant increase in the shadow radius for the modi-
fied gravity–Schwarzschild and modified gravity–Kerr black
holes as α becomes large compared to the Schwarzschild
and Kerr black hole values, should be measurable when
the shadow image data obtained by the EHT observations
become available. We note that the value α = 8.89 used
to fit the galaxy rotation curve and cluster data may not be
applicable to the strong gravitational fields associated with
the black holes in Sagittarius A∗ and M87 (Fig. 2).

4 Conclusions

We have investigated the black holes predicted by modified
gravity theory for both rotating and non-rotating black holes.
The black hole shadows (silhouettes) against a bright back-
ground around super-massive black hole candidates can be
measured by the VLBI and EHT project [11–13]. The inten-
sity map of the shadow image depends on the model of the
accretion disk and the emission process, although the bound-
ary of the shadow is completely determined by the geometry
of spacetime. The shadow circle is slightly deformed for a
rotating black hole. Both the circle for the modified gravity–
Schwarzschild black hole, a = 0, and the deformed circle
for the modified gravity–Kerr black hole, a �= 0, are signif-
icantly increased in size as α increases from zero. This can
help determine whether Einstein’s general relativity theory
is correct for strong gravitational fields.
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