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Abstract A dynamical analysis of a spherically symmet-
ric collapsing star surrounded by a locally anisotropic envi-
ronment under an expansion-free condition is presented in
f(R, T) gravity, where R corresponds to the Ricci scalar
and T stands for the trace of the energy momentum ten-
sor. The modified field equations and evolution equations
are reconstructed in the framework of f(R, T') gravity. In
order to acquire the collapse equation we implement the per-
turbation on all matter variables and dark source components
comprising the viable f (R, T') model. The instability range
is described in the Newtonian and post-Newtonian approxi-
mation. It is observed that the unequal stresses and density
profile define the instability range rather than the adiabatic
index. However, the physical quantities are constrained to
maintain positivity of the energy density and a stable stellar
configuration.

1 Introduction

The astrophysics and astronomical theories are invigorated
largely by the gravitational collapse and instability range
explorations of self-gravitating objects. Celestial objects tend
to collapse when they exhaust all their nuclear fuel, and grav-
ity takes over as the inward governing force. The gravitating
bodies undergoing collapse face contraction to a point, which
results in high energy dissipation in the form of heat flux or
radiation transport [1]. The end state of stellar collapse has
been studied extensively, a continual evolution of a compact
object might end up as a naked singularity or as a black
hole depending upon the size of a collapsing star and also on
the background that plays an important role in pressure-to-
gravity imbalances [2—4].
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The gravitating objects are interesting only when they
are stable against fluctuations; supermassive stars tend to
be more unstable in comparison to the less massive stars
[5]. The instability problem in a star’s evolution is of fun-
damental importance; Chandrasekhar [6] presented the pri-
mary explorations on the dynamical instability of spherical
stars. He identified the instability range of a star having mass
M and radius r by a factor I' pertaining to the inequality
r > %‘ + n% The adiabatic index measures the compress-
ibility of the fluid i.e., the variation of the pressure with a
given change in the density. The analysis of expanding and
collapsing regions in a gravitational collapse was presented
by Sharif and Abbas [7].

Herrera et al. [8—11] presented the dynamical analysis
associated with isotropy, local anisotropy, shear, radiation,
and dissipation with the help of I'; it was established that
minor alterations from an isotropic profile or a slight change
in shearing effects bring about drastic changes in the range
of instability. However, the instability range of stars with
zero expansion does not depend on the stiffness of the fluid,
but rather on other physical parameters [12—14], such as the
mass distribution, the energy density profile, and the radial
and tangential pressure. The impact of the local anisotropy
on the plane expansion-free gravitational collapse is studied
in [15].

General Relativity (GR) facilitates in providing the field
equations that lead to the dynamics of the universe in accor-
dance with its material ingredients. The predictions of GR are
suitable for small distances, however, there are some limi-
tations of GR in the description of the late time universe.
Modified gravity theories have been widely used to incor-
porate dark energy components of the universe by inducing
alterations in the Einstein—Hilbert (EH) action. Due to modi-
fications in the laws of gravity at long distances, dark source
terms of modified gravity leave phenomenal observational
signatures, such as the cosmic microwave background, weak
lensing, and galaxy clustering [16-21]. Many people inves-
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tigated the dynamics of collapse and the instability range in
modified theories of gravity, Cembranos et al. [22] studied
the collapse of self-gravitating dust particles. Sharif and Rani
[23] established the instability range of a locally anisotropic
non-dissipative evolution in f(7) theory.

Among modified gravity theories, f(R) exhibits the most
elementary modifications to the EH action by adopting a gen-
eral function f(R) of the Ricci scalar. Ghosh and Maharaj
[24] indicated that null dust non-static collapse in f(R) for
a de Sitter higher dimensional background leads to a naked
singularity. The combined effects of electromagnetic field
and a viable f(R) model have been investigated in [25],
the authors concluding that inclusion of a Maxwell source
tends to enhance the stability range. Borisov et al. [26] inves-
tigated the spherically symmetric collapse of f(R) mod-
els with a non-linear coupling scalar by execution of one-
dimensional numerical simulations. The dynamical insta-
bility of an extremal Schwarzschild de Sitter background
framed in f(R) is investigated in [27].

