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Abstract In this paper, we investigate chaotic inflation
from a scalar field subjected to a potential in the framework
of f (R2, P, Q)-gravity, where we add a correction to Ein-
stein’s gravity based on a function of the square of the Ricci
scalar R2, the contraction of the Ricci tensor P , and the con-
traction of the Riemann tensor Q. The Gauss–Bonnet case is
also discussed. We give the general formalism of inflation,
deriving the slow-roll parameters, the e-fold number, and
the spectral indices. Several explicit examples are furnished;
namely, we will consider the cases of a massive scalar field
and a scalar field with quartic potential and some power-law
function of the curvature invariants under investigation in
the gravitational action of the theory. A viable approach to
inflation according with observations is analyzed.
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1 Introduction

The last data [1,2] coming from observations of the universe
anisotropy increased the interest for inflationary universe.
Inflation has been proposed several years ago [3–5] to solve
the problems of the initial conditions of the Friedmann uni-
verse and eventually to explain some issues related to particle
physics, but, despite the constraints that must be satisfied to
fit the cosmological data, the choice of the models is quite
large (see Refs. [6,7] for an introduction to inflationary cos-
mology).

Many inflationary models are based on the scalar field
representation, where a homogeneous scalar field, called the
inflaton, is subjected to a potential and produces the accel-
erated expansion of the early-time universe, when the cur-
vature is close to the Planck scale. Typically, the magnitude
of the inflaton is arbitrarily large (chaotic inflation) at the
beginning of the inflation [8], and therefore the field rolls
down toward a potential minimum where acceleration ends:
thus, the field starts to oscillate and reheating processes for
the particle production take place [9–12]. Other inflation-
ary models are based on a phase transition between two
scalar fields [13,14]. Additionally, it is expected that infla-
tion is related with quantum corrections to General Relativity,
and in this direction many efforts to construct viable mod-
els taking into account higher derivative corrections to Gen-
eral Relativity emerging at the Planck scale have been made
[15–21].

In this work, we would like to investigate how chaotic
inflation works in the framework of higher derivative correc-
tions to the theory of Einstein. Our modification to the gravi-
tational action of General Relativity is expressed in terms of
the square of the Ricci scalar and the contractions of Ricci
and Riemann tensors, in the attempt to include a wide class of
models (see Refs. [22–25] for reviews). We will present some
explicit examples of theories and potentials for the inflaton
which make viable the inflation according with cosmological
data.
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The paper is organized in the following way. In Sect. 2,
we present the model: the Hilbert–Einstein action of Gen-
eral Relativity is modified by adding a function of the square
of the Ricci scalar and the contractions of Ricci and Rie-
mann tensors, and the contribution of a scalar field sub-
jected to a potential is also included. Thus, we derive the
Lagrangian and the related equations of motion of the theory
in flat Friedmann–Robertson–Walker space-time, by using a
method based on Lagrangian multipliers which reduces the
equations of motion at the second order. It is interesting to
note how for a Friedmann–Robertson–Walker metric such
a kind of models has an equivalent description as Gauss–
Bonnet theory. In Sect. 3, we investigate the general feature
of chaotic inflation from a scalar field in the framework of
our modified theory. Sections 4 and 5 are devoted to explicit
examples, corresponding to two well-known cases of chaotic
inflation, namely chaotic inflation from a massive scalar field
and chaotic inflation from a field with a quartic potential.
In the framework of General Relativity they lead to a viable
approach to inflation, and we are interested to see how results
change for some toy model of Gauss–Bonnet modified grav-
ity and a model based on the power-law functions of the cur-
vature invariants under investigation. The conclusions with
some final remarks are given in Sect. 5.

We use units of kB = c = h̄ = 1 and denote the gravita-
tional constant,GN, by κ2 ≡ 8πGN , such thatGN = 1/M2

Pl,
MPl = 1.2 × 1019 GeV being the Planck mass.

2 Formalism

Let us consider the following action:

I =
∫
M

√−g

[
R

2κ2 + f (R2, P, Q)

−1

2
gμν∂μφ∂νφ − V (φ)

]
,

κ2 = 8π

M2
Pl

, (1)

where M is the space-time manifold, g is the determinant of
the metric tensor gμν , and R is the Ricci scalar. The gravi-
tational part of the Lagrangian takes into account the higher
derivative corrections to Einstein’s gravity encoded in the
generic function f (R2, P, Q) ≡ f where

P = RμνR
μν, Q = Rμνσξ R

μνσξ , (2)

Rμν and Rμνσξ being the Ricci tensor and the Riemann
tensor, respectively. The “matter” part of the Lagrangian
depends on a scalar field φ subjected to the potential V (φ).

We will work with the flat Friedmann–Robertson–Walker
(FRW) metric, whose general expression is given by

ds2 = −N (t)2 dt2 + a(t)2(dx2 + dy2 + dz2),
√−g = N (t)a(t)3, (3)

where N (t) ≡ N is a lapse function and a(t) ≡ a is the scale
factor, both depending on the cosmological time t . Thus, the
curvature invariants of the model on flat FRW space-time
read

R = 6

N 2 (X + Y ), P = 12

N 2 (X2 + Y 2 + XY ),

Q = 12

N 2 (X2 + Y 2), (4)

with

X = ä

a
− ȧ

a

Ṅ

N
, Y = ȧ2

a2 , (5)

and the dot denotes the derivative with respect to the time.
By plugging these expressions into the action (1), we obtain
a higher derivative Lagrangian. However, by using a method
based on the Lagrangian multiplier [26–29], we can deal
with a first order standard Lagrangian. We introduce the
Lagrangian multipliers ζ, σ, ξ by

I =
∫
M

Na3
[

3

κ2N 2 (X + Y ) + f (R2, P, Q)

− ζ

(
R − 6

N 2 (X + Y )

)

− σ

(
P − 12

N 4 (X2 + Y 2 + XY )

)

− ξ

(
Q − 12

N 4 (X2 + Y 2)

)
+ 1

2N 2 φ̇2 − V (φ)

]
. (6)

In order to get a first order Lagrangian, we rewrite the action
as

I =
∫
M

Na3
[

3

κ2N 2 (X + Y ) + f (R2, P, Q)

− ζ

(
R − 6

N 2 (X + Y )

)
− σ

(
P − R2

3

)

× ξ

(
Q − R2

3

)

− 12

N 4 XY (σ + 2ξ) + 1

2N 2 φ̇2 − V (φ)

]
, (7)

so that the variations with respect to R, P , and Q lead to

ζ = fR(R2, P, Q) + 2R

3
[ fP (R2, P, Q)+ fQ(R2, P, Q)],

σ = fP (R2, P, Q), ξ = fQ(R2, P, Q), (8)

123



Eur. Phys. J. C (2015) 75 :111 Page 3 of 14 111

where fR,P,Q(R2, P, Q) are the derivatives of f (R2, P, Q)

with respect to R, P , and Q,

fR(R2, P, Q) ≡ 2R
d f (R2, P, Q)

dR2 ,

fP (R2, P, Q) ≡ d f (R2, P, Q)

dP
,

fQ(R2, P, Q) ≡ d f (R2, P, Q)

dQ
. (9)

Thus, after integration by parts, we obtain for the gravita-
tional part

Lgrav(a, ȧ, N , R, Ṙ, P, Ṗ, Q, Q̇)

= −3aȧ2

κ2N
+ f Na3 − ζ RNa3 − 6aȧ2ζ

N
− 6ȧa2ζ̇

N

− σ

(
P − R2

3

)
Na3 − ξ

(
Q − R2

3

)
Na3

+ 4ȧ3

N 3 (σ̇ + 2ξ̇ ), (10)

and the total Lagrangian as a result is found to be

Ltot = Lgrav + Lφ, Lφ =
(

1

2N
φ̇2 − V (φ)N

)
a3. (11)

As a result, we obtained a first order Lagrangian with respect
to the unknown variables N (t), a(t), R(t) ≡ R, P(t) ≡
P, Q(t) ≡ Q.

