
Eur. Phys. J. C (2015) 75:110
DOI 10.1140/epjc/s10052-015-3326-8

Letter

Nuclear spin-dependent interactions: searches for WIMP, axion
and topological defect dark matter, and tests of fundamental
symmetries

Y. V. Stadnika, V. V. Flambaum
School of Physics, University of New South Wales, Sydney 2052, Australia

Received: 9 September 2014 / Accepted: 19 February 2015 / Published online: 7 March 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract We calculate the proton and neutron spin con-
tributions for nuclei using semi-empirical methods, as well
as a novel hybrid ab initio/semi-empirical method, for inter-
pretation of experimental data. We demonstrate that core-
polarisation corrections to ab initio nuclear shell model cal-
culations generally reduce discrepancies in proton and neu-
tron spin expectation values from different calculations. We
derive constraints on the spin-dependent P,T-violating inter-
action of a bound proton with nucleons, which for certain
ranges of exchanged pseudoscalar boson masses improve
on the most stringent laboratory limits by several orders
of magnitude. We derive a limit on the CPT and Lorentz-
invariance-violating parameter |b̃ p

⊥| < 7.6 × 10−33 GeV,
which improves on the most stringent existing limit by a fac-
tor of 8, and we demonstrate sensitivities to the parameters d̃ p

⊥
and g̃ p

D⊥ at the level∼10−29–10−28 GeV, which is a one order
of magnitude improvement compared to the corresponding
existing sensitivities. We extend previous analysis of nuclear
anapole moment data for Cs to obtain new limits on sev-
eral other CPT and Lorentz-invariance-violating parameters:
|bp

0 | < 7×10−8 GeV, |d p
00| < 8×10−8, |bn0 | < 3×10−7 GeV

and |dn00| < 3 × 10−7.

1 Introduction

The violation of the fundamental symmetries of nature is
an active area of research. Atomic and molecular experi-
ments, which probe P-odd and P, T -odd interactions, pro-
vide very sensitive tests of the Standard Model (SM) and
physics beyond the SM [1–3]. Measurements and calcula-
tions of the Cs 6s–7s parity nonconserving (PNC) amplitude
stand as the most precise atomic test of the SM electroweak
theory to date; see e.g. [4–11]. Experimental searches for
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nuclear anapole moments are ongoing in Fr [12], Yb [13,14]
and BaF [15,16]. At present, Hg provides the most precise
limits on the electric dipole moment (EDM) of the proton,
quark chromo-EDM and P, T -odd nuclear forces, as well
as the most precise limits on the neutron EDM and quantum
chromodynamics (QCD) θ term from atomic or molecular
experiments [17,18], while ThO provides the most precise
limit on the electron EDM [19]. Most recently, it was sug-
gested that EDM measurements in molecules with P, T -odd
nuclear magnetic quadrupole moments may lead to improved
limits on the strength of P, T -odd nuclear forces, proton,
neutron and quark EDMs, quark chromo-EDM and the QCD
θ term [20].

Field theories, which are constructed from the principles
of locality, spin-statistics and Lorentz invariance, conserve
the combined CPT symmetry. The violation of one or more
of these three principles, presumably from some form of
ultra-short distance scale physics, opens the door for the
possibility of CPT -odd physics. Some of the most strin-
gent limits on CPT -odd and Lorentz-invariance-violating
physics come from searches for the coupling b̃ · s between
a background cosmic field, b̃, and the spin of an electron,
proton, neutron or muon, s [21–32]. For further details on
the broad range of experiments performed and a brief history
of the improvements in these limits, we refer the reader to
the reviews of [33,34] and the references therein.

Other very important unanswered questions in fundamen-
tal physics are the strong CP problem, namely the puzzling
observation that QCD does not appear to violate the com-
bined charge-parity (CP) symmetry, see e.g. [35–40], and
dark matter and dark energy, see e.g. [41–45]. A particu-
larly elegant solution to the strong CP problem invokes the
introduction of a pseudoscalar particle known as the axion
[37,38] (see also [46–49]). It has been noted that the axion
may also be a promising cold dark matter candidate. Thus
axions, if detected, could resolve both the dark matter and
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the strong CP problems [50–54]. The decay of supersym-
metric axions to produce axions has also been suggested as
a possible explanation for dark radiation [55–58].

