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Abstract It is by now clear that the infrared sector of
quantum electrodynamics (QED) has an intriguingly com-
plex structure. Based on earlier pioneering work on this sub-
ject, two of us recently proposed a simple modification of
QED by constructing a generalization of the U (1) charge
group of QED to the “Sky” group incorporating the well-
known spontaneous Lorentz violation due to infrared pho-
tons, but still compatible in particular with locality (Bal-
achandran and Vaidya, Eur Phys J Plus 128:118, 2013). It
was shown that the “Sky” group is generated by the algebra
of angle-dependent charges and a study of its superselec-
tion sectors has revealed a manifest description of sponta-
neous breaking of the Lorentz symmetry. We further elab-
orate this approach here and investigate in some detail the
properties of charged particles dressed by the infrared pho-
tons. We find that Lorentz violation due to soft photons may
be manifestly codified in an angle-dependent fermion mass,
modifying therefore the fermion dispersion relations. The
fact that the masses of the charged particles are not Lorentz
invariant affects their spin content, and time dilation formulas
for decays should also get corrections.

1 Introduction

In quantum field theory (QFT), observables are local and
generate the algebra of local observables 7. In contrast, time
evolution and global symmetries are not local. In Lagrangian
field theories, their generators involve integrals of fields over
all of space. They are thus not elements of <7, but instead
generate automorphisms of .7 . They are elements of the auto-
morphism group Aut.e? of 7.
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The group of automorphisms of <7 generated by conjuga-
tion using unitary elements of 7 is the group Inn7 of inner
automorphisms. It is a normal subgroup of Aut.e. The group
Aute/ /Inngf is the outer automorphism group Out.o?.

The automorphisms generated by some global symmetries
may be equivalent to inner ones. If that is not the case, then
they define non-trivial elements of Out.es.

In QFT, we choose an irreducible representation p or a
superselection sector of 7. It can happen that a global sym-
metry transformation cannot be implemented by a unitary or
antiunitary operator in the representation space .77 of <7 In
that case, the symmetry is said to be spontaneously broken.
Since elements of .o act by definition on #, Inn.¢# cannot be
spontaneously broken. So that can happen only if § ¢ Inn.o7.

Spontaneous breaking by a Higgs field can be understood
in this framework. Thus no local operation can change the
asymptotic expression @, of the Higgs field ¢. Hence ¢ is
alabel for the representation p. If a symmetry changes ¢, it
changes the representation. Hence it is spontaneously broken.

The mechanism of spontaneous breaking can be illustrated
even with the 3 x 3 matrix algebra M3(C). In its irreducible
representation p, which is three-dimensional, its unitary sub-
group Uj is represented irreducibly by a representation we
can name as 3. Complex conjugation is an anti-linear auto-
morphism of M3(C). It changes 3 to the inequivalent repre-
sentation 3 and hence p to the inequivalent representation /.
This anti-linear automorphism is thus spontaneously broken
in the representation p.

The Poincaré group is an automorphism group of the
observables of quantum electrodynamics (QED). It trans-
forms elements of .7 nontrivially. Instead, the electric charge
0, at least classically, is the total electric flux at infinity and
hence commutes with all elements of .. Its different values
q go into the labels for the different irreducible representa-
tions of .«7. They are similar to the Casimir operators of Lie
algebras. Since Q is Poincaré invariant, Poincaré symmetry
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is compatible with charge superselection. The latter does not
cause spontaneous Poincaré violation.

In QED, infrared photons accumulate at infinity and create
anon-zero electromagnetic field f,, there as nicely shown by
Buchholz [1,2] and Frohlich et al. [3,4] (see also R. Haag’s
book [5]). Since local operations cannot affect f,,, this field
also labels superselection sectors. But f,, is not Lorentz
invariant. Therefore Lorentz symmetry is spontaneously bro-
ken in QED.

The group U (1) of QED is based on electric charge which
classically is a measure of the net flux of electric field Zz
(E; = foi) on the sphere Sgo at infinity. In previous work,
we extended U (1) to the “Sky” group %y which is sensitive
to all the partial waves of Eon S go Itis superselected because
foi is. But elements of %y /U (1) are not Lorentz invariant
and cause spontaneous Lorentz violation.