Some remarks are in order. Obviously, the expression (10)
can be generalized to the case f (R2, P, Q) → f (R, P, Q).
An interesting special case is given by Gauss–Bonnet gravity.
The Gauss–Bonnet four dimensional topological invariant
reads

G = R2 − 4P + Q, G = 24

N 4 XY, (12)

where the second expression is the form of the Gauss–Bonnet
on the flat FRW space-time. If f (R, P, Q) = f (R,G), by
taking into account that

fR(R, P, Q) → fR(R,G) + 2R fG(R,G),

fP (R, P, Q) → −4 fG(R,G),

fQ(R, P, Q) → fG(R,G), (13)

we derive from (10),

Lgrav(a, ȧ, N , R, Ṙ,G, Ġ)

= −3aȧ2

κ2N
+ Na3( f − R fR − G fG)

− 6aȧ2 fR
N

− 6ȧa2 ḟ R
N

− 8ȧ3

N 3 ḟG , (14)

according to Ref. [28]. Moreover, it is possible to demonstrate
that the Lagrangian of f (R, P, Q)-models corresponds to
the Lagrangian of f (R,G)-theories against the FRW back-
ground [30,31]. We may replace Q with Q = G − R2 + 4P
and therefore fQ(R, P, Q) with fG(R,G, Q) in (10) and
make the following substitutions:

fR(R, P, Q) → fR(R,G, Q) + 2R fG(R,G, Q),

fP (R, P, Q) → fP (R,G, Q) − 4 fG(R,G, Q), (15)

in order to cancel the additional derivatives that we have
acquired. We get

Lgrav(a, ȧ, N , R, Ṙ,G, Ġ, Q, Q̇)

= −3aȧ2

κ2N
+ Na3( f − R fR − G fG)

− 6aȧ2 fR
N

− 6ȧa2 ḟ R
N

− 8ȧ3

N 3 ḟG − fP

(
P + Na3 R

2

3
+ 4aȧ2R

N
+ 4a2ȧ Ṙ

N

)

+ ḟ P

(
4ȧ3

N 3 − 4a2ȧR

N

)
, (16)

and after integration by parts we obtain

Lgrav(a, ȧ, N , R, Ṙ,G, Ġ, Q, Q̇)

= −3aȧ2

κ2N
+ Na3( f − R fR − G fG) − 6aȧ2 fR

N

− 6ȧa2 ḟ R
N

− 8ȧ3

N 3 ḟG + fP Na3
(
R2

3
− G

2
− P

)
,

(17)

but with the FRW metric the last term is null and we recover
(14). To pass from f (R2, P, Q) to f (R,G)-gravity on the
FRW space-time, we can substitute R2, P, Q with R2,G,C2

into the action (1). Here,C2 is the “square” of the Weyl tensor,

C2 = 1

3
R2 − 2RμνR

μν + RξσμνR
ξσμν, (18)

and the following relations are met:

P = C2

2
− G

2
+ R2

3
, Q = 2C2 − G + R2

3
. (19)

With the FRW metric (3), the square of the Weyl tensor is
identically null (C2 = 0, δC2 = 0) and does not contribute
to the dynamics of the model, so that we can drop it from the
Lagrangian and use the formalism of f (R2,G)-gravity.
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By making the variation of (10)–(11) with respect to N (t)
and therefore by putting N (t) = 1, we find

3H2

κ2 + ( f − ζ R) + 6H2ζ + 6H ζ̇ − σ

(
P − R2

3

)

− ξ

(
Q − R2

3

)
− 12H3(σ̇ + 2ξ̇ ) = φ̇2

2
+ V (φ), (20)

where H = ȧ/a is the Hubble parameter. The variation with
respect to a(t) with N (t) = 1 leads to

1

κ2 (3H2 + 2Ḣ) + ( f − ζ R) + (4Ḣζ + 6H2ζ ) + 4H ζ̇

+ 2ζ̈ − σ

(
P − R2

3

)
− ξ

(
Q − R2

3

)

− 8H(H2 + Ḣ)(σ̇ + 2ξ̇ ) − 4H2(σ̈ + 2ξ̈ )

= −
(

φ̇2

2
− V (φ)

)
. (21)

Finally, the variations respect to R, P , and Q for the gauge
N (t) = 1 read

R = 12H2 + 6Ḣ , P = 12(Ḣ2 + 3H4 + 3Ḣ H2),

Q = 12(Ḣ2 + 2H4 + 2Ḣ H2). (22)

In conclusion, we obtained a set of five second order differen-
tial Eqs. (20)–(22). By taking the time derivative of (20) and
therefore by using (21) we derive the energy conservation
law of the field,

φ̈ + 3H φ̇ = −V ′(φ). (23)

Here, the prime denotes the derivative with respect toφ. Thus,
we can make the following identification:

ρφ = φ̇2

2
+ V (φ), pφ = φ̇2

2
− V (φ),

ρ̇φ + 3H(ρφ + pφ), (24)

where ρφ and pφ are the effective energy density and pressure
of the field, respectively. We also may introduce the equation
of state (EoS) parameter of the field:

ωφ ≡ pφ

ρφ

= φ̇ − 2V (φ)

φ̇ + 2V (φ)
. (25)

Let us see now how the inflationary cosmology is reproduced
by such a kind of models.

3 Inflationary cosmology

We would like to see how a modification to Einstein’s grav-
ity based on the higher derivative correction terms R2, P, Q
changes the classical picture of the inflation from scalar
field models against the General Relativity background. The
dynamics of the model (1) is governed by Eqs. (20) and (23)
with (22).

Inflation is described by a quasi-de Sitter solution, with
a Hubble parameter which slowly decreases with the time,
such that the slow-roll approximations are valid,

∣∣∣∣ Ḣ

H2

∣∣∣∣ � 1,

∣∣∣∣ Ḧ

H Ḣ

∣∣∣∣ � 1. (26)

It means that the magnitude of the so-called “slow-roll param-
eters”,

ε = − Ḣ

H2 , η = − Ḣ

H2 − Ḧ

2H Ḣ
≡ 2ε − 1

2εH
ε̇, (27)

must be small during inflation. Moreover, 0 < ε in order to
have Ḣ < 0, and, since the acceleration is expressed as

ä

a
= Ḣ + H2, (28)

we see that the accelerated expansion ends only when the ε

slow-roll parameter is of the order of unity.
To describe the early-time acceleration, we will use the

approach of chaotic inflation. At the beginning, the field,
namely the inflaton, is assumed to be negative and very large.
The slow-roll regime takes place if the kinetic energy of the
field is much smaller with respect to the potential,

φ̇2 � V (φ), |φ̈| � 3H φ̇. (29)

In this way, the field EoS parameter (25) is ωφ � −1 and the
de Sitter solution can be realized. On the other hand, from
(23) we have, in the slow-roll approximation (29),

3H φ̇ � −V ′(φ), 3H φ̈ � −V ′′(φ)φ̇, (30)

and, if V ′(σ ) > 0, the kinetic energy increases with the field
which tends to a minimum of the potential, where (29) is not
valid and inflation ends.