Many tests of the fundamental symmetries of nature
and searches for axion, weakly interacting massive parti-
cle (WIMP) and topological defect dark matter involve cou-
plings of the formX·sN between a field or operatorX and the
spin angular momentum sN of a proton (N = p) or neutron
(N = n), or depend explicitly on the spin angular momenta
of the nucleons involved. Also, some post-General Relativ-
ity theories predict spin-gravity correlations (see e.g. [59]).
We point out that in experiments, which measure nuclear
spin-dependent (NSD) properties, the contribution of non-
valence nucleon spins cannot be neglected, due to polarisa-
tion of these nucleons by the valence nucleon(s). Nuclear
many-body effects have previously been considered in asso-
ciation with the interpretation of atomic clock experiments
[60–62], nuclear-sourced EDMs and NSD–PNC interactions
mediated via Z0-boson exchange between electrons and the
nucleus (see e.g. [62]), static spin–gravity couplings [63,64]
and long-range dipole–dipole couplings [64].

In the present work, we calculate the proton and neutron
spin contributions for a wide range of nuclei, which are of
experimental interest in tests of the fundamental symme-
tries of nature and searches for dark matter, including axions,
WIMPs and topological defects, using semi-empirical meth-
ods, as well as a novel hybrid ab initio/semi-empirical
method. We then demonstrate that core-polarisation correc-
tions to ab initio nuclear shell model calculations generally
reduce discrepancies in proton and neutron spin expecta-
tion values from different calculations. As an illustration
of the importance of many-body effects in such studies, we
revisit the experiments of Refs. [29,32], in which a 3He/129Xe
comagnetometer was used to place constraints on the CPT
and Lorentz-invariance-violating parameter b̃n⊥, which quan-
tifies the interaction strength of a background field with the
spin of a neutron. We show that, due to nuclear many-body
effects, the 3He/129Xe system is in fact also quite sensitive
to proton interaction parameters. By reanalysing the results
of Ref. [32], we derive a limit on the parameter b̃ p

⊥ that is
the world’s most stringent by a factor of 8. Likewise, by
reanalysing the results of Ref. [24], in which a 3He/129Xe
comagnetometer was also used, we demonstrate improved
sensitivities to the parameters d̃ p

⊥ and g̃ p
D⊥ by one order of

magnitude. From existing data in Ref. [65], in which exper-
iments were performed with a 3He/129Xe comagnetometer,
we derive constraints on the spin-dependent P, T -violating
interaction of a bound proton with nucleons, which for cer-
tain ranges of exchanged pseudoscalar boson masses improve
on the most stringent laboratory limits by several orders of
magnitude. We also extend our previous analysis of nuclear
anapole moment data for Cs [66] to obtain new limits on

several other CPT and Lorentz-invariance-violating param-
eters.

2 Nuclear theory

The nuclear magnetic dipole moment μ can be expressed (in
the units of the nuclear magneton μN = eh̄/2mN ):

μ = gp〈szp〉 + gn〈szn〉 + 〈lzp〉, (1)

where 〈szp〉 and 〈szn〉 are the expectation values of the total pro-
ton and neutron spin angular momenta, respectively, while
〈lzp〉 is the expectation value of the total proton orbital angu-
lar momentum. In the present work, we consider nuclei with
either one valence proton or one valence neutron (even–even
nuclei are spinless due to the nuclear pairing interaction).