In quantum theory, the infrared cloud on Sgo is incorpo-
rated in the state vectors, the charged states being dressed by a
coherent state of photons [3,4,6,7]. We have constructed the
dressing operator in [8] using a closed form w. Previous work
[3,4] determined the coherent state of the photon and hence
. Thus we can write the dressed charged particle states. A
simple twist of the electron (or charged particle) mass is sen-
sitive to the coherent state. The twisted mass is not Lorentz
invariant. It affects the dispersion relation, the spin content
of the particle and time dilatations in decays and life times.
These can be measured. Naturally it also leads to Lorentz
non-invariant scattering amplitudes in charged sectors which
too can be measured.

In Sect. 2, we recall the vertex operator dressing the
charged vector states with a cloud of infrared photons. It
is gauge, but not in general Lorentz invariant. A new result
we describe is its incorporation in the Lagrangian. We can
set it equal to 1 by adding the term proportional to

/FAa),

F: electromagnetic field, w: closed two-form, €))]

to the action. It is remarkably close to the 6-term

% Tr F A F, F: curvature two-form, 2)
in QCD, which induces P and T violation. Just like the 6-
term, (1) is a surface term and does not affect the equations
of motion.

By QED, we always mean QED in (3 + 1)-dimensional
spacetime, or QED4. But we can also consider QED3 in
(2 + 1)-dimensional spacetime where analogous consider-
ations regarding infrared photons apply [9]. In that case, the
dressing operator involves a closed one-form w, so that on
R%! » = da, with @ a scalar function. The term in the
action which absorbs the vertex operator from state vectors
is proportional to
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/F/\da 3)

which is close to the standard Chern—Simons term. In order
to see this, we can interpret A in f A A F as da.

Section 3 reviews the proposed mass twist introduced in
[8]. We establish that the twist is compatible with locality.
Still it is affected by the infrared cloud at S2,. Thus inertia is
affected by the “vacuum” as in Mach’s principle. In a simi-
lar manner, the Higgs field at infinity induces vector meson
masses. Section 4 briefly indicates the changes in our con-
siderations for QEDj3. In particular, in this case the o in the
vertex operator is a closed one-form, w = do on R2!, Sec-
tion 5 summarizes the part of Frohlich et al. [4] helpful in the
construction of w. In Sect. 6, we examine the modified dis-
persion relations of charged particles which violate Lorentz
invariance. It seems possible to measure this violation. There
are also similar violations in scattering amplitudes which are
also in principal measurable.

For related recent work with emphasis on BMS group; see
[10-13].

Extensive work on Lorentz violation using effective
Lagrangians has been done by Kostelecky and collabora-
tors [14-16]. A study of the relation of their approach and
ours is yet to be done. Up-to-date experimental constraints
on Lorentz violation may be obtained from the data tables
in [17]. An easily accessible review on both terrestrial and
astrophysical constraints on Lorentz violation may be found
in [18].

2 The vertex operator for QED4 coherent states

2.1 Preliminaries

The gauge transformations generated by the Gauss law will
be denoted as the group G3°, the subscript 0 denoting that it

is connected to identity. Its elements g approach the identity
when its spatial argument X approaches infinity,

g(?) — e as |?| — 00).

“

G =(g:RP=U):

Its Lie algebra is spanned by
G(A) = /d3x (—Eidi A + AJo)(X), 5)
where E; is the electric field, Jy is the charge density, and

A(X) >0 as |X|— oo,

ie. AeC, (©6)

where the subscript 0 indicates compact support and super-
script oo indicates infinite differentiability, both of which are



Eur. Phys. J. C (2015) 75:89

Page3of 11 89

standard notations. The Gauss law is imposed in the theory
by requiring that G(A) vanishes for any choice of the test
function A € Cg° so that G3° — {1} on quantum states.

Another manner to state this requirement is the follow-
ing. If € is the space of connections and Gg° acts on ¢ by
gauge transformations, the principal bundle for gauge theo-
ries without matter is ¢’ /G3°, that is, the quotient of € by
the action of G;°.