For the (quasi-) de Sitter solution of inflation, one intro-
duces the e-fold number as

N ≡ log

[
af

ai

]
=

∫ tf

ti
H(t)dt � 3

∫ φi

φf

H2

V ′(φ)
dφ, (31)

where ai,f are the scale factor at the beginning and at the
end of inflation, the ti,f are the related times and φi,f the
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values of the field at the beginning and at the end of inflation.
Generally, the primordial acceleration can solve the horizon
and velocities problems of the Friedmann universe if 55 <

N .
By using the slow-roll parameters, one can also evalu-

ate the universe’s anisotropy coming from inflation deriving
the spectral indices. The amplitude of the primordial scalar
power spectrum reads

�2
R = κ2H2

8π2ε
, (32)

and according to the cosmological observations must be
�2

R � 10−9; the spectral index ns and the tensor-to-scalar
ratio r are given by

ns = 1 − 6ε + 2η, r = 16ε. (33)

The last results observed by the Planck satellite [2] constrain
these quantities as ns = 0.9603 ± 0.0073 (68 % CL) and
r < 0.11 (95 % CL).

For chaotic inflation in the background of General Rela-
tivity, namely in the case of action (1) with f (R2, P, Q) = 0,
one has in terms of the field potential and its derivative

ε = 1

2κ2

(
V ′(φ)

V (φ)

)2

, η = 1

κ2

(
V ′′(φ)

V (φ)

)
,

N = κ2
∫ φi

φe

V (φ)

V ′(φ)
dφ, (34)

where the quasi-de Sitter solution of inflation is given by
H2

dS = κ2V (φ)/3, while, in the slow-roll approximation,
Ḣ � κ2V ′(φ)φ̇/(6HdS) with φ̇ derived from (30).

In our case, the quasi-de Sitter solution of inflation H �
HdS, HdS being a constant, is given by Eq. (20) under the
condition (29), namely

3H2
dS

κ2 +
(
f (R2

dS, PdS, QdS) − RdS fR(R2
dS, PdS, QdS)

2

)

− R2
dS fQ(R2

dS, PdS, QdS)

6
− R2

dS fP (R2
dS, PdS, QdS)

4
= V (φ), (35)

with

RdS = 12H2
dS, PdS = R2

dS

4
, QdS = R2

dS

6
. (36)

By taking the derivative of (20) with (22) and by using the
slow-roll conditions (26) and (29), we obtain the equations
for Ḣ , Ḧ ,

Ḣ

[
6H

κ2 + 12H fR − 144H3 fRR − 5184H7 fP P

− 2304H7 fQQ − 1728H5 fRP − 1152H5 fRQ

−6912H7 fPQ

]
� V ′(φ)φ̇, (37)

Ḧ

[
6H

κ2 + 12H fR − 144H3 fRR − 5184H7 fP P

− 2304H7 fQQ − 1728H5 fRP − 1152H5 fRQ

−6912H7 fPQ

]
� 2V ′(φ)φ̈ − 2HV ′(φ)φ̇ ε,

ε = − Ḣ

H2 , (38)

where H = HdS and φ̇ is determined by (30). The last term
of (38) has been approximated to simplify it: it comes from
terms proportional to ∼Ḣ2, which are negligible if the poten-
tial is flat (in such a case, ε � |η|), but not in other cases
like for the power-law potentials that we will analyze. Thus,
the dependences on V (φ), V ′(φ), and V ′′(φ) of the slow-
roll parameters ε, η, and of the e-fold number change with
respect to inflation in Einstein’s background case.

In the following chapters, we will consider some suitable
potentials for the scalar field and we will see how the early-
time acceleration is reproduced according with cosmological
data in f (R2, P, Q)-gravity.

4 Quadratic potential

One classical example of chaotic inflation is given by a mas-
sive field with the potential

V (φ) = m2φ2

2
, 0 < m, (39)

where m is a positive mass term smaller than the Planck
mass, m � MPl, in order to avoid quantum effects during
inflation. Let us assume φ negative and very large. In the
slow-roll regime (29), Eq. (30) leads to

log

[
φ

φi

]
= m2

3HdS
(t − ti) + const, (40)

where HdS is the quasi-de Sitter solution of inflation given
by (35) and φi the value of the field at the beginning of infla-
tion when t = ti. For example, in Einstein’s gravity with
f (R2, P, Q) = 0, one has

HdS = −
√

κ2

6
mφi ≡ −2

√
π

3

mφi

MPl
,

φ � φi + m

√
2

3κ2 (t − ti) ≡ φi + mMPl√
12π

(t − ti). (41)
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Thus, the slow-roll approximation (29) is valid as soon as

MPl√
12π

< |φi| <
M2

Pl

2m

√
3

π
, (42)

where we have also taken into account that HdS < MPl:
however, the accelerated expansion ends only when the ε

slow-roll parameter is equal to 1. Note that the field is larger
than the Planck mass, but its kinetic energy is smaller. The
e-folds and the slow-roll parameters (34) read

ε � M2
Pl

4πφ2
i

, η � M2
Pl

4πφ2
i

, N � 2πφ2
i

M2
Pl

, (43)

and for large e-folds (i.e. φi much larger than the Planck
mass) the slow-roll parameters are small and the spectral
index ns in (33) can satisfy the Planck data. However, we
must stress that the tensor-to-scalar ratio r as a result is found
to be slightly larger than the Planck bound. In general, this is
true for all the power-law potentials in the scalar field repre-
sentation (except for the case V (φ) ∼ φ, which is negative
for large values of the field and presents some criticism).
In the last months, the correct value of the tensor-to-scalar
ratio has been a debated question, and for this reason the
analysis of such a kind of models is still interesting. For
example, the last BICEP2 results [32] indicated for the B-
mode polarization of the CMB-radiation the tensor-to-scalar
ratio r = 0.20+0.07

−0.05 (68 % CL), and the vanishing of r has
been rejected at 7.0σ level. However, as we stated before,
the data coming from the Planck experiment reveal an upper
bound for the tensor-to-scalar ratio at r = 0.11 with 95 %
CL. Moreover, it should important to mention that very recent
combinations of the Planck and revised BICEP2/Keck Array
likelihoods lead to r < 0.09 with 95 % [33].

Let us see now how inflation induced by massive scalar
field works in some toy models of f (R2, P, Q)-gravity. First
of all, we will consider the subclass of Gauss–Bonnet gravity,
and then we will extend our investigation to more general
theories.