We start by considering the contribution of the valence
nucleon alone. Assuming all other nucleons in the nucleus
are paired (and ignoring polarisation of the nuclear core for
now), the spin I and nuclear magnetic dipole moment μ

are due entirely to the total angular momentum of the exter-
nal nucleon: I = j = l + s. In this case, the nuclear mag-
netic dipole moment is given by the Schmidt (single-particle
approximation) formula,

μ0 = gs〈sz〉0 + gl〈lz〉0, (2)

with

〈sz〉0 =
{

1
2 if j = l + 1

2 ,

− j
2( j+1)

if j = l − 1
2 ,

(3)

〈lz〉0 =
{

j − 1
2 if j = l + 1

2 ,
j (2 j+3)
2( j+1)

if j = l − 1
2 .

(4)

The gyromagnetic factors are: gl = 1, gs = gp = 5.586
for a valence proton and gl = 0, gs = gn = −3.826 for a
valence neutron. We present the values for 〈sz〉0 from Eq. (3)
(“Schmidt model”) in Tables 1 and 2.

Experimentally, the Schmidt model is known to overesti-
mate the magnetic dipole moment in most nuclei. The sim-
plest explanation for this is that the valence nucleon polarises
the core nucleons, reducing the magnetic dipole moment of
the nucleus. The degree of core polarisation can be esti-
mated using experimental values of the magnetic dipole
moment, and improved estimates for 〈szp〉 and 〈szn〉 can hence
be obtained.

The reduction in nuclear magnetic dipole moment from
the Schmidt value μ0 to the experimental value μ can pro-
ceed by a number of mechanisms. The simplest and most
efficient way is to assume that the internucleon spin–spin
interaction transfers spin from the valence proton (neutron)
to core neutrons (protons):
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Table 1 Expectation values
〈szp〉 and 〈szn〉 for selected
odd-proton nuclei. Nuclear spin
and parity assignments, and
experimental values of μ were
taken from Ref. [67]

Nucleus Schmidt model Minimal model Preferred model

〈sz〉0 〈szp〉 〈szn〉 〈szp〉 〈szn〉
1H 0.500 0.500 0.000 0.500 0.000
7Li 0.500 0.443 0.057 0.436 0.064
19F 0.500 0.483 0.017 0.480 0.020
23Na −0.300 −0.078 −0.222 −0.051 −0.249
27Al 0.500 0.378 0.122 0.363 0.137
35Cl −0.300 −0.226 −0.074 −0.217 −0.083
39K −0.300 −0.272 −0.028 −0.268 −0.032
41K −0.300 −0.290 −0.010 −0.289 −0.011
69Ga 0.500 0.311 0.189 0.289 0.211
81Br 0.500 0.338 0.162 0.319 0.181
85Rb −0.357 −0.305 −0.052 −0.299 −0.058
87Rb 0.500 0.389 0.111 0.376 0.124
93Nb 0.500 0.434 0.066 0.426 0.074
127I 0.500 0.290 0.210 0.265 0.235
133Cs −0.389 −0.297 −0.092 −0.286 −0.103
139La −0.389 −0.276 −0.113 −0.262 −0.127
141Pr 0.500 0.445 0.055 0.438 0.062
159Tb −0.300 −0.099 −0.201 −0.075 −0.225
165Ho 0.500 0.324 0.176 0.303 0.197
169Tm 0.500 0.179 0.321 0.140 0.360
203Tl 0.500 0.376 0.124 0.361 0.139
205Tl 0.500 0.377 0.123 0.363 0.137
209Bi −0.409 −0.251 −0.158 −0.232 −0.177
209Fr −0.409 −0.268 −0.141 −0.251 −0.158
211Fr −0.409 −0.263 −0.146 −0.246 −0.164

(
〈szp〉 − 〈szp〉0

)
= −

(
〈szn〉 − 〈szn〉0

)
= μ − μ0

gp − gn
, (5)

where 〈szp〉0 and 〈szn〉0 are the Schmidt model values (one of
which is necessarily zero). In general, there is also polarisa-
tion of the proton (neutron) core by the valence proton (neu-
tron), but transfer of valence proton (neutron) spin to core
proton (neutron) spin does not change the result. Note that
the denominator gp − gn = 9.412 in (5) is a large number,
so the required change in 〈szp〉 and 〈szn〉 to obtain the exper-
imental value μ is minimal. We present the values for 〈szp〉
and 〈szn〉 from Eq. (5) (“minimal model”) in Tables 1 and 2.