The generators Qo () of the charge group also come from
the Gauss law,

Qo) =/d3x (—Eidix + xJo) (%), )
but now y is required to approach a constant at infinity,

X(X) = oo as || = oo ®)
The charge group they generate will be denoted by G. The
group Gg° is normal in G. Since G3° — {1} on quantum
states, the effective group is G/G5° ~ U (1). The normalized

charge is just

Qo = Qo0 ye=1- ©
For QED with spatial slice R, we can choose x () =1

for all X conveniently since G(A) — 0 in quantum theory.
That gives the standard expression

00 = / &g (10)

for the charge.
The Sky group Ggky has generators

0(x) = /d3x<—E,-aix + xJo) (), (11)
r—00 ?
x(X) = xri) = x>®@), r=I%1, A= = (12)

where the function x> on S2, need not be constant. As a
result, O (x) need not even be rotationally invariant modulo
a G(A). Hence Gy breaks Lorentz invariance.

The Sky group acts trivially on the charge zero sector
which has no infrared cloud. But in charged sectors, state
vectors are twisted by a coherent state vector of the infrared
cloud, and hence, sty can act by a non-trivial representation
breaking Lorentz invariance.

We note that Gy has one-dimensional irreducible rep-
resentations. That is because it is abelian. In fact, since the
action of Q(x) on quantum state vectors depends only on
x%°(n), we can write,

QG0 =Y Q0 Yim), (13)

Im

where

X0 =Y X Yim (R). (14)
Im

All the Q(x lon‘j Y1m) commute among themselves. Hence each
of them generates a one-dimensional abelian group.
Suppose we are given a standard representation of Gy,

01 = xg Qol-)- (15)
Then the vertex operator

Viw) = el /A, (16)
where w is a closed two-form,

dw =0, a7
maps |-) to the infrared-dressed states |-),, as we show below:

1w = e /AN, (18)
1Yo = |). (19)

But first note that V (w) is “gauge invariant”, that is, that it
commutes with G3°,

|:G(A),/A/\a)i| =/dA/\w=—/Ada)=O, (20)

since Algz = 0.

Hence V(w)|-) is a Gauss law compatible vector (assum-
ing that is the case with [-)).

But Q(x) does not commute with V (w). Let »™ be the
asymptotic expression for w,

o> () = rl_i)rgow(rﬁ), (21)

while we let x> be the asymptotic x as before,

x>0 = Jim x (ri). (22)
Then with
U(y) =e'¢W), (23)
we obtain
UG V(@) = c(x™, ™) V(o)U (x), (24)

with the central element

c(x*°, ™) =exp (—i/ wooxoo) . (25)
5%
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These c’s generate the center of the algebra of U’s and V'’s.
This algebra resembles the Weyl algebra.

If
UGOI) = @00, (26)

where |-) denotes any vector transforming just by U (1) of
charge of Sky, then

V(o)) =) 27)
can transform non-trivially under Sky,
UGO1)e = (x>, 0™)])o. (28)

If @ is not zero, then the sector 7%, of the Hilbert space
spanned by {|-),,} breaks Lorentz symmetry.

2.2 Incorporation of vertex operator in Lagrangian

Let E; denote the electric field. Itis conjugate to the potential
Aj:
J

[Ai(X), E;(V)] =i8;;83(X =) (29)
at equal times. Now, let us write w = wkldxk Adx!,
wCIEj e = o1V (@) E; V()]

:o<-‘Ej+ [(—iQO)/*U)iAi’ Eji| '/>
0

=0(|E; +*wjlo, (30)

where *w; = € wy. Note that in (30), the ket |’y and bra
(-] may represent different vectors. Thus the Hamiltonian of
Fﬂ,l)’
1 3. 20 3 - .
H = 2 d’x(E“+ B-), with B : magnetic field,
(€29)
fulfills
ol 1H o = oIV (@) " HV(@)|)o =: o(1H| Yo, (32)
~ 1 3 Ry = ~
HZE d’x(E“+ B°), E;=E; +x*xw;.
(33)

The field conjugate to A; is thus shifted from E; to E for
the zero-twist state vectors. We can accomplish this shift by
adding to the QED Lagrangian density .Z a term A%, =
%Gﬂvkp F ), that is, writing

P 1
L =L+ EEMVMFMV“)M = Z+ A%, (34)

@ Springer

That is because the coefficient of 9g A; in the added term A%,
gives the contribution * w; to the conjugate momentum of A;.
We observe also that A%, involves wp;, which are new.
The covariant-looking A.%,,, if it is not to affect the equa-
tions of motion, has to be a total divergence. This means that

€uvip 81)0))4) =0, (35)

or w as a two-form in 4-dimensions must be closed:

dw = 0. (36)
Hence in R?,
w=da, & : a one-form in 4-dimensions. (37)

The term €; k0 Fijwro in A%, may also be obtained by a
Lorentz transformation of Fy; and w j from eq; jx Fo;w j. The
presence of wp; in A.Z,, means that it can in general dress
the electron with an infrared cloud containing both electric
and magnetic fields.