Another modification of GR, a generalization of f(R),
was presented in 2011 by Harko et al. [28] termed f (R, T)
gravity theory constituting the matter and geometry coupling.
Here the EH action is modified in such a way that the grav-
itational Lagrangian includes higher order curvature terms
along with the trace of the energy momentum tensor 7'. Sha-
bani and Farhoudi [29] explained the weak field limit by
applying a dynamical system approach and they analyzed the
cosmological implications of f (R, T') models with a variety
of cosmological parameters, such as the Hubble parameter,
its inverse, snap parameters, weight function, deceleration,
jerk, and equation of state parameter. Ayuso etal. [30] worked
on a consistency criterion for a non-minimally coupled class
of modified theories of gravity. Sharif and Zubair [31-35]
discussed the laws of thermodynamics and energy condi-
tions, and they analyzed the anisotropic universe models in
the f(R, T) framework.

Chakraborty [36] explored various aspects of homoge-
neous and isotropic cosmological models in f(R, T) and
formulated the energy conditions for a perfect fluid. The
dynamics of scalar perturbations in f (R, T) is explored in
[37]. Jamil et al. [38] reconstructed some cosmological mod-
els and studied the laws of thermodynamics in f(R, T). In
a recent paper [39], the dynamical instability of an isotropic
collapsing fluid in the context of f(R, T') is considered. We
have also discussed the stability analysis of a spherically sym-
metric collapsing star surrounded by a locally anisotropic
environment in f (R, T') gravity [40]. Furthermore, the con-
ditions on physical quantities are constructed for Newtonian
and post-Newtonian eras to address the instability problem.

Herein, we intend to develop the instability range of the
f(R, T) model for an anisotropic background constrained
by zero expansion. The expansion-free condition necessarily
implies the appearance of a cavity within the fluid distri-
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bution that might help in modeling of voids at cosmolog-
ical scales. Also, such distributions must bear energy den-
sity inhomogeneities, which are incorporated here by induc-
ing a non-constant energy density and a pressure anisotropy.
The dynamical analysis of various fluid distributions with
the expansion-free condition has been studied in f(R) [41-
43], however, such situations have not been covered yet
in f(R, T). Recently, Noureen and Zubair [44] discussed
the implications of the extended Starobinsky model on the
dynamical instability of an axially symmetric gravitating
body.

To develop the collapse equationin f (R, T'), we construct
the corresponding field equations constituting an expansion-
free fluid. The action in f(R, T) is as in [28],

ﬁ(m)} ,

where L, is the matter Lagrangian and g denotes the met-
ric tensor. For the Lagrangian L, one can make various
choices, each choice corresponding to a set of field equa-
tions for some special form of fluid. Here, we have chosen
Lmy = p, 8t G = 1, and upon variation of above action
with metric g, the field equations are formed as

S —RfRr
2 gL[U

/ dxt =g [—f RT) .

1.1
167G (D

1
Guv = ﬁ[(,fT + 1)Tu(1r;n) - pguva +

+(VuVy _guvD)fR]s (1.2)
where Tu(,r," ) denotes the energy momentum tensor for the
usual matter.

The matter Lagrangian is configured in such a way that
it depends only on the components of metric tensor [45].
In order to present the dynamical analysis we implement
the linear perturbation on the collapse equation, assuming
that initially all physical quantities are in static equilibrium.
The paper is arranged as follows: Einstein’s field equations
and the dynamical equations for f(R, T) are constructed
in Sect. 2, which leads to the collapse equation. In Sect. 3 a
perturbation scheme is implemented for the dynamical equa-
tions. Section 4 covers the discussion of the expansion-free
condition and the components affecting the stability of gravi-
tating objects, extracted from the perturbed Bianchi identities
along with corrections to the Newtonian and post-Newtonian
eras and the GR solution. Section 5 comprises a summary and
is followed by an appendix.

2 Dynamical equations in f (R, T)
We choose a three dimensional external spherical boundary

surface X that pertains to two regions of spacetime, termed
interior and exterior regions. The line element for the region
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inside the boundary X is of the form

ds = W2(t, r)dt* — X>(t, r)dr?®

— Y2(t, r)(dO? + sin® 0d¢?). 2.1)

The domain beyond (lying outside) X is the exterior region,
with the following line element [43]:

oM
ds? = (1 — —) dv? + 2drdv — r*(d6? + sin® 0d¢?),
r
(2.2)

where v is the corresponding retarded time and M is the total
mass. To arrive at the onset of the field equations given in
Eq. (1.2), we choose Tu(,’)" ), describing the anisotropic fluid
distribution of the usual matter, given as