4.1 Gauss–Bonnet models

The Gauss–Bonnet equation (12) in the flat FRW space-time
(3) with the gauge N (t) = 1 is given by

G = 24H2(H2 + Ḣ). (44)

For the case f (R2, P, Q) ≡ f (G), by taking into account
(13), Eq. (20) reads

3H2

κ2 + ( f − G fG) + 24H3Ġ fGG = φ̇2

2
+ V (φ), (45)

where we have used the fact ḟG = Ġ fGG . Thus, the de Sitter
solution is the corresponding equation of (35),

3H2
dS

κ2 + ( f (GdS) − GdS fG(GdS)) = V (φ),

GdS = 24H4
dS, (46)

and by taking the derivative of (45) one has in the slow-roll
approximation (26),

6H Ḣ

κ2 − 2304Ḣ H7 fGG � V ′(φ)φ̇, (47)

which corresponds to (37) with (13). Moreover, the equation
for Ḧ is derived as

6H Ḧ

κ2 − 2304Ḧ H7 fGG

� 2V ′(φ)φ̈ − 2HV ′(φ)φ̇ ε, ε = − Ḣ

H2 . (48)

Let us introduce the quadratic potential (39) and assume the
following form for f (G):

f (G) = γGn, n 	= 1, (49)

where γ is a dimensional constant such that [γ ] = [M4(1−n)
Pl ],

and n is a number. For n = 1 we recover Einstein’s gravity,
the Gauss–Bonnet term being a topological invariant in four
dimensions.

The simplest non-trivial case of (49) is given by n = 1/2,
for which the dimension of γ is [γ ] = [M2

Pl]. We may assume
0 < γ and introduce the effective mass of the theory

meff = m

√
3M2

Pl

3M2
Pl + 8π

√
6γ

, 0 < γ,meff < m, (50)

so that, in analogy with (41)–(42), one has the following
solution of (46):

HdS = −2

√
π

3

meffφi

MPl
, φ � φi + meff MPl√

12π
(t − ti) (51)

and

MPl√
12π

< |φi| <
M2

Pl

2meff

√
3

π
� 0.5

M2
Pl

meff
. (52)
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The slow-roll parameters (27) and the number of e-folds (31)
follow from (47)–(48):

ε � M2
Pl

4πφ2
i

(
m

meff

)2

, η � M2
Pl

4πφ2
i

(
m

meff

)2

,

N � 2πφ2
i

M2
Pl

(meff

m

)2
, (53)

and for meff = m we recover (43). Thus, for large boundary
values of the field φi, the number of e-folds N can be large
enough and the slow-roll parameters are very small during
inflation, since

ε � η � 1

2N , (54)

like in the case of f (G) = 0.
The amplitude of the primordial scalar power spectrum

(32) of the model is

�2
R = 16

3

m4
effπφ4

M6
Plm

2
. (55)

The spectral index and the tensor-to-scalar ratio (33) read

ns � 1 − M2
Pl

πφ2
i

(
m

meff

)2

, r = 4M2
Pl

πφ2
i

(
m

meff

)2

, (56)

and in order to satisfy the Planck data (see under Eq. (33))
one must require

0.0324 <
M2

Pl

πφ2
i

(
m

meff

)2

< 0.0470, (57)

or, in terms of the e-fold number,

42 < N < 61. (58)

In the range 55 < N < 61 inflation is considered viable (we
also must stress that acceleration continues after the slow-roll
approximation and ends only when ε = 1). Thus,

2.6
mMPl

meff
< |φi | < 3.1

mMPl

meff
. (59)

Despite the fact that the spectral index ns is viable, the model
presents the same criticism of the massive scalar field in Gen-
eral Relativity framework concerning the tensor-to-scalar
ratio r , which as a result is found to be r ∼ 0.13, slightly
larger than the Planck constraint at r < 0.11. We note that,
since the curvature during inflation cannot exceed the Planck
mass, the condition (59) with (52) leads to

m < 0.2MPl, (60)

and in order to recover the primordial scalar power spec-
trum (55) �2

R � 10−9, it must be m � 10−6MPl. The
Gauss–Bonnet contribution f (G) = γ

√
G to the action is

compatible with the inflationary scenario from a scalar field
with a quadratic potential, but it leads to a tensor-to-scalar
ratio slightly larger than the one given by the Planck data. If
0 < γ , the inflation is realized at a curvature smaller with
respect to the classical case with γ = 0 (on the other side, if
−3M2

Pl/(8π
√

6) < γ < 0, we obtain the opposite behavior),
but a suitable setting of the initial value of the field permits
one to recover the same spectral index.

Let us take now 1 < n in (49): in this case, the value
of f (G) ∼ γ R2n is dominant with respect to the Hilbert–
Einstein term during inflation when

(
M2

Pl

|γ |

) 1
2n−1

< R < M2
Pl, (61)

so that Eqs. (46)–(48) can be solved by neglecting the contri-
bution coming from R/κ2. The de Sitter solution exists and
it is real if γ < 0,

HdS � �(−φ)1/2n, φ � φi + (−φi)
2n−1

2n
m2

3�
(t − ti),

� =
(

m√
2(24)nγ (1 − n)

) 1
2n

, (62)

with [�] = [MPl] 2n−1
2n . The slow-roll parameters (27) and the

e-fold number (31) read

ε� m2

6n�2(−φi)
1
n

, η� m2

3�2(−φi)
1
n

, N � 3n(−φi)
1
n �2

m2 .

(63)

For large values of φi the e-fold number is large and the
slow-roll parameters are small. However, we will see that the
Planck constraints limit the magnitude of φi. We observe

ε � 1

2N , η � n

N , (64)

so that ε < η. The amplitude of the primordial scalar power
spectrum (32) is given by

�2
R = 6n(−φi)

2/n�4

m2M2
Plπ

, (65)

and the spectral index and the tensor-to-scalar ratio (33) are
derived as

ns � 1 − (3 − 2n)m2

3n�2(−φi)
1
n

, r = 8m2

3n�2(−φi)
1
n

. (66)
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In order to satisfy the Planck data we must require

0.0324 <
(3 − 2n)m2

3n�2(−φi)
1
n

< 0.0470, 1 < n <
3

2
. (67)

The condition on n is quite restrictive and implies that infla-
tion described by the model takes place very close to the
Planck scale. For example, if n � 3/2−, it follows from (61)
that

MPl√|γ | < R < M2
Pl, (68)

but in this case the magnitude of the boundary value of the
field in (67) cannot be very large and the number of e-folds
of the model is quite small. A better fit of the cosmological
data may be found for a value of n between 1 and 3/2, but
the inflationary scenario produced by the model cannot be
defined “chaotic” due to the restrictions on the boundary of
the field.

Viable inflation based on the account of γGn, γ < 0, 1 <

n, could be realized only if 1 < n < 3/2, but, as soon as n
is close to 3/2, the magnitude of the field is small even if the
curvature is extremely close to the Planck scale. On the other
hand, if n is close to 1, condition (61) is not well satisfied
and the model turns out to be the one with f (G) = 0. In
the last part of the next subsection, we will reconsider such
a model by adding a contribution from Rn : we will see that
also in this case the conditions on n for feasible inflation do
not change.