It is natural to identify the asymptotic part of w,, with
Buchholz’s f,, [1].

As observed in the introduction, A%, resembles the QCD
f-term.

Note also that w,,, depends on the charged particle. Hence
it transforms under CPT in a manner required to maintain
CPT invariance of (34).

3 The twisted mass for QEDy4

The infrared cloud leading to Lorentz violation brightens the

sphere Sgo at spatial infinity. We need a model for observing

its effects. In setting up this model, we can be guided by the

spontaneous symmetry breakdown due to the Higgs field.
In general,

X(ri) =5 @) =Y xiw Yim (). (38)

Let x denote those test functions for which the [ = 0 term is

absent,

R0 =320 =Y X Yim (). (39)
10

If the charged particle state is not dressed by the infra-
photons, that is, on states |-) =0, then

Q0010 = x00 Qol-)o- (40)
Hence
QG010 =0. (41)
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It follows that twisting the mass term m 1 of spin-1/2 par-
ticles to

meos QP Y = 3 0P + e~ D)y = m() iy
m0) =m (42)

does not change the physics in the sector with label = 0
where the mass term is unaffected. Furthermore m (3)V v
is local, since mr 1 is local and the twist ¢’ Q(1) commutes
with local observables by gauge invariance. This property is
independent of w labeling state vectors.

The Weyl relation is still valid. If

UR) =0, 43)
then
UV () =c(x%, o®)V()U(X). (44)

Therefore with ©*° = da,

/2 da X(%)Y()o =0. (45)
S

o0
Now,

" < ‘ﬂ(eiQm 4 e—iQ()?))’ >
2 w

= 0<~ m cos (/ a)oo)?oo> > . (46)
5 0

2
o0
Therefore the effect of the w-twist is to replace m with

M cos (/ w°°)2°°> ) 47
N

2
o0

In (47), »* is known (see below), while x*° is associ-
ated with the charged particle. It is a new form factor for
the charged particle. It is neither rotationally nor Lorentz
invariant. It also depends on the sum of the momenta of all
the charged particles in, say, the in- or out-state vector. We
interpret x °° as a new form factor characterizing the charged
particle. Let an experiment measure the mass of the charged
particle in the direction x. Then the resultant value for the
mass is given by (47).

4 Calculation of w

The vertex operator creates a coherent state of infrared pho-
tons which depends on the charged particle state |-)o on which
it operates. This coherent state has been calculated in a form
convenient for us by Frohlich et al. [4]. We will use their

results without proof. Other important work relevant to us on
this coherent state is by Kibble [19-22], Eriksson [6], and
Gervais and Zwanziger [7].

The results of Frohlich et al. can be described as follows.
In the Coulomb gauge, the free electromagnetic field has the
expression

3 - RS
A,ﬁ’):fd L a@e ¥ 4al@)e %), @)

2ko
where
— —
ko=|k|, Ap =0, kiai(k)=0. (49)
The commutation relations are
- =, PN 3= =, ki

lai(k),a;Ck )]=(8ij—kikj)2ko 8°(k — k ),ki=ﬁ.

(50

Let |_p>, €)]0) denote the tensor product of a single non-
interacting charged particle vector of charge e and momen-
—_
tum p and the photon vacuum, where we have suppressed
spin labels. Then the dressed electron state vector surrounded
by its infrared cloud is

V(wp)| P, e)l0), (51)

where, as indicated, @ depends on 7
Let us write

sy (x); = /d3k @y T (52)
Then the Fourier transform x@, (k); is [4]

1) = ——(Fi = F -kk. (53)
Since

Viwp) ™" ai(k) Viwp) = ai(k) + i+, (k);), (54)

we can set V(w) = {1} and instead replace A; by o,(A;)
where, as in [4],

op(ai) (k) = a; (k) +i(x&p(k);). (35)
The map
op:a; = opla;) (56)

and its adjoint define an automorphism of the algebra of cre-
ation and annihilation operators.