T = (p+ p)VuVe — PL&uv + (Pr — PO XuXvs (23)

where p denotes the energy density, V,, is the four-velocity
of the fluid, x, corresponds to the radial four-vector, p, and
p. represent the radial and tangential pressures, respectively.
The physical quantities appearing in the energy momentum
tensor are in accordance with the following identities:

vie=wlss, vy, =1, x"=Xx"18Y x'qu=-1.
(2.4)

The expansion scalar ® defines the rate of change of small
volumes of the fluid, given by

2.5)

where the dot and prime denote the time and radial deriva-
tives, respectively. The components of the field equations for
a spherically symmetric interior spacetime are of the form

_ N[ Rk SR fr (X2
GOO_fR[p+ 2 T x WZ(X+Y>
Jr (X2
_X2<X Y)} (2.6)
Go= L[ = V- X 2.7
01—E[fR—WfR—§fR] 2.7
1 f—Rfr
G =— r r - A~
11 fR|:P+(/O+P)fT 5
L A A AN
w2 ow2\w v ) x2\w "' v )|
(2.8)

f—Rfr
2
e SR IR (W b Y)

1
Gy = _|:PL+(,O+Pi)fT_
fr

+

w2 X2 w2

fé W/ X/+Y/
xX2\w x Y|

The dynamical equations are important in the establish-
ment of the instability range of collapsing stars. The Misner—
Sharp mass function furnishes the total amount of energy in
a spherical star of radius ’Y” and facilitates the formulation
of the dynamical equations, given by [46]

Y Y2 Y/Z
t,r)=—\|14+———).
m(t,r) > < + W2 Bz>
The matching conditions of the adiabatic sphere on the

boundary surface of an exterior spacetime result from the
continuity of differential forms as [47]

(2.9)

(2.10)

M Zm.r). 2.11)

The dynamical analysis can be established by using conserva-
tion laws; we have taken conservation of the Einstein tensor
because the energy momentum tensor bears a non-vanishing
divergence in f (R, T') gravity. The contracted Bianchi iden-
tities imply dynamical equations, which further leads to the

collapse equation, given by
G”U” V. =0, G?:Xu =0. (2.12)

The Bianchi identities, taking into account Eq. (2.5), become

; 1 o) i 1 X 2 Y
P-l-ﬂ{[ + frl _ﬂ}+[ +fT]{Pr§+ PL?}
+Zi(r,t) =0, (2.13)

(o + pr)fy + A+ fr)

W/ W/ Y/ f/ Y/
/ BAS a0l IR 9y,
X{pr+pw+pr<w+ % fR> pL }

!
+ fr <p’ - &> + Za(r, 1) =0,
Ir
where Z(r,t) and Z,(r,t) are the corresponding terms
including dark matter components provided in the appendix
as Egs. (6.1) and (6.2), respectively. These equations are use-
ful in the description of variation from equilibrium leading
to the evolution.

(2.14)

3 f(R, T) Model and perturbation scheme

The f(R, T) model we have considered for evolution anal-
ysis is

f(R,T) =R+ aR>+ AT, (3.1
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where « and A correspond to positive real values. Generally,
a viable model represents the choice of parameters whose
variation shall be in accordance with the observational situ-
ations [47]. Astrophysical models are selected by checking
their cosmological viability, which must be fulfilled to extract
a consistent matter domination phase, and to assemble solar
system tests and a stable high-curvature configuration recov-
ering the standard GR. The model under consideration is
consistent with the stable stellar configuration because the
second-order derivative with respect to R remains positive
for the assumed choice of parameters.

The field equations in f(R, T) are highly complicated,
their general solution is a heavy task and has not been accom-
plished yet. The evolution of linear perturbations can always
be used to study the gravitational modifications by avoiding
such discrepancies. The concerned collapse equation can be
furnished by the application of a linear perturbation on the
dynamical equations along with the static configuration of
field equations leading to the instability range. The dynami-
cal analysis can be anticipated either by the following fixed or
co-moving coordinates i.e., via an Eulerian or a Lagrangian
approach, respectively [47,48]. Since the universe is almost
homogeneous at large scale structures, we have used co-
moving coordinates.