It is also possible for a reduction in nuclear mag-
netic dipole moment to occur by different mechanisms, for
instance, by transfer of the spin angular momentum of a
valence proton (neutron) to core proton (neutron) orbital
angular momenta, or in a more unlikely manner by trans-
fer of valence proton (neutron) spin angular momentum to
core neutron (proton) orbital angular momenta.

The preferred model of Refs. [61,62] is intermediate to the
two previously mentioned “extreme models”. In this model,

it is assumed that the total z projections of proton and neu-
tron angular momenta, j zp and j zn , are separately conserved,
and that the z projections of total spin and orbital angular
momenta, 〈szp〉 + 〈szn〉 and 〈lzp〉 + 〈lzn〉, are also separately
conserved (which corresponds to the neglect of the spin–
orbit interaction). In this case

〈sz〉0 = 〈szp〉 + 〈szn〉, (6)

〈 j zp〉 = 〈szp〉 + 〈lzp〉, (7)

where 〈 j zp〉 = I for a valence proton and 〈 j zp〉 = 0 for a
valence neutron, with 〈sz〉0 the Schmidt model value for the
spin of the valence nucleon, given by (3). From Eqs. (1), (6)
and (7), we find

〈szn〉 = μ − 〈 j zp〉 − (gp − 1)〈sz〉0

gn − gp + 1
, (8)

〈szp〉 = 〈sz〉0 − 〈szn〉. (9)

We present the values for 〈szp〉 and 〈szn〉 from Eqs. (8) and (9)
(“preferred model”) in Tables 1 and 2.
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Table 2 Expectation values
〈szn〉 and 〈szp〉 for selected
odd-neutron nuclei. Nuclear
spin and parity assignments, and
experimental values of μ were
taken from Ref. [67]

Nucleus Schmidt model Minimal model Preferred model
〈sz〉0 〈szn〉 〈szp〉 〈szn〉 〈szp〉

3He 0.500 0.500 0.000 0.500 0.000
9Be 0.500 0.422 0.078 0.413 0.087
13C −0.167 −0.174 0.007 −0.174 0.008
21Ne −0.300 −0.108 −0.192 −0.085 −0.215
29Si 0.500 0.356 0.144 0.339 0.161
39Ar 0.500 0.43 0.07 0.43 0.07
73Ge 0.500 0.390 0.110 0.377 0.123
87Sr 0.500 0.413 0.087 0.403 0.097
91Zr 0.500 0.435 0.065 0.428 0.072
125Te 0.500 0.391 0.109 0.378 0.122
129Xe 0.500 0.379 0.121 0.365 0.135
131Xe −0.300 −0.252 −0.048 −0.246 −0.054
135Ba −0.300 −0.267 −0.033 −0.263 −0.037
137Ba −0.300 −0.278 −0.022 −0.275 −0.025
171Yb −0.167 −0.151 −0.015 −0.150 −0.017
173Yb −0.357 −0.140 −0.217 −0.114 −0.243
199Hg −0.167 −0.153 −0.014 −0.151 −0.016
201Hg 0.500 0.356 0.144 0.339 0.161
207Pb −0.167 −0.162 −0.005 −0.161 −0.005

In the present work, we develop a new and alternate hybrid
method, in which semi-empirical core-polarisation correc-
tions are applied to ab initio nuclear shell model calculations
from Refs. [68–70]. We use the results of the many-body
calculations for μ0, 〈szp〉0 and 〈szn〉0 from Refs. [68–70] as
the input values (instead of the Schmidt model values) and
improve them using the known experimental values of μ.
Minimal model corrections [from Eq. (5)] to the proton and
neutron spin angular momentum expectation values of the
available nuclei are seen to generally reduce discrepancies
in proton and neutron spin expectation values from different
calculations, as shown in Table 3.