For N charged particles of momenta 7« and charges e,
(a:1,...,N),the dressed state vector is

@ Springer
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4 (ZC%) [T a eadl0). (57)

where the Fourier transform of *w, is

e, A A
“(Pa—TPa kk. (58)

*wp, (k) = P
a

Lorentz invariance can be spoiled by the presence of the
second term in (55). For the case of a single charged particle,
for Lorentz invariance, if U (1) is the unitary operator for
Lorentz transformation A on the quantum Hilbert space, we
require that

UMV (@) P, e)l0) = V(wap)| AP, €)[0). (59)

However, this is not the case. Instead, we have [3,4]

U(A)V(wp)U(AY1 = V(wap + R), (60)

where

*Q,(x); = /d3k % (k) K ¥ 61)
Sy —— % AN A= E LT

*Qe(k); = (Ak)() (A7 Do (A )Ojk]kl)' (62)

The unit vector k denotes the direction in which we observe
the “sky” of the source. Thus Lorentz symmetry is broken.
It is remarkable that the Lorentz invariance breaking sec-
ond term in (62) has no dependence on the charged particle
momentum. As a consequence, in the N charged particle sec-
tor, this term depends only on the total charge Q and k. Thus,

U(A)V <Zw,,> un)t=v (Zw(,\p)a + QQ> :

1

(63)

where

0=> e (64)
a

and % (k) is given by (62) with Q for e.

Writing

Py = Z Pas (65)

a

as the total charged particle momentum, we can capture the
features of Lorentz invariance breaking in the N charged

@ Springer

particle sector by replacing V(3 w,,) by V(wp = O3 p).
As regards Lorentz invariance, we lose no information since

Vv (Z Wp, — a)p) (66)

does not induce Lorentz invariance violation.

In scattering theory, however, with widely separated parti-
cles in the in- or out-state vector, the above replacement may
not be appropriate as it is nonlocal. Instead, it seems best to
use V(D _, wp,) which dresses each charged particle with its
own infrared cloud.

If A is a rotation, *Q¢ (k) vanishes. This suggests that
the rotational symmetry is preserved. However, we note that
composition of two boosts can produce a rotation, suggest-
ing trouble with the latter too. This point requires further
clarification.

5 Consequences of twisted electron mass

The consistency of twisting the charged spinor mass to cap-
ture Lorentz breaking raises issues about its effect on locality
and perturbation theory. We tentatively suggest the following
answers.

As we observed, Q(x) commutes with local observables.
Hence locality seems unaffected.

In perturbation theory, we encounter the charged particle
propagator

(T @Y () (67)

in the internal lines. This is a vacuum expectation value and
the twisted mass becomes the untwisted one on vacuum. So it
appears that no internal lines are affected. Hence the Lorentz
breaking term affects only external lines and thereby scatter-
ing amplitudes.

This conclusion is supported by the Lagrangian (34). The
Lorentz breaking term is a surface term at infinity.

The twisted mass term

mcos(Q(X NV (68)

is a local operator. Its correlators restricted to local space-
time regions should not be affected by the twist.

We can try to observe the effect of mass twist in the dis-
persion relation and in scattering where the electron is the
dressed one. Then the mass term m of the electron with
momentum p in the scattering amplitude is changed to

m(?,;z)zmcos<nm/ erQ);cB;o(x)f(oo()?)>, (69)
r— 00 Ky

2
e}



Eur. Phys. J. C (2015) 75:89

Page 7of 11 89

where
lim & (x) = lim r2d%; % 0 (x); ;. (70)
r—oo P r—00 p

Equation (69) is different for incident and outgoing momenta,
if they differ.

Here, we are twisting each charged particle mass by its
own infrared cloud. As discussed earlier, we can also twist the
entire N-particle state vector depending on the total momen-
tum P and the total charge Q. Then PO2 — 73)2 is the variable
s of scattering theory. The results below can easily be adapted
to this case.

The dispersion relation reads

PPAm’(p. ) = pp. (71)
Now, as noted previously, we have

7 =
<X

*wp(X); = /d3k * @p k)t
~ e
#p )i = 2 (pi = P kki) (72)

= (i - P kkp). (73)

We can take the large r limit of the expression (72) fol-
lowing Gervais and Zwanziger [7]. Thus, we write

*wp(x); = /dsz,;wzdw(*5,7(12),-&”(’9“"6)), €>0,

(74)
where we use kg = w and
x0p(k)i = ——————(pi — P -kki). (75)
w(po— p -k)
and € > 0 gives the high frequency cut-off. Hence
%, (x); = lim / dQ:wd ( ¢
w,(x); = li ~odo| ——————
R N L)
x(pi = 1€l€i>ei‘°’('€'i+i€)>’ (76)
or, defining o' = wr,
(x) Lim [ de ¢
*w,(x); = —— lim —_—
PN TR ) G T
g Ly
X (pi — P -kki) <# a7
k-x+ie

This gives (69). The pole in (77) at py = 77) - k can be
treated as a principal value, while the pole due to the k-
% +i€)~? term gives a well-defined integral by the ¢ — 0%
prescription.