Initially all physical quantities are considered to be in
static equilibrium so that with the passage of time these have
both a time and a radial dependence. Taking 0 < ¢ < 1 the
perturbed form of the quantities along with their initial form
can be written as

W(t,r) = Wo(r) +eD(t)w(r), 3.2)
X(t,r) = Xo(r) +eD()x(r), 3.3)
Y, r)=Yo(@r)+eD@)y(r), 3.4
p(t,r) = po(r) +ep(t,r), (3.5)
prt,r) = pro(r) +epr(t,r), (3.6)
pit,r) = pio(r)+epi(t,r), (3.7)
m(t,r) =mo(r) +em(t,r), (3.8)
R(t,r) = Ro(r) +eD(t)e1 (), 3.9)
T(t,r) =To(r) +eD(t)ex(r), (3.10)
f(R,T) = [Ro(r) + «R}(r) + ATp]
+eD(t)e1(r)[1+ 2aRo(r)] + nD(t)ea(r),
(3.11)
fr =14 2aRo(r) + 2aD(t)e; (r), (3.12)
fr=A, (3.13)
O, r) = 0. (3.14)

Without loss of generality, we have taken the Schwarzs-
child coordinate Yo(r) = r and apply the perturbation
scheme on the dynamical equations i.e., Egs. (2.13) and
(2.14), and the perturbed Bianchi identities turn out to be

@ Springer

. 2e
p+[ 00

2y X
s NN W Buta 2 -
1+201Ro+ 1{ p (po + PL0)+XO(,00+Pro)}

+(1+2aR0)Z1p]D =0, (3.15)

W) w, 2 2aR)/ 2p.
xl{ﬁ/+ﬁ—°+ﬁr<—°+— - )— ”l}
0

W, Wo r 1+2aR r

iR()) + X2(1 + 2aR)
Xo

e .. w !
X !—X%(l R0 } ] D+ D [M [(,00 + pro) (W())

2pwo+ pao) (2) 40— —2
Pro P10 , 1Y 1+20(R0

W 2, Wy 2ak

X —_— p— S —

EPro T PO T PO T W T T 2aR,
2R/

P /o 0

+ (e+e[p0 1+2aR0D

+( +2aR0)Zg,,] =0. (3.16)

For the sake of simplicity we assume thate; = e = e and
set A1 = A + 1; Z1, and Z3), are provided in the appendix.

The elimination of 5 from Eq. (3.15) and integration of
the resultant with respect to time yields an expression for p
of the following form:

2epo

_ 2y X
0 [1+2aR0+ 1{r(po+ pJ_O)+XO(pO+PrO)}

+(1+ ZaRo)lei| D. (3.17)

The perturbed field equation (2.9) leads to the expression
for p, which turns out to be

pL=
p

D {(1 + 2aR0)¥ }
— 11— —2ue
WO
AD n A 2ce n Z3 D
pLo )»1100 14+ 2aRy M ’
(3.18)

the effective part of the field equation is denoted by Z3, and

it is given in appendix Eq. (6.5). The matching conditions at

the boundary surface reveal
) )

pr=0, p.=0. (3.19)

The above equation together with the perturbed form of

Eq. (2.9) can be written in the following form:

D(t) — Z4+(r)D(t) = 0, (3.20)
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provided that

ng |: 2oe
Zy

= (L +2aR0)j — 2aer | T+ 2aRy "0

2y X
+A 3 —(po+2p10) + —(po + pro)
r Xo

Z
+(1 420 R0)Z1, + 73} . (3.21)
1
The solution of Eq. (3.20) takes the form
D(t) = —eV?4, (3.22)

The terms appearing in Z4 are presumed in such a way that
all terms remain positive to have a valid solution for D. The
expansion-free condition and the stability range are discussed
in the following section.

4 Expansion-free condition with Newtonian
and post-Newtonian limits

The models with an additional zero expansion condi-
tion delimit two hypersurfaces; one separates the external
Schwarzschild solution from the fluid distribution and the
other is the boundary between fluid distribution and internal
cavity. Such models have extensive astrophysical applica-
tions where a cavity within the fluid distribution exists and
these models are significant in the investigation of voids
at cosmological scales [49]. The spongelike structures are
termed voids; they exist in different sizes i.e., we have mini-
voids up to super-voids [50,51] for almost 50 % of the uni-
verse, considered as vacuum spherical cavities within fluid
distribution.