3 Application I: dark matter searches

Proton and neutron spin contents are important for inter-
pretations of experimental data from various dark matter
detection schemes, which are based on effects involving
couplings to nuclear spins. WIMP dark matter can undergo
elastic, spin-dependent scattering off nuclei; see e.g. [71–
83]. Axions can induce oscillating nuclear Schiff moments
via hadronic mechanisms [84–86], which can be sought
for either directly through nuclear magnetic resonance-type
experiments (CASPEr) [87] or oscillating atomic EDMs [84].
Axions can interact directly with nuclear spins via the time-
dependent spin-axion momentum coupling sN ·pa cos(mat),

where ma is the axion mass [84,86,88], induce the time-
dependent nuclear spin–gravity coupling sN ·g cos(mat) and
oscillating nuclear anapole moments [84,89]. Magnetometry
techniques can also be used to search for monopole–dipole
and dipole–dipole axion exchange couplings [65,90]. Topo-
logical defect dark matter, which consists of axion-like pseu-
doscalar fields, can interact with nuclear spins via the time-
dependent coupling sN · (∇a), where a is the pseudoscalar
field comprising the topological defect [91], and it can give
rise to transient nuclear-sourced EDMs [92]. Both of these
effects can be sought for using GNOME [93]. One may use
Tables 1, 2 and 3 for the interpretation of dark matter searches
based on all of the mentioned schemes, as well as for tests of
the fundamental symmetries of nature.

4 Section II: comagnetometer experiments

We first revisit the experiments of Refs. [29,32], in which a
3He/129Xe comagnetometer was used to place constraints on
the Standard Model Extension (SME) CPT - and Lorentz-
invariance-violating parameter b̃n⊥ [94,95], which quantifies
the interaction strength of a background field with the spin of
a neutron. The observed quantities are the amplitudes of side-
real frequency shifts, ε1,X and ε1,Y , which in the case of the
3He/129Xe system are related to the SME parameters via [33]:
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Table 3 Expectation values 〈szn〉 and 〈szp〉 for selected nuclei after cor-
recting ab initio nuclear shell model spin expectation values via the
minimal model correction scheme. For nuclei, where more than one

calculation has been performed, we take the average of the final values
of 〈szn〉 and 〈szp〉 for computing limits in the present work

Nucleus Ref. Ab initio model 〈szn〉0 〈szp〉0 〈szn〉 〈szp〉
125Te [69] Bonn A 0.287 0.001 0.274 0.014
125Te [69] Nijmegen II 0.323 −0.0003 0.297 0.026
127I [69] Bonn A 0.075 0.309 0.071 0.313
127I [69] Nijmegen II 0.064 0.354 0.100 0.318
127I [70] Bonn-CD 0.030 0.418 0.108 0.340
129Xe [69] Bonn A 0.359 0.028 0.337 0.050
129Xe [69] Nijmegen II 0.300 0.0128 0.308 0.005
129Xe [70] Bonn-CD 0.273 −0.0019 0.256 0.015
131Xe [69] Bonn A −0.227 −0.009 −0.196 −0.040
131Xe [69] Nijmegen II −0.217 −0.012 −0.187 −0.042
131Xe [68] QTDA −0.236 −0.041 −0.235 −0.042
131Xe [70] Bonn-CD −0.125 −0.00069 −0.122 −0.004
133Cs [70] Bonn-CD 0.021 −0.318 −0.076 −0.221

∣∣∣∣∣∣4 sin(χ)
∑

N=p,n

[
〈szN 〉(He)b̃NJ − γHe

γXe
〈szN 〉(Xe)b̃NJ

]∣∣∣∣∣∣ � 2πε1,J ,

(10)
where J = X,Y , γHe and γXe are the gyromagnetic ratios
of 3He and 129Xe, respectively, with γHe/γXe = 2.754,
and χ = 57◦ is the angle between Earth’s rotation axis
and the quantisation axis of the spins. Within the Schmidt
model, in which only valence neutrons participate in the spin-
dependent coupling s · b̃, it was determined that [32]:

b̃nX = (4.1 ± 4.7) × 10−34 GeV, (11)

b̃nY = (2.9 ± 6.2) × 10−34 GeV. (12)