4.2 f (R2, P, Q) power-law models

In this subsection, we will consider an explicit model
of f (R2, P, Q) in the context of chaotic inflation from
quadratic potential. To simplify the problem, we will rewrite
P, Q as functions of the square of the Ricci scalar R2, the
Gauss–Bonnet invariant G, and the square of the Weyl ten-
sor C2 as in (19). Since the contribution of the Weyl tensor
is identically null with the FRW metric, we can reduce the
theory to f (R2,G)-gravity, and Eq. (20) with (13) reads

3H2

κ2 + ( f − R fR − G fG) + 6H2 fR + 6H ḟR

+ 24H3 ḟG = φ̇2

2
+ V (φ). (69)

Thus, the de Sitter solution is derived from

3H2
dS

κ2 + ( f (R2
dS,GdS) − RdS fR(R2

dS,GdS)

− GdS fG(R2
dS,GdS)) + 6H2

dS fR(R2
dS,GdS) = V (φ),

RdS = 12H2
dS, GdS = 24H4

dS. (70)

The derivative of (69) in the slow-roll approximation (26),

6H Ḣ

κ2 + 12H Ḣ fR + 144H3 Ḣ fRR − 1152H5 Ḣ fRG

− 2304Ḣ H7 fGG � V ′(φ)φ̇, (71)

corresponds to (37) with (13), and the equation for Ḧ is given
by

6H Ḧ

κ2 + 12H Ḧ fR + 144H3 Ḧ fRR − 1152H5 Ḧ fRG

− 2304Ḧ H7 fGG � 2V ′(φ)φ̈ − 2HV ′(φ)φ̇ ε,

ε = − Ḣ

H2 . (72)

For our purpose, let us take the following Ansatz for the
f (R2, P, Q)-model:

f (R2, P, Q) = αR2n + βPm + γ Qp, (73)

where α, β, γ are dimensional constants and n,m, p num-
bers. We get from (19),

f (R2,G,C2) = αR2n + β

(
C2

2
− G

2
+ R2

3

)m

+ γ

(
2C2 − G + R2

3

)p

. (74)

The behavior of this model on FRW space-time corre-
sponds to the behavior of

f (R2,G) = αR2n + β

(
R2

3
− G

2

)m

+ γ

(
R2

3
− G

)p

,

(75)

the Weyl tensor being identically zero in the FRW metric.
To study how inflation can be realized from such a kind of
theory, we must make some assumption. For m = p = 1,
the model reduces to f (R2)-gravity, G being a topological
invariant in four dimension (its contribution in (69) drops
out), and we get

f (R2) = αR2n + ξ R2, ξ = β + γ

3
, m = p = 1. (76)

For n ≤ 1, we deal in fact with a R2 correction to standard
gravity. In this case, at the subplanckian scale, the Hilbert–
Einstein term R/κ2 is dominant in the action, and inflation
has a corresponding (viable) description in the so-called Ein-
stein frame [34] after a conformal transformation of the met-
ric. In the literature we have many studies as regards infla-
tion from R2 in an Einstein frame [35,36], or inflation from
R2 combined with other curvature invariants coming from
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trace-anomaly, quantum corrections or string inspired theo-
ries [21,37]. For 1 < n we obtain more general power-law
corrections to General Relativity [38–40]: note that if we
neglect the Einstein term we do not have a real de Sitter solu-
tion for positive values of the potential, and n must remain
close to 1.

One simple non-trivial case is given by n = m = p = 2
in (73)–(75), for which we get

f (R2,G) = α̃R4 + β̃G2 + γ̃ R2G,

ξ =
(
α − γ

9

)
n = m = p = 2,

(77)

where

α̃ = α + β

9
+ γ

9
, β̃ = β

4
+ γ, γ̃ = −β

3
− 2γ

3
, (78)

with [α] = [β] = [γ ] = [1/M4
Pl]. Inflation takes place in

the high curvature limit,

(
M2

Pl

δ

) 1
3

< R < M2
Pl, (79)

where δ is a term with the dimension and magnitude of
α̃, β̃, γ̃ : in this case the Hilbert–Einstein contribution can
be neglected in the action. The de Sitter solution is derived
from (70) as

HdS = �(−φi)
1/4, φ � φi + (−φi)

3
4
m2

3�
(t − ti),

� = (m)1/4

(27/831/4)(−36α̃ − β̃ − 6γ̃ )1/8
, (80)

with [�] = [M3/4
Pl ] and (36α̃ + β̃ + 6γ̃ ) < 0. The behavior

of the field, as usually, is governed by (30). The slow-roll
parameters and the e-fold number read

ε � m2(36α̃ + β̃ + 6γ̃ )

12(β̃ + 3γ̃ − 72α̃)
√−φi�2

, η � m2

3
√−φi�2

,

N � 6
√−φi�

2

m2 . (81)

In order to have ε > 0 with a real solution for the de Sitter
solution (80), we must have

β̃ + 3γ̃

72
< α̃ < − (β̃ + 6γ̃ )

36
. (82)

From (81) we get

ε � (36α̃ + β̃ + 6γ̃ )

2(β̃ + 3γ̃ − 72α̃)N , η � 2

N . (83)

The amplitude of the primordial scalar power spectrum (32)
is derived as

�2
R = 12(β̃ + 3γ̃ − 72α̃)(−φi)�

4

m2M2
Plπ(36α̃ + β̃ + 6γ̃ )

, (84)

and for the spectral index and the tensor-to-scalar ratio (33)
one finds

ns � 1 − m2(396α̃ − β̃ + 6γ̃ )

6(β̃ + 3γ̃ − 72α̃)
√−φi�2

,

r = 4m2(36α̃ + β̃ + 6γ̃ )

3(β̃ + 3γ̃ − 72α̃)
√−φi�2

. (85)

To satisfy the Planck data one must require

0.0324 <
m2(396α̃ − β̃ + 6γ̃ )

6(β̃ + 3γ̃ − 72α̃)
√−φi�2

< 0.0470, (86)

but also in this case the tensor-to-scalar ratio r is larger than
the Planck constraints, being of the order r ∼ 0.26. In order
to recover �2

R ∼ 10−9, it is enough to have m ∼ 10−6MPl.
We immediately see from (82),

α̃ <
β̃ − 6γ̃

396
. (87)

Conditions (82) and (87) must be satisfied simultaneously.
We have several possibilities. If γ̃ = 0, namely β = −2γ in
(73)–(75),

β̃ < 0,
β̃

72
< α <

β̃

396
, γ̃ = 0, (88)

but in this case the theory is affected by antigravitational
effects during inflation, since the effective gravitational con-
stant of the model, Geff = GN/(1 + 2κ2 fR(R2,G)), GN

being the Newton constant, as a result is found to be negative
if α̃ < 0.

In general, if γ̃ < 0 and 6γ̃ < β̃ < −6γ̃ , conditions (82)
and (87) can be satisfied for positive values of α̃ with the
possibility to avoid antigravitational effects. By using N of
(81) in (86) we get

21(β̃ + 3γ̃ − 72α̃)

(396α̃ − β̃ + 6γ̃ )
< N <

31(β̃ + 3γ̃ − 72α̃)

(396α̃ − β̃ + 6γ̃ )
, (89)

and to have 55 < N we must require (β̃ + 3γ̃ − 72α̃) �
2(396α̃ − β̃ + 6γ̃ ), so that a suitable value of φi can repro-
duce a sufficient amount of inflation according to the Planck
results.

We have seen that the model f (R2, P, Q) = αR4+βP2+
γ Q2 with a massive scalar field may bring about a viable
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early-time acceleration with curvature close to the Planck
scale, but the tensor-to-scalar ratio is not compatible with the
Planck data (but, for example, it may be compatible with the
BICEP2 results [32]). When the curvature decreases, we are
out of the range (79) and the Hilbert–Einstein term becomes
dominant in the action: at this point, the reheating processes
for particle production take places and Friedmann expansion
starts.