The implementation of a linear perturbation on Egs. (2.5)
and (2.10), respectively, implies

5_D(x )

o= (XO+ r>, @.1)
r 1

mO—E(I—X—g)), “4.2)

___D o X N

= xg[ (y XO>+(1 Xo)z} 4.3)

The expansion-free condition implies a vanishing expansion
scalar i.e., ® = 0, implying

X o) (4.4)
Xo_ r ’

In order to present the dynamical analysis in the Newtonian
(N) and post-Newtonian (pN) limits, we assume

00 > pro, 0 > Plo- 4.5)

The metric coefficients up to the pN approximation in c.g.s.
units are taken as

G G
W():l—#, mo
cr

Xo=1+ , (4.6)

cr
where ¢ denotes the speed of light and G stands for the gravi-

. . X{ .
tational constant. The expression for X—g can be obtained from
Eq. (4.2) as

X(') _ —my

X_o T — 2m0); @7

Eq. (4.2) together with (2.8) implies
Wy 1
Wo  2r(r—2mo)(1+2aRo+raR))

[F3 (M pro+Apo—Ro

—3aR3) + 2ar(Ro — 2r Ry + 4Rjmo) + 2m0] )
4.8)

The static configuration of the first Bianchi identity is
identically satisfied, while the second one provides a fruit-
ful result in terms of the dynamical equation. Substitution
of Egs. (4.7) and (4.8) in the statically configured equation
(2.14) after some manipulation of the dynamical equation in
relativistic units yields

, A, r(14+2aRp) r —2myo
Pro=—|7"P0F
M r —2mo r(1 +2aRgp)
aR}  2aRy(r —2mg) (2
X P— —
2 r r
1

+ 2r(r —2mo)(1 4+ 2aRo + raR()
x [ Gut pro + Apo = Ro — 3R3)

+ 2ar(Ro — 2r R), + 4Rymo) + 2m0]) H
.1

L 2mg n ocRé 3

r(r—2mo) \PrO T PO T T

2 2aR), A 2R (r — 2mo)
g (o £ )+ R
.\ 1

2r(r —2mg)(1 4+ 2a Ry + raR()

X [r3(klpro + Apo — Ry — 3aR})
+2ar (Ry — 2r R}y + 4R}ymo) + ZmO]

2a R (r — 2mo) 3mg
r(r —2mop)

x |:,00 + pro +
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1
" 2r(r —2mo)(1 + 2aRo + raR})

X [r3()»1pr0 + Apo — 301R§) + 2ar

X (Rg — 2FR6 + 4R6m0) + 2mg — Ro] }i|i|

(4.9)

In c.g.s. units, we may write the above equation as

;|4 2aRy) | r—2Gc2mg
Pro = r—2Gc2mgy | re2(1 +2aRyp)

{ 2aR}(r —2Gc™2mg) (2
] z

rc*2 r

1
+2r(r —2¢2mg)(1 +2aRg + raRj)
x [r3 e pro + Apo — Ro — 3aR3)

+2ar(Ro — 2r Ry +4R(Gc > mo) +2Gc *mo

N

n 2Gc 2myg n aRé 3
re~2(r —2Gce2myp) pro = P10 4 r

ZaR(’) 9 N A " 2
1+ 2aRy € pro A c2r2

1
2r(r—2Gc=2mg)(1+2aRo+raR})

+

x [r3(1c72 pro+ipo— Ro—3aR3)
+2ar(2Gc™ > mgy — 2rc_2R6 + 4R6Gc_2m0) + RO]

—1
2r(r—2Gc 2mo)(14+2aRy+rc2a R))

X [,00 +pro +{

X [V3()»,00 + e 2 pro — 30(R5) +2arc™?

x (Ry — 2rR6+4R6Gc_2m0)—R0+2Gc_2m0]

3Ge2m 20 R, (r—2Gc2myg) 2
+ — e B )
r(r—2Gc=*my) Al

rc—

i _ -2
| 20RG(r —2Ge mo):| ' 4.10)

r2

The terms of order ¢” and ¢~2 belong to the N and pN
approximations, respectively. One can expand Eq. (4.10) up
to ¢~2 and separate the terms of the N and pN limits to dis-
tinguish the physical quantities lying in various regimes.