However, in a non-single-particle model, proton spins also
contribute. From our spin content values for 129Xe in Table 3
and the values for the well-studied case of 3He from Ref. [96],
we find, using Eq. (10), instead of Eqs. (11) and (12):

b̃nX + 0.20 b̃ p
X = (9.2 ± 10.5) × 10−34 GeV, (13)

b̃nY + 0.20 b̃ p
Y = (6.5 ± 13.9) × 10−34 GeV, (14)

which gives the following limits (1σ ) on b̃N⊥ =√
(b̃NX )2 + (b̃NY )2, where N = p, n, within the preferred

model:

|b̃n⊥| < 1.5 × 10−33 GeV, (15)

|b̃ p
⊥| < 7.6 × 10−33 GeV. (16)

Note that (16) improves on the world’s best proton-coupling
limit of [30] by a factor of 8 (Table 4). Thus in this case,
the 3He/129Xe system is sensitive not only to neutron SME
parameters, but also has reasonable sensitivity to analogous
proton parameters.

Table 4 Comparison of limits (1σ ) on the SME parameters b̃n⊥ and b̃ p
⊥

Parameter Ref. [30] Ref. [32] This work

|b̃n⊥| (GeV) 3.7 × 10−33 8.4 × 10−34 1.5 × 10−33

|b̃ p
⊥| (GeV) 6 × 10−32 – 7.6 × 10−33

Similarly, we reanalyse the results of Ref. [24], in which
a 3He/129Xe comagnetometer was also used to place con-
straints on the SME parameters b̃n⊥, d̃n⊥ and g̃nD⊥ [94,95],
among others. The observed quantities are again the ampli-
tudes of sidereal frequency shifts:∣∣∣∣∣∣4 sin(χ)

∑
N=p,n

{
〈szN 〉(He)

[
b̃NJ + ρ

(He)
N d̃N

J + τ
(He)
N g̃NDJ

]

−γHe

γXe
〈szN 〉(Xe)

[
b̃NJ + ρ

(Xe)
N d̃N

J + τ
(Xe)
N g̃NDJ

]}∣∣∣∣ � 2πε1,J ,

(17)

where

ρN =
⎧⎨
⎩

− 〈p2〉N
(2l+3)m2

N
if j = l + 1

2 ,

− 3〈p2〉N
(2l+3)m2

N
if j = l − 1

2 ,
(18)

τN =
⎧⎨
⎩

(l+1)〈p2〉N
(2l+3)m2

N
if j = l + 1

2 ,

l〈p2〉N
(2l+3)m2

N
if j = l − 1

2 .
(19)

Noting that the dominant contributions are from nucleons
near the Fermi surface (≈10 MeV from the surface), taking
the nucleon depth well to be ≈50 MeV for both protons
and neutrons, and using our spin content values for 129Xe in
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Table 3 and the values for 3He from Ref. [96], along with the
experimental data in Ref. [24], we find the following results
(all of which are consistent with zero):

b̃nX + 0.20 b̃ pX − 0.028d̃nX − 0.006b̃ pX + 0.028g̃nDX + 0.006g̃ pDX

= (−5 ± 18) × 10−32 GeV, (20)

b̃nY + 0.20 b̃ pY − 0.028d̃nY − 0.006b̃ pY + 0.028g̃nDY + 0.006g̃ pDY

= (1.8 ± 2.1) × 10−31 GeV, (21)

where the uncertainties in the coefficients of d̃nJ and g̃nDJ are
a factor of several, while the uncertainties in the coefficients
of d̃ p

J and g̃ p
DJ are an order of magnitude. We note that the

corresponding sensitivities to the parameters d̃ p
⊥ and g̃ p

D⊥
are at the level ∼ 10−29–10−28 GeV, which is a one order of
magnitude improvement on the best corresponding proton-
coupling sensitivities derived in [31].