To conclude this chapter, we would like to reconsider the
model (49) with 1 < n of the previous subsection together
with a power-law function of the Ricci scalar in the context
of f (R2,G)-gravity, namely

f (R2,G) = αR2n + γGn, 1 < n, (90)

where α, γ are constants whose dimensions are [α] = [γ ] =
[1/M4(n−1)

Pl ]. Inflation starts at high curvature,

(
M2

Pl

|δ|

) 1
2n−1

< R < M2
Pl, (91)

where δ is a term with the dimension and the magnitude of
α, γ , so that the Hilbert–Einstein contribution R/κ2 can be
ignored into the action. In the presence of massive scalar
field, the de Sitter solution of the model reads

HdS = �(−φi)
1/(2n), φ � φi + (−φi)

2n−1
2n

m2

3�
(t − ti),

� = m1/2n

(21+3n3n(n − 1)(−6nα − γ ))1/4n , (92)

with [�] = [M (2n−1)/2n
Pl ] and (6nα + γ ) < 0. Therefore, the

slow-roll parameters and the e-fold number are derived as

ε � m2(n − 1)(6nα + γ )

6n((n − 1)γ − 6nnα)(−φi)1/n�2 ,

η � m2

3(−φi)1/n�2 , N � 3n(−φi)
1/n�2

m2 . (93)

In order to get ε > 0 with a real solution for the de Sitter
solution we must find

(n − 1)γ

6nn
< α < − γ

6n
. (94)

We also observe

ε � (n − 1)(6nα + γ )

2((n − 1)γ − 6nnα)N ,

η � n

N . (95)

Thus, the amplitude of the primordial scalar power spectrum
(32) is derived as

�2
R = 6n(γ (n − 1) − 6nnα)(−φi)

2/n�4

m2M2
Plπ(n − 1)(6nα + γ )

, (96)

and for the spectral index and the tensor-to-scalar ratio we
get

ns � 1 − m2(6n(n(3 + 2n) − 3)α + (n(5 − 2n) − 3)γ )

3n((n − 1)γ − 6nnα)(−φi)1/n�2 ,

r = 8m2(n − 1)(6nα + γ )

3n((n − 1)γ − 6nnα)(−φi)1/n�2 . (97)

As a consequence, to reproduce the Planck data we must
require

0.0324 <
m2(6n(n(3 + 2n) − 3)α + (n(5 − 2n) − 3)γ )

3n((n − 1)γ − 6nnα)(−φi)1/n�2

< 0.0470, (98)

and finally

α <
(3 − (5 − 2n)n)γ

6n(n(3 + 2n) − 3)
. (99)

In order to satisfy conditions (94) and (99), we can take γ < 0
and 0 < α (avoiding antigravitational effects) only if

1 < n <
3

2
, (100)

recovering the same result of (67) where the R2n contribution
was not considered. In other words, the addition of a R2n

contribution to the model in (49) does not change the range
of n, which remains quite close to 1 to reproduce the Planck
results.

5 Quartic potential

Let us consider now a quartic field potential in the general
action (1),

V (φ) = λφ4

4
, 0 < λ, (101)

where λ is a positive adimensional constant. In Einstein’s
gravity where f (R2, P, Q) = 0, for a large and negative
value of the field we get from (35) and (30),

HdS =
√

2π

3

√
λφ2

i

MPl
, φ � φi − φi

√
λMPl√
6π

(t − ti), (102)
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where, as usually, φi < 0 is the boundary value of inflation.
Thus, the slow-roll approximation (29) is valid as soon as

MPl√
3π

< |φi| < MPl

(
3

2πλ

)1/4

, (103)

where MPl/(λ)1/4 � 1 and the field may be larger than the
Planck mass during inflation. In this case, the number of e-
folds and the slow-roll parameters (34) read

ε � M2
Pl

πφ2
i

, η � 3M2
Pl

2πφ2
i

, N � πφ2
i

M2
Pl

, (104)

and, for a large number of e-folds, the slow-roll parameters
are small and the spectral index ns in (33) can satisfy the
Planck data, with a larger value of the tensor-to-scalar ratio
r .

In the following subsections, we will see some signifi-
cant examples of f (R2, P, Q)-gravity where chaotic infla-
tion from a field with a quartic potential could be realized.

5.1 Gauss–Bonnet models

As a first example, we will consider the Gauss–Bonnet
model,

f (G) = γ
√
G, 0 < γ, (105)

γ being a positive dimensional constant such that [γ ] =
[M2

Pl]. As we have already seen in Sect. 4.1 this kind of
correction to Einstein’s gravity leads to viable inflation in
the presence of massive scalar field.

If we introduce the effective λeff parameter,

λeff = λM2
Pl

M2
Pl + (4π/3)γ

√
24

, 0 < γ, λeff < λ, (106)

for the potential (101), Eq. (46) leads, with the de Sitter solu-
tion,

HdS =
√

2π

3

√
λeffφ

2
i

MPl
, φ � φi − φi

√
λeff MPl√

6π
(t − ti),

(107)

with

MPl√
3π

< |φi| < MPl

(
3

2πλeff

)1/4

� 1.5MPl

λ
1/4
eff

, (108)

in analogy with (102)–(103).
The slow-roll parameters (27) and the number of e-folds

(31) are derived from (47)–(48) and as a result are found to
be

ε � M2
Pl

πφ2
i

(
λ

λeff

)
, η � 3M2

Pl

2πφ2
i

(
λ

λeff

)
,

N � πφ2
i

M2
Pl

(
λeff

λ

)
, (109)

and for λeff = λ we recover (104). Since

ε � 1

N , η � 3

2N , (110)

we see that for large boundary values of the field φi, the e-
folds N can be large enough and the slow-roll parameters
very small during inflation.

The amplitude of the primordial scalar power spectrum
(32) of the model is given by

�2
R = 2πλ2

effφ
6
i

3M6
Plλ

, (111)

while the spectral index and the tensor-to-scalar ratio (33)
read

ns � 1 − 3M2
Pl

πφ2
i

(
λ

λeff

)
, r = 16M2

Pl

πφ2
i

(
λ

λeff

)
. (112)

Thus, in order to satisfy the Planck data we must find

0.0324 <
3M2

Pl

πφ2
i

(
λ

λeff

)
< 0.0470, (113)

or, in terms of the e-fold number,

64 < N < 93. (114)

As a consequence, the boundary value of the field must be

4.5MPl

√
λ

λeff
< |φi | < 5.4MPl

√
λ

λeff
. (115)

As in the case of scalar field with a quartic potential in the
framework of General Relativity, the tensor-to-scalar ratio r
is larger than the Planck bound (r ∼ 0.16). Since the cur-
vature during inflation cannot exceed the Planck mass, the
condition above with (108) leads to

√
λ√
λeff

< 0.33, (116)

and in order to obtain �2
R � 10−9, one must have√

λ/
√

λeff ∼ 10−7. In conclusion, the model f (G) =
γ
√
G, 0 < γ , in the presence of a scalar field with a quadratic

(see Sect. 4.1) or a quartic potential may lead to a viable
inflationary scenario, but the tensor-to-scalar ratio r exceeds
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the Planck result. Moreover, in the case investigated in this
subsection the number of e-folds in (114) is larger than the
number of e-folds in (58). As a consequence, the slow-roll
parameters of the model are smaller in the presence of a scalar
field with a quartic potential with respect to the quadratic
potential case.