@ Springer

The use of an expansion-free condition in Eq. (3.17) mod-
ifies p to the following form:

- 2epo
p=-

2y
— A — — 14+20Ry)Z D.
1+2(xRo+ 1 ((pro—p10))+(1+2aRop) Ip]

.11

The Harrison—Wheeler type equation of state describing
the second law of thermodynamics relates p and p, in terms
of adiabatic index I as

pro  _

pr=I——p
' Po + Pro

4.12)

I" measures the fluid’s compressibility entailing its stiffness.
Inserting p from Eq. (4.11) in Eq. (4.12), we have

jy =T Pro [
' Po + pro

2epo
14+ 2aRy

2y
+ ?»17 ((pro — p10)

+(1+ 2aR0)Z1p}D. (4.13)

In view of a dimensional analysis, it is found that terms of
pr and po% lie in the post-post-Newtonian (ppN) era and
thus can be ignored in the terms of the N and pN approxi-
mations. Since we are going to exclude p,, it is intuitively
clear that the instability range is independent of I", and no
compression is introduced. By use of the expansion-free con-
dition together with the expression found for D, it follows
that

207 1 "+2 —X6+2yR’
aZy e e =
W Xo r°

/
2 e
+X3(1 4+ 2aR0) | =5
o 0 {X3(1+2aRO)H

!/ =\/
w y - 200
A — ) -2 = P ———
+ 1[/)0(%) (PrO"’PJ_O)(r)]"' P T 2aRg

, 2 20(R(/)
Pt ol T TR,

/

+A (e’ + elpy — ) + (14+2aRg)Zs), = 0.

1 4+2aRy
(4.14)

For simplification of above expression, we take relativis-
tic units and assume that pg > pro, po > p1o. Substitu-

tion of the expressions for Z4, Wy, Xo, i—g and Z, p, respec-
tively, from Eqgs. (3.21), (4.6), (4.7), and (6.4) yields a very
lengthy expression defining the factors affecting the instabil-
ity range at the N and pN limits. The expanded version of
Eq. (4.14) is large enough; therefore we are quoting only the
results obtained from the collapse equation together with the
restrictions to be imposed on the physical parameters. It is
clear from Eq. (4.9) that p;, < 0, provided that all the terms
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maintain positivity to fulfill the stability criterion. Negative
values of p/, show a decrease in pressure with the passing
of time, leading to the collapse of a gravitating star. Further-
more, using the c.g.s. units, it is found that the terms of p,

and po% do not take part in the evolution for the N and pN
approximations since these terms belong to the ppN limit.
The analysis of terms lying in the N and pN limits imply few
restrictions to be imposed on physical quantities for a dis-
cussion of the instability range. These are listed as follows:

e Newtonian regime: The constraints on the material
parameters are

pro > pilo, @’rR) <1+ 2Ry,
2R

1 +2aR, 07 ¢

The gravitating body remains unstable as long as the
inequalities hold in the N approximation.

e Post-Newtonian regime: In the pN limits the following
restrictions are found to effect the instability range:

Dro > plo, T > 2my,

r ,  2emyg ,
xRy + <e +A,
0

r+m r
r? — m(z))2 { er? }/
4 (r+my) "’

dae — (14 2aRp)> >
r r
/

RO
(r —2mgy) > ——.
2Ry

5 Summary and results

The mysterious content named dark energy (DE), occupying
the major part of the universe is significant in the descrip-
tion of cosmic speed-up. The modified gravity theories are
assumed to be effective in understanding the cosmic acceler-
ation by induction of the so-called dark matter components
in the form of higher order curvature invariants. Among such
theories, f (R, T') represents a non-minimal coupling of mat-
ter and geometry. It provides an alternative to incorporating
the dark energy components and cosmic acceleration [52].
Thus consideration of f (R, T) for the dynamical analysis is
worthwhile, covering the impact of the higher order curva-
ture terms and the trace of energy momentum tensor 7. This
manuscript is based on the role of a viable f (R, T') model
in the establishment of the instability range of a spherically
symmetric star.

Our exploration regarding the viability of the f(R, T)
model reveals that the selection of the f(R, T) model for
the dynamical analysis is constrained to the form f (R, T) =
f(R) 4+ AT, where X is an arbitrary positive constant. The

restriction on the f(R, T) form originates from the com-
plexities of non-linear terms of the trace in the analytical
formulation of the field equations. The f(R,T) form we
have chosen mainly is f(R, T) = R + «R? + AT, in agree-
ment with the stable stellar configuration, and it satisfies the
cosmic viability. The matter configuration is assumed to have
unequal stresses, i.e., being anisotropic with a central vacuum
cavity evolving under an expansion-free condition. The zero
expansion condition on an anisotropic background reveals
the significance of the energy density profile and pressure
inhomogeneity in the structure formation and evolution.