Likewise, we revisit the experiment of Ref. [65], in
which a 3He/129Xe comagnetometer was used to place
constraints on the spin-dependent P, T -violating interac-
tion of a bound neutron with nucleons. The spin-dependent
monopole–dipole coupling potential between two nucleons
is given by [40]:

Vsp(r) = gNs gN
′

p

8πmN ′
(σ · r̂)

(
1

λr
+ 1

r2

)
e−r/λ, (22)

where gNs is the dimensionless scalar coupling constant of
the nucleon N inside the spin-unpolarised sample, gN

′
p is the

dimensionless pseudoscalar coupling constant of the spin-
polarised bound nucleon N ′, r̂ is the unit vector from the
bound nucleon to the unpolarised nucleon, σ is the spin of
the polarised bound nucleon and λ = 1/ma is the one-
boson-exchange range. The resulting shift in the weighted
frequency difference �ω = ωHe − ωXeγHe/γXe is given by
(using results of derivations from Refs. [65,97]):

�νN ′
sp =

∣∣∣∣∣∣4
∑

N ′=p,n

[
〈szN 〉(He) − γHe

γXe
〈szN 〉(Xe)

]
V N ′

�

∣∣∣∣∣∣ , (23)

with

V N ′
� = gNs gN

′
p N

4mN ′
λ2

D
e−�x/λ(1 − e−D/λ)(1 − e−d/λ)η(λ),

(24)

where N is the number density of nucleons in the unpolarised
sample, D and d are the thicknesses of the cylindrical spin-
polarised and unpolarised samples, respectively, �x is the
finite gap between the two samples and η(λ) is a correction
function accounting for the finite sizes of the two samples
[65].

Fig. 1 95 % confidence level upper limit on |gNs g p
p | as a function of

the one-boson-exchange range λ = 1/ma . Solid black line corresponds
to limits derived in our present work. Shaded orange region indicates
‘classical’ region of axion masses

Fig. 2 95 % confidence level upper limit on |gNs gnp| as a function of
the one-boson-exchange range λ = 1/ma . Solid black line corresponds
to limits derived in our present work.Dashed purple line corresponds to
limits obtained from Schmidt model in Ref. [65]. Shaded orange region
indicates ‘classical’ region of axion masses

Combining the experimental data of [65] with our spin
content values for 129Xe in Table 3 and the values for 3He
from Ref. [96], we obtain the 95 % confidence level upper
limits on the parameters |gNs g p

p | and |gNs gnp| shown in Figs. 1
and 2, respectively. For some of the other limits on these
parameters, we refer the reader to Refs. [64,98–107].

5 Application III: tests of fundamental symmetry

Consider the following Lorentz-invariance-violating terms
in the SME Lagrangian (in the natural units h̄ = c = 1) [33]:

L = −bμψ̄γ5γ
μψ + i

2
dμνψ̄γ5γ

μ
↔
∂ν ψ, (25)

where bμ and dμν are background fields, ψ is the fermion
wavefunction with ψ̄ ≡ ψ†γ 0, γ 0, γ5 and γ μ are Dirac

matrices, and the two-sided derivative operator
↔
∂ν is defined
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by A
↔
∂ν B ≡ A(∂νB) − (∂ν A)B. The first term in (25) is

CPT -odd, while the second term is CPT -even. In the
non-relativistic limit, the Lagrangian (25) gives rise to the
following interaction Hamiltonian:

Hint = 2b0

m
s · p − 2d00s · p, (26)

where m is the fermion mass, s is the fermion spin and p is
the fermion momentum operator. In our previous work [66],
we showed in the single-particle approximation that the first
term in (26) gives rise to nuclear anapole moments associated
with valence nucleons [108] (see also [84]). Experimentally,
the nuclear anapole moment manifests itself as a NSD con-
tribution to a PNC amplitude. Hence from the measured and
calculated (within the SM) values of the anapole moments
of Cs and Tl, we were able to extract direct limits on the
parameter bp