5.1 Spontaneous breakdown of symmetries: internal
and spacetime

In the standard model, the Higgs field breaks SU (2) x U(1)
to a U (1) subgroup. We can understand this result by noting
that, in quantum field theory, the group generators of the
broken transformations diverge because of the asymptotic
Higgs field.

We shall now demonstrate that the Lorentz boost gener-
ators diverge in the charged sectors with infrared dressing.
Hence the mechanism as regards breaking Lorentz boosts is
similar to spontaneous breaking of internal symmetries.

This calculation also shows that angular momenta and
four-momenta do not show such a divergence. This result is
consistent with those of [4].

Below we give a give a quick review of spontaneous break-
down of U (1) by a Higgs field using the collective coordinate
approximation. We then examine the cases of boosts and the
remaining Poincaré generators.

We begin with some general remarks regarding sponta-
neous symmetry breakdown. It is followed up with the col-
lective coordinate calculation.

Standard spontaneous symmetry breakdown is caused by
the Higgs field at spatial infinity. One may imagine then that it
cannot be observed by local physics. But that is not the case.
It makes itself felt in two ways, under two circumstances:

— In a non-gauge theory, it creates Goldstone bosons. They
are described by quantizing the local fluctuations around
the constant Higgs field configuration. They affect the
spectrum of the Hamiltonian by creating massless par-
ticles and eliminating the spectral gap of the Hamiltonian
between vacuum and a particle state.

— Inagauge theory, the appropriate gauge fields consume the
Higgs fluctuations and become massive. Thus the opposite
happens regarding the Hamiltonian spectrum: a gapless
spectrum with massless vector fields gets gapped. Mach
suggested that inertia is affected by the ambient back-
ground [23]. That is what happens here to the inertial
mass of the vector fields. It is important to observe that
the acquired mass of vector fields depend on their quan-
tum numbers. For instance, the W* and Z masses are
different.

— In theories with spontaneous symmetry breaking, the pas-
sage from the massless to the massive phase of the gauge
field involves the gauge transformation to the U-gauge.
It is affected by the gauge group element obtained from
the polar decomposition of the Higgs field. It preserves
locality so that the massive vector theory is a local theory.
We regard this also as an important fact.

Now we turn our attention to the collective coordinate
calculation.

@ Springer
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Let ¢ be a complex Higgs field with ¢ — ¢9 # 0O as
|X| — oo. Let us calculate the charge operator Q by the
collective coordinate method. If the classical configuration
is, say

qb(?) = ¢p = constant, (78)
we put
¢ (X, 1) =e"Dey (79)

in the Lagrangian L. Then

L= fd3x<|<i>|2 —1¢'1) = fd3x|ié¢o|2
=62 / d*x|¢o)? = oo. (80)
Thus the “moment of inertia” | d3x|¢po|? diverges, showing

that the symmetry ¢ — ¢!?¢ is spontaneously broken. This
argument also implies that the charge

0= /d3x(n*¢ + 7¢%) (81)

is divergent if ¢ — ¢o as |?| — oo even if ¢ depends on
%
X .

A conceptually identical argument applies to the Lorentz
boost generators, but since the details are a little different,
we give them below.

Consider the infrared-dressed state (18)

V(p)l)o = o/ ExM@mp iy = 1, (82)

From (77), we see that *wp(?),- =0 (%2) asr — o0.
The boosts K; are given by

3 I =5 B2
Ki= [ &xxi H(x), Hx)= E(E (x) + B7(x)). (83)
In the state |-),,, the electric field E; is shifted to E(x) =

E;(x) 4+ * wp(x);, while the magnetic field B; is unchanged.
Thus the boost operators become

Ki =V ' (0p)Ki V(o))

_ % /d3x 5 (B )+ 3,02+ B2(x)  (84)

when the vertex operator is absorbed in the redefined boosts
K;.
This has the divergent field-independent term

/ $x i (x@ ()% (85)

This diverges because x; ~ O(r) and (>|<To)p(x))2 ~
O(1/r*) asr — oo (see 77).