The field equations framed in f (R, T') gravity are formu-
lated and their conservation is considered to study the evo-
lution. Conservation laws yield dynamical equations that are
significant in the formation of the collapse equation. In order
to examine the variation from a static equilibrium, we intro-
duced a linear perturbation for all physical parameters. The
expressions of a perturbed configuration of the field equa-
tions reveal expressions for the energy density p and tangen-
tial pressure p . The second law of thermodynamics relating
the radial pressure and the density with the help of the adia-
batic index I is considered to be useful to extract p,.

On account of the zero expansion it is found that the
fluid’s evolution is independent of I'; rather the instability
range depends on higher order curvature corrections and the
static pressure anisotropy. Recently, the dynamical analy-
sis of isotropic and anisotropic spherical stars in (R, T)
has been studied in [39,40]. It is found that the perturbed
form of dark source terms of the collapse equation also has
the contribution of the trace T, affecting the stability range.
Thus a non-minimal coupling of the higher order curvature
terms and the trace of the energy momentum tensor imply a
wider range of stability; however, the fluid evolving with zero
expansion might cause drastic and unexpected variations. As
the expansion-free condition produces a shear blow-up in
the gravitating system, it is very captivating to extend this
work for the shearing expansion-free case. The results are in
accordance with [43] for vanishing A, for vanishing o, and A
corrections to the GR solution can be found.

In addition to the model (3.1), the nature of various
f(R,T)modelsie., f(R,T) = R+aR"+AT, f(R,T) =
R+aR?+ % + AT, and f(R, T) = R+’ + AT has been
briefly discussed in this section, as follows:

e f(R,T)=R+aR"+AT: Themodel f(R,T) =R+
aR"™ 4+ AT is viable for any n > 2 and positive constants

o and . The collapse equation for such a model with
zero expansion is of the form

/

~/ —/ = ~ WO =
A0+ Ay pr +(O+ Ppr)— + Pr
Wo

2 an(n— 1R} *R) 2
“\:~ n—1 - obL
r 1 +anR, r
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w’ 2
+D [M(Po + pro)— + A1 —=(pro — P10)
Wo r

_ n—2 s

1+ omR(')’_1
+Z3p, (5.1

where pressure stresses p,, p1 can be generated from
the perturbed field equations and the perturbed energy
density is

) [an(n—l)(Rg—2e>
pe—| 0 &

X
17— Po+r(Pro—pLo) - +Z4p | D, 5.2)
1+anR0 Xo

where Z3, and Z4, depict the perturbed dark source
terms. The N and pN limits of this model reveal that

the terms p, and po% belong to the ppN limit and so do
not contribute to the evolution. In the Newtonian limit the
physical quantities must satisfy the following conditions:

Pro > plo. alrn(n — l)Rg_zR(’) <1 —i—nocR(')'_l,
nan(n — 1)R8_2R6

1 —i—nocR(')’_1

Py — €.

The constraints on the physical quantities in pN regime
are

2emy

r > 2my,

r+m

-
~DHR'"IR, +
O(xn(n ) 0 0 p

><e/+k,

- 2 272 2 /
1.y T —=mg) er
20ce — (1 + naR? L EA ,
( 0 )r r4 {(r—l—mo)}
n—1
(n—DRI'R)

(r —2mg) > P
Ry

s Pro > Plo-

The dynamical analysis of various models involving
higher order curvature terms, combined with the trace
of the energy momentum tensor, can be presented for
n>2.
4
e f(R,T)=R+aR*+ % +AT and f(R,T) = R+
4
MT + AT': The perturbed form of the Bianchi identity for
4

f(R,T)=R+aR?+ L + AT, where 1 is an arbitrary
constant leading to the expression for p as follows:

_ |: 2epo
p = —
1+ 20 Ry — u* Ry

X
R —
+A { Xo (pro pm)}

+(1 4+ 2Ry — M“Ro—z)zlp}u (5.3)

@ Springer

The evolution equation becomes
MAypS +p i +p Wo +2
1\Pr TP Wo Pr Wo | r

. aR)+ 1 RORY | 2pL
1+ 20Ry — 4Ry

+D [M [(/00 + pro) <%> - 2(pro+ p1o) (%) }

- 20 + u*Ry> { W}
+1p" — M\ Pro+ P07
14+ 2aRy — H4R62 Pro Wo

2 W R, + n*R3R!
+Pro S42-2 0K 04 0_2
r W 1+ 2Ry — u*R,
2a R/
Al e /I 0
(¢ e[~ 5w )

+(1+ 20 Ry — M4R02)Z5p[:| =0.