0 .
In the single-particle approximation, the nuclear anapole

moment contribution from the interaction (26) is

ãN = GF√
2e

K I
I (I + 1)

(κN
b + κN

d ), (27)

where GF is the Fermi constant of the weak interaction, K =
(I + 1/2)(−1)I+1/2−l , and the dimensionless constants κN

b
and κN

d are given by

κN
b = 2

√
2h̄παμN 〈r2〉bN0
GFmNc

, (28)

κN
d = −2

√
2h̄παμN 〈r2〉dN

00

GFc
, (29)

where α = e2/h̄c is the fine-structure constant, mN and μN

are the mass and magnetic dipole moment of the unpaired
nucleon N (μp = 2.8 and μn = −1.9), respectively, and we
take the mean-square radius 〈r2〉 = 3

5r
2
0 A

2/3, with r0 = 1.2
fm, and A the atomic mass number. Combining the mea-
sured values for the nuclear anapole moment of κa(Cs) =
0.364(62) [5,109] and κa(Tl) = −0.22(30) [110,111], with
the values κa(Cs) = 0.19(6) and κa(Tl) = 0.17(10) from
nuclear theory [112–115] (see also [2]), and with Eq. (29),
we extract limits on the parameter d p

00 in the single-particle
approximation (Table 5).

We now leave the single-particle approximation and con-
sider nuclear many-body effects. For a single-particle state,
the angular momenta factors in (27) can be rewritten as

K I
I (I + 1)

=
{

− 2(I+1/2)
I+1 〈s〉 if I = l + 1

2 ,

− 2(I+1/2)
I 〈s〉 if I = l − 1

2 .
(30)

Hence, unlike NSD–PNC effects arising from Z0-boson
exchange between electrons and the nucleus [2], we cannot
simply average over the spins of the single-particle proton
and neutron states without explicitly considering the angular

Table 5 New limits (1σ , in laboratory frame) on the SME parameters
bp

0 , d p
00, bn0 and dn00. s.p. denotes single-particle (Schmidt model) limit

and m.b. denotes many-body (hybrid model) limit

Parameter Model Ref. [66] This work

Cs Tl Cs Tl

|bp
0 | (GeV) s.p. 3 × 10−8 8 × 10−8 – –

|d p
00| s.p. – – 3 × 10−8 9 × 10−8

|bp
0 | (GeV) m.b. – – 7 × 10−8 –

|d p
00| m.b. – – 8 × 10−8 –

|bn0 | (GeV) m.b. – – 3 × 10−7 –

|dn00| m.b. – – 3 × 10−7 –

momenta of each individual nucleon. To circumvent this dif-
ficulty, we make use of the following approximation. Note
that for single-particle states with j > 1, the prefactors before
〈s〉 in Eq. (30) are ≈−2. For non-light nuclei, most nucleons
have j > 1. Also, the deviations of the prefactors in (30) from
−2 are of opposite sign for j = l±1/2. Thus for nuclei with
valence nucleon(s), which have j > 1, we can approximately
sum over the proton and neutron spin angular momenta that
appear in (30) to give the many-body generalisation of (27):

ã ≈ −√
2GF

e
[(κ p

b + κ
p
d )〈sp〉 + (κn

b + κn
d )〈sn〉]. (31)

From Eq. (31), we extract limits on the parameters bp
0 , d p

00,
bn0 and dn00 for Cs, for which I = 7/2, using the calculated
spin content values in Table 3. The limits are presented in
Table 5. For Tl, where I = 1/2, Eq. (31) is not a good
approximation and so we do not present many-body model
limits in this case. We note that the limits in Table 5 are
weaker than those that would be obtained indirectly from
the most stringent limits on b̃ p

i and b̃ni , if one assumes a
static background cosmic field. These corresponding upper
limits are roughly as follows: |bn0 | � 10−29 GeV, |dn00| �
10−29, |bp

0 | � 10−28 GeV and |d p
00| � 10−28, assuming that

the typical speed of Earth relative to the static background
cosmic field is v ∼ 10−4–10−3c.
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