@ Springer

The finiteness of the remaining field-dependent terms
depends on the states they act on. For instance, they give
finite answers on Fock state states.

On the other hand, for the transformed Hamiltonian

j- %/d3x((75>(x) + %@ () + B, (86)

the field-independent term gives a finite integral. The cross-
term in the above integral, that is,

/d3x E(x) %3 (), (87)

is also well defined for a free electric field and acting on Fock
space states. Indeed, recall that for a free field ¢, the inte-
gral [ Bxp(F)a(X) acting on the vacuum gives a square-
integrable state if « is square-integrable. This operator is
similarly checked to be well defined on any Fock space state.
In our case ¥ @ plays the role of « is square-integrable. We
conclude that H is a well-defined operator. Actually, it is
unitarily equivalent to H.

The fact that the energy stored in the infrared cloud is finite
is well known and explained in QFT textbooks as Itzykson
and Zuber [24, Section 4.1.2] and Peskin and Schroeder [25,
Section 6.1].

Next consider the angular momenta

Ji = /de Ej(—i(Sjkai — iéijk)Ak. (88)
It is transformed as
Ji = T =V N0, 5 Ve, (89)

by V(wp) with no field-dependent term. The same is true for
the momenta

P = /d3x Ej(—id)A;. (90)
So we can show as in the case of (87) that these operators
are well defined in the Fock space.

Finally we infer that only boosts are spontaneously bro-

ken. This is compatible with [4].

5.2 On Lorentz-violating mass: dispersion relation
and particle spin are changed

We can write (69) as follows:

m(P, x) = mcos (e/dQ);/dQ,;f(oo(f)

oD
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We would like to remark that the photon cloud surrounding
the charged particle has the electric field *w), (x); as alluded
to after (47). The function x°° takes moments of this field:
they are determined by the experimental arrangement mea-
suring say the mass.

The physical interpretation of ¥ is that it is a new form
factor of the charged particle.

Let R € SO(3). It acts on the function x as (Ry)(x) =
% (R™'x). Then by using the rotational invariance of the two
measures, we get

m(RP, R =m(D, Q). (92)

Thus m is a rotationally invariant function of its arguments.

From each ;,,,, we can form a scalar by coupling it to a
polynomial of degree [ in 7 . The integral in (91) is a linear
combination of these scalars. The simplest x*° to consider
has only / = 1, its [ = 0 component being 0. Retaining just
[ = 1, we henceforth set

X°(X) = x;iXi, x; = real constants. (93)
Then the integral takes the form

C(PHxipi (94)
for e — 01. We evaluate C (7 2) in the appendix. It is finite
as _p> — 0

2 -2 —
- +
C(FY) = sr2e 0] f' 1n<”° 'i')—lénzeﬁ—oz.
| P po—1pl | P
95)

Thus finally for € — 07T,

m(p, %) = mcos(C(P ) xipi)- (96)

For normalized y;, that is, for j; = —£—, we can, if desired,

NITI
plot the twisted mass say for p = (0, 0, 1).

A generic Lorentz boost of p brings in more compli-
cated functions of p;. For example, (94) is changed to

I'= C(APH N (AP )i

5.3 Mass twist smears mass and spin

In the Poincaré representation theory for a massive particle,
mass is assumed to be a scalar and spin is introduced by
attaching an irreducible representation (IRR) of SU(2) to the
vector state in the rest frame. The twisted mass, however,
depends on p or P and is not a rotational scalar. Its value
depends on the state vector it is associated with. Thus mass
gets smeared, depending on p or P. Such a smearing may be
compatible with the results of Buchholz [1].

Further, as mentioned, the twi_s)ted mass is not a rotational
scalar. By (96), it depends on y; P ; and all its powers for the
choice made above for y. Thus standard spin such as 1/2 of

the muon acquires all its orbital excitations, which depend
on x*°. Its (2n)th power is suppressed by the coefficient o”,
with « being the fine structure constant. This phenomenon
will affect decay selection rules (and of courses scattering).
Further analysis of this observation is called for.

For sensitive experiments on the isotropy of space, see
[26-28].