(5.4)

Zs, denotes the perturbed dark source entries. The N and
pN limits are obtained by avoiding the terms lying in the
ppN region. To maintain the viability of the model in the
Newtonian era, the following inequalities must hold:

aR)+ u*RyPR) < 14 2aRy — 'Ry,
aR)+1+2aRy — 1* Ry R},
1 4 2aRy — u* Ry

/ /
> pp—€.

In the pN regime the system remains stable as long as the
following ordering relations are satisfied:

aR)+ u*R73R)) < & + ATy,
r—i—m()( 0T M I 0) 0

dae — 1t Ry2 — (1 + 20 Ry — p*RyH>
.

(rz—ng)2 er? '
L2 {(r+m )} |
0

r

The collapse equation for f(R,T) = R + ’% + AT can
be obtained by setting « = 0 in Eq. (5.4), and likewise
the restrictions on physical quantities can be found.
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6 Appendix
We have
1 —R
Zi(r 1) = s fR—ﬁ®
frRW? 2 w2

fo (X 20\ | fa
‘ﬁ(?‘?)wﬂp
1 w’ X
+{fRW2X2 (fR fR__fR)”

2

X % f
foW2—{(}) +2<?> +W®} WRZ

fR 2fR
o= 2w (3-7)
2W X’
§<W+ )
Y (W 3Y 14 R
+7<W‘7>} W — R
QWX LW
+—<W+x)+ﬁ<fR‘WfR)
3w X' 2y -
X(W-I—Y-f‘T), 6.1)
. B 1 oW X,

2(r, 1) = {W(fR _WfR_ng)}’o
e (G-
frX? 2 w2\w Y
SR (W2 fr )
() W)},l] JeX
IR WX X (W 2y
Wz{w<w+§)+7<v7)
2 (X Y ® X 1
+Y<§——>}+(f1e—f) -

W 3X 2y
X<W+7+Y>( fR+ fR

N fr W 3X/
_fR) XZ{W<W+X)

2Y' (33X Y fr
+Y<7+Y>}+W

Z3

(5o2) B D). w

X W+X + 35 W+Y , (6.

Z1, = 2aW? ! { W x R/}
= 2O _— e —e—— —
7 O Wexd+2ar) 1© T W X0

1 e
P — My — aR D —
+1—|—205R0|: (A To — e ]( 1+205R0)

Zyp =

1 +2aRy [w” ¥ Wé/ w o 2x
e Tt
Xj Wo r Wo \ Wy
2x 1 y
(0 -7)+ ()
X [2Xy  (w)
Xo | rXo Wo

20 [(X 2 o w x
~Z e -2 (2Ry (o + =
XO Xo r W() X()
, 2ae R+ R 2w n X
— — bR
1+ 2Ry 0 0 Wo  Xo
x [(2W) X 1
_2R! 0, 70,4 -
0 (Xo < Wo " Xo " >
y (W, 3 W/ 3w, X’
P20 _2)) 4 (¢ —e0) (220 4 20
r\Wy r Wo Wo Xo
]
+2) ¢
r

X3(1 4 2aRp) [

6.3)

1
X3(1 4+ 2aRy)

L2 (%Jr%) <[ 20

“Tx2 W\wo T ) T 2ar,
+4x]R,_ R w /+ y /]
Xo 0T ¢) T Mo r

2 e X
o =Rl ek, 0 )

-1
X3(1 + 2aRy)

x {4‘2‘) <$§ + 2) +aRj —ATO}:|
Fleli) -
“(ram )+ ()
il G) + (6) ] ()
())-2008) ()]
()|

2 X )
+r—2 +€X—0 — [ATy — a R

2¢ X 0, x
l+2aR0 X() Xo )’

+ xXo(1 4+ 2aRp) |:

,1

+

6.4)

{(w)

Y

r
x\11 2ae Ty — aR(Z)
Xo r 1+ 2aRy 2
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2 W, X 1
)
XO Wo Xo r

2 [, 2, (W, X) 1
S+ R+ (- -
{e Xo ? Wo Xo r

(6.5)
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