5.2 f (R2,G) power-law models

In this last subsection we will discuss the general form of
f (R2,G) power-law model and we will see that, in the pres-
ence of a scalar field with a quartic potential, differently from
the cases of a quadratic potential analyzed in Sect. 4.2, infla-
tion cannot be realized. We also remember that, as we have
already discussed, a f (R2,G)-model can be seen as a repre-
sentation of a f (R2, P, Q)-theory with the FRW space-time
if we use (19) and therefore consider the Weyl tensor and its
contributions to the action null.

Let us start by the following f (R2,G)-model:

f (R2,G) = αR2n + βGn + γ (R2G)n/2, 1 < n, (117)

α, β, γ being dimensional constants such that [α] = [β] =
[γ ] = [M4(1−n)

Pl ]. This correction to Einstein’s gravity is
dominant with respect to the Hilbert–Einstein term R/κ2 in
the action at high curvature when

(
M2

Pl

|δ|

) 1
2n−1

< R < M2
Pl, (118)

where δ is a term with the dimension and the magnitude of
α, β, γ . The de Sitter solution of the model for the quartic
potential (101) follows from (70):

HdS = �(−φi)
1/n,

� = λ1/(4n)

2(3n+2)/(4n)31/4(n−1)1/(4n)(−6nα−β−6n/2γ )1/(4n)
,

(119)

with [�] = M (n−1)/n
Pl and 6nα + β + 6n/2γ < 0. Thus, the

slow-roll parameters (27) and the number of e-folds (31) are
derived as

ε � 2(n − 1)(6nα + β + 6n/2γ )λ(−φi)
2(n−1)

n

3n((2β + 6n/2γ )(n − 1) − 2n+13nnα)�2 ,

η � λ(−φi)
2(n−1)

n

�2 , N � 3�2(
2(n−1)

n

)
λφ

2(n−1)
n

. (120)

We immediately see that, for 1 < n, a large value of φi leads
to large slow-roll parameters and a small number of e-folds,
rendering the inflationary scenario unrealistic.

This result cannot be considered a general behavior of
f (R2, P, Q)- or f (R2,G)-gravitational models: however,
we would like to note that our Ansatz (117) represents a
quite generic and reasonable power-law model of f (R2,G).
For such a form of correction to Einstein gravity we can say
that chaotic inflation from a scalar field does not work in the
presence of a quartic potential.

6 Conclusions

In this paper, we have investigated chaotic inflation with
a scalar field subjected to a potential in the framework
of f (R2, P, Q)-modified gravity, namely the gravitational
action of the theory includes a correction based on an (arbi-
trary) function of the square of the Ricci scalar R2 and the
contractions of the Ricci (P) and Riemann (Q) tensors. This
form of modified gravity is quite general, and the curvature
invariants under consideration may be related with quan-
tum corrections to General Relativity or string inspired the-
ories. To derive the equations of motion on flat Friedmann–
Robertson–Walker space-time we used a method based on
Lagrangian multipliers and we treated the curvature invari-
ants as independent functions: as a consequence, we deal
with a system of second order differential equations sim-
plifying the analysis of the model. This leads in principle
to fourth order differential equations. We note that with the
FRW metric every f (R2, P, Q)-theory can be reduced to
a Gauss–Bonnet f (R2,G)-theory, since in fact one of the
curvature invariants can be expressed in terms of the other
two. This feature is manifest by replacing the contractions of
Ricci and Riemann tensors P, Q with the Gauss–Bonnet G
and the square of the Weyl tensor C2: with the FRW metric
the Weyl tensor and its derivatives disappear and we can drop
its contribution from the Lagrangian. We used the f (R2,G)-
representation to study our models, since in this way the
equations of motion as a result are found to be simplified.

Chaotic inflation from a scalar field with a potential can be
realized in the framework of higher derivative models as well
as in the framework of General Relativity, but, despite the fact
that the continuity equation of the field keeps the same form
in the two theories, the Hubble parameter and its derivatives
depend on the field potential in different ways. Inflation must
satisfy several constrains to be “viable”: the (quasi-) de Sit-
ter solution must hold and the slow-roll approximations must
be valid. This means that the slow-roll parameters must be
small and the number of e-folds sufficiently large to guarantee
the thermalization of the observed universe, and the spectral
index and the tensor-to-scalar ratio must satisfy the Planck
data. We presented the general formalism to investigate infla-
tion and its characteristic parameters in f (R2, P, Q)-gravity
with a scalar field and we furnished several explicit examples.
In the specific case, we investigated two well-known forms
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of chaotic inflation, namely chaotic inflation from a massive
scalar field (quadratic potential) and chaotic inflation from
a field with a quartic potential. We confronted the results in
the framework of General Relativity and in the one of our
modified theory giving some examples of corrections to Ein-
stein’s gravity based on power-law functions of the Gauss–
Bonnet or of the other curvature invariants under investiga-
tion. The (positive) corrections based on the square root of
the Gauss–Bonnet term are of the same order of magnitude
as the Hilbert–Einstein term in the action at high curvature
and permit one to realize an inflationary scenario similar to
the Einstein case. More interesting are the higher power-law
functions of the Gauss–Bonnet and the other curvature invari-
ants. In these cases, at high curvature the modification to
gravity is dominant with respect to the Hilbert–Einstein term
in the action and drives inflation. Thus, by fitting the param-
eters and the boundary value of the field, we may recover a
viable inflation in the case of a scalar field with a quadratic
potential, but with a quartic potential the inflationary scenario
appears to be unrealistic. We stress that this result cannot be
read as a general behavior of f (R2, P, Q)- or f (R2,G)-
gravitational theories, even if our Ansatz for the presented
power-law models is quite generic and reasonable. More-
over, even in the presence of our Ansatz, we cannot state that
these models are not able to reproduce an early-time accel-
eration in agreement with the Planck data, but only that in
the context of chaotic inflation induced by a large magnitude
value of the inflaton inflation is not viable.

A last remark is in order about the tensor-to-scalar ratio
number of the models investigated in the present work, which
as a result is found to be larger than the Planck constraint. This
feature is quite general in chaotic inflation from a power-law
potential, but, since the exact value of the tensor-to-scalar
ratio is still object of a debated question, we think that this
kind of models still has to be investigated. On the other hand,
the attempt of our study is to furnish a general formalism for
chaotic inflation in higher derivative gravity theories, which
is valid independently of the specific examples here analyzed.

Other work on higher derivative corrections to Einstein’s
gravity, FRW f (G)-gravity and inflation can be found in
Refs. [41–47].

OpenAccess This article is distributed under the terms of the Creative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.
Funded by SCOAP3 / License Version CC BY 4.0.

References

1. G. Hinshaw et al., WMAP Collaboration, Astrophys. J. Suppl. 208,
19 (2013). arXiv:1212.5226 [astro-ph.CO]

2. P.A.R. Ade et al., Planck Collaboration, Astron. Astrophys. 571,
A22 (2014). arXiv:1303.5082 [astro-ph.CO]

3. A.H. Guth, Phys. Rev. D 23, 347 (1981)
4. K. Sato, Mon. Not. R. Astron. Soc. 195, 467 (1981)
5. K. Sato, Phys. Lett. 99B, 66 (1981)
6. A.D. Linde, Lect. Notes Phys. 738, 1 (2008). arXiv:0705.0164

[hep-th]
7. D.S. Gorbunov, V.A. Rubakov, Introduction to the theory of the

early universe: hot big bang theory (World Scientific, 2011)
8. A. Linde, Phys. Lett. 129B, 177 (1983)
9. A. Linde, Phys. Lett. 108B, 389 (1982)

10. A. Albrecht, P. Steinhardt, Phys. Rev. Lett. 48, 1220 (1982)
11. K. Freese, J.A. Frieman, A.V. Orinto, Phys. Rev. Lett. 65, 3233

(1990)
12. F.C. Adams, J.R. Bond, K. Freese, J.A. Frieman, A.V. Orinto, Phys.