6 Non-abelian superselection and Higgs symmetry
breaking

Non-abelian superselection rules play arole even in the famil-
iar phenomenon where a complex Higgs field breaks a U (1)
symmetry spontaneously. We conclude this paper with this
observation.

We consider U (1) gauge symmetry broken by a complex
scalar field ¢ (x). Let fr be test functions supportedinr > R.
Then

Sg = / dx fr(x)p(x) (97)

commutes with all observables supported in < R. So Sg
for R — oo, denoted by S, is superselected. We note that

Q) = /d3X(3i«§Ei +&J0), (98)

is superselected too and (97) and (98) do not commute. We
have

e/ €0 5e' @) = x5, £ = &loo. (99)

We assume that S # 0.

Both Sy and Q (&) commute with all local observables.
Therefore, our previous arguments [8] lead to the conclusion
that one of them must be spontaneously broken.

We explain the above argument briefly in our context. If
we diagonalize S, then that defines a superselection sector.
However, Q (&) then changes it by (98). Hence it is sponta-
neously broken.

If we diagonalize So, as we do in superconductivity, we
get a domain D for the Hamiltonian H which makes it self-
adjoint. The operator ¢/ 2¢) changes this domain: it is spon-
taneously broken.

We can also opt to diagonalize e/ 2. Then U (1) is pre-
served, but at the expense that H is no longer defined: the
integral of energy density diverges classically. We can still
define e /M, finding first a domain in which S is diagonal
and then extending this unitary operator to the vectors with
¢/ 2® diagonal. (A unitary operator can act on all vectors of
the Hilbert space.) We call such a domain D,.

If Pr. is the projector for energies less than E for H on Dy,
itis bounded and hence defined in D5. A legitimate question
is whether, if we reconstruct H from D,, then we will get the

@ Springer
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same or similar low energy spectrum of H as from D;j. If that
is the case, then there may be a new approach to spontaneous
symmetry breaking.
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Appendix A: Calculation of the integral in (91)

We wish to evaluate

P i-7 kk-x
I:e/dQ);/dngf(oo()?) = . (100)
(po— P k) (k-X+i€)?

For 3% (x) = xi%i, I is C(P ) xipi. To evaluate C(p 2),
we choose x; = p; to find

c(PHD?

= a2
—e fam—L [aa, B0
(po— p - k) (k- % +ie)?

X
— 7 — A7 A
-k xk-
—e/‘dﬂlgp—A/dngpx—x,
k- €)

(po—7 b (k- % +i€)?
=1 —b. (101)
The integral I is
I1=e/dQ plpj A/d§2$
(po— TP -k (k-X+ie)?
f —— K (102
(Po— - k)
where
K /dQ A (@8i; + Bkik;)
1 = Ppipj ; = pipj(adij ikj),
ey (k x+l€)2 ey ) vy
(103)
adij + Bkik —/ds»L (104)
v ki yio

@ Springer

Here, o and B are rotational scalars by rotational invariance.
To find & and B, multiply the LHS of (104) by §;; and sum
over i, j to get

1 . A7
————=—1lim 5 = —4m.
(k-X+ie)? e—~01+¢€

3(¥+,3=61iil}) d2;
(105)

Next, multiply the LHS of (104) by kik j and sum over i, j
to get

k-%)?
a+ B = lim dQ);A(A—x) = 4. (106)
e—0 (k-x+ i€)2

Solving for « and B, we get

o = —4mw, B =8m, (107)
and

—4 8 k)2
Ilze/dQA 7P+ 8n(F -k (108)
(po— 7 k)

This can be evaluated by elementary methods to give
2p} 7
I, =872 Q — |_p)| In (M) — 327‘[2ep0.
[Pl po— 1Pl
(109)
The integral /5 is

o
bypik;

12=e/d§2 (7 )p’Z/dsz% K .

(po—p k) (k- % +ie)?

% %

(110)

The angular integral over x can be done as for (104). One

finds that it is —4m§;; + Snlzilzj, giving
= )2
-k
12=471e/d§2,;—(p 2
(po—p k)
2 —
— 872 %m(M)—zpo . (111)
Pl po—1pl
Finally,
L — D
CITPP ==
Pl
B2 =
_ 872 P |I;| n<p0+|£|)—l6nze ﬁoz'
17| po—Ipl [P
(112)
It is easy to see that
3272
lim CIPP =-"F— (113)
1710 3po
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