Rev. D 47, 426 (1993)
13. A.D. Linde, Phys. Rev. D 49, 748 (1994)
14. E.J. Copeland, A.R. Liddle, D.H. Lyth, E.D. Stewart, D. Wands,

Phys. Rev. D 49, 6410 (1994)
15. M. Rinaldi, G. Cognola, L. Vanzo, S. Zerbini. arXiv:1410.0631

[gr-qc]
16. M. Rinaldi, G. Cognola, L. Vanzo, S. Zerbini, JCAP 1408, 015

(2014). arXiv:1406.1096 [gr-qc]
17. K. Bamba, S. Nojiri, S.D. Odintsov, D. Saez-Gomez, Phys. Rev. D

90, 124061 (2014). arXiv:1410.3993 [hep-th]
18. K. Bamba, G. Cognola, S.D. Odintsov, S. Zerbini, Phys. Rev. D

90, 023525 (2014). arXiv:1404.4311 [gr-qc]
19. J. Amoros, J. de Haro, S.D. Odintsov, Phys. Rev. D 89(10), 104010

(2014). arXiv:1402.3071 [gr-qc]
20. K. Kannike, A. Racioppi, M. Raidal, JHEP 1406, 154 (2014).

arXiv:1405.3987 [hep-ph]
21. R. Myrzakulov, S. Odintsov, L. Sebastiani. arXiv:1412.1073

[gr-qc]
22. S. Nojiri, S.D. Odintsov, Phys. Rep. 505, 59 (2011).

arXiv:1011.0544 [gr-qc]
23. S. Nojiri, S.D. Odintsov, eConf C 0602061, 06 (2006) [Int. J. Geom.

Meth. Mod. Phys. 4, 115 (2007)]. arXiv:hep-th/0601213
24. S. Capozziello, M. De Laurentis, Phys. Rep. 509, 167 (2011).

arXiv:1108.6266 [gr-qc]
25. R. Myrzakulov, L. Sebastiani, S. Zerbini, Int. J. Mod. Phys. D 22,

1330017 (2013). arXiv:1302.4646 [gr-qc]
26. A. Vilenkin, Phys. Rev. D 32, 2511 (1985)
27. S. Capozziello, Int. J. Mod. Phys. D 114483 (2002)
28. G. Cognola, M. Gastaldi, S. Zerbini, Int. J. Theor. Phys. 47, 898

(2008). arXiv:gr-qc/0701138
29. G. Cognola, L. Sebastiani, S. Zerbini. arXiv:1006.1586 [gr-qc]
30. S. Capozziello, M. De Laurentis, S.D. Odintsov, Mod. Phys. Lett.

A 29(30), 1450164 (2014). arXiv:1406.5652 [gr-qc]
31. M. De Laurentis. arXiv:1411.7001 [gr-qc]
32. P.A.R. Ade et al., BICEP2 Collaboration, Phys. Rev. Lett. 112(24),

241101 (2014). arXiv:1403.3985 [astro-ph.CO]
33. R. Adam et al., Planck Collaboration. arXiv:1502.01582

[astro-ph.CO]
34. A.A. Starobinsky, Phys. Lett. B 91, 99 (1980)
35. D. Gorbunov, A. Tokareva, Phys. Lett. B 739, 50 (2014).

arXiv:1307.5298 [astro-ph.CO]
36. R. Kallosh, A. Linde, JCAP 1307, 002 (2013). arXiv:1306.5220

[hep-th]
37. K. Bamba, R. Myrzakulov, S.D. Odintsov, L. Sebastiani, Phys. Rev.

D 90, 043505 (2014). arXiv:1403.6649 [hep-th]
38. Q.-G. Huang. arXiv:1309.3514 [hep-th]
39. L. Sebastiani, G. Cognola, R. Myrzakulov, S.D. Odintsov, S.

Zerbini, Phys. Rev. D 89, 023518 (2014). arXiv:1311.0744 [gr-qc]
40. H. Motohashi. arXiv:1411.2972 [astro-ph.CO]
41. C. Bogdanos, S. Capozziello, M. De Laurentis, S. Nesseris,

Astropart. Phys. 34, 236 (2010). arXiv:0911.3094 [gr-qc]

123

http://arxiv.org/abs/1212.5226
http://arxiv.org/abs/1303.5082
http://arxiv.org/abs/0705.0164
http://arxiv.org/abs/1410.0631
http://arxiv.org/abs/1406.1096
http://arxiv.org/abs/1410.3993
http://arxiv.org/abs/1404.4311
http://arxiv.org/abs/1402.3071
http://arxiv.org/abs/1405.3987
http://arxiv.org/abs/1412.1073
http://arxiv.org/abs/1011.0544
http://arxiv.org/abs/hep-th/0601213
http://arxiv.org/abs/1108.6266
http://arxiv.org/abs/1302.4646
http://arxiv.org/abs/gr-qc/0701138
http://arxiv.org/abs/1006.1586
http://arxiv.org/abs/1406.5652
http://arxiv.org/abs/1411.7001
http://arxiv.org/abs/1403.3985
http://arxiv.org/abs/1502.01582
http://arxiv.org/abs/1307.5298
http://arxiv.org/abs/1306.5220
http://arxiv.org/abs/1403.6649
http://arxiv.org/abs/1309.3514
http://arxiv.org/abs/1311.0744
http://arxiv.org/abs/1411.2972
http://arxiv.org/abs/0911.3094


111 Page 14 of 14 Eur. Phys. J. C (2015) 75 :111

42. G. Abbas, D. Momeni, M.A. Ali, R. Myrzakulov, S. Qaisar.
arXiv:1501.00427 [gr-qc]

43. D. Momeni, R. Myrzakulov. arXiv:1408.3626 [gr-qc]
44. M.J.S. Houndjo, M.E. Rodrigues, D. Momeni, R. Myrzakulov, Can.

J. Phys. 92, 1528 (2014). arXiv:1301.4642 [gr-qc]

45. M.E. Rodrigues, M.J.S. Houndjo, D. Momeni, R. Myrzakulov’,
Can. J. Phys. 92, 173 (2014). arXiv:1212.4488 [gr-qc]

46. M.R. Setare, D. Momeni, V. Kamali, R. Myrzakulov.
arXiv:1409.3200 [physics.gen-ph]

47. M. Jamil, D. Momeni, R. Myrzakulov. arXiv:1309.3269 [gr-qc]

123

http://arxiv.org/abs/1501.00427
http://arxiv.org/abs/1408.3626
http://arxiv.org/abs/1301.4642
http://arxiv.org/abs/1212.4488
http://arxiv.org/abs/1409.3200
http://arxiv.org/abs/1309.3269

	Chaotic inflation in higher derivative gravity theories
	Abstract 
	1 Introduction
	2 Formalism
	3 Inflationary cosmology
	4 Quadratic potential
	4.1 Gauss–Bonnet models
	4.2 f(R2,P, Q) power-law models

	5 Quartic potential
	5.1 Gauss–Bonnet models
	5.2 f(R2, G) power-law models

	6 Conclusions
	References




