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Abstract Kaluza–Klein (KK) parity can be violated in
a five-dimensional universal extra-dimensional model with
boundary-localised (kinetic or mass) terms (BLTs) at the
fixed points of S1/Z2 orbifold. In this framework we study
the resonant production of Kaluza–Klein excitations of the
neutral electroweak gauge bosons at the LHC and their decay
into an electron–positron pair or a muon–antimuon pair. We
use the results (for the first time, to our knowledge) given by
the LHC experiment to constrain the mass range of the first
KK-excitation of the electroweak gauge bosons (B1 and W 1

3 ).
It is interesting to note that the LHC result puts an upper limit
on the masses of the n = 1 KK-leptons for positive values of
the BLT parameters depending upon the mass of the �+�−
resonance.

1 Introduction

The discovery of the Higgs boson at the Large Hadron
Collider (LHC) at CERN is a milestone in the success of
Standard Model (SM). However, there are still many unan-
swered questions and unsolved puzzles, ranging from dark
matter to the hierarchy problem to the strong-CP problem.
But there is no experimental result that can explain such
unsolved problems with standard particle physics. Out of
various interesting alternatives, supersymmetry (SUSY) and
extra-dimensional models are the most popular frameworks
for going beyond the SM of particle physics. In this work
we consider a typical extra-dimensional model where all SM
particles can access an extra space-like dimension y. We use
the results [1] presented by the ATLAS Collaborations of the
search for a high-mass resonances decaying into the �+�−
(� ≡ e or μ) pair to constrain the parameter space of such a
model where the lowest (n = 1) KK-excitations are unstable
due to lack of any specified symmetry.
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We are interested in a specific framework, called the uni-
versal extra dimension (UED) [2] scenario, characterised by
a single flat extra space-like dimension y which is compact-
ified on a circle S1 of radius R and has an imposed Z2 sym-
metry (y → −y) to accommodate chiral fermions; hence
the compactified space is called a S1/Z2 orbifold. From a
four-dimensional viewpoint, every field will then have an
infinite tower of KK-modes, the zero modes being identified
as the SM states. In this orbifold a translation by π R in the
y-direction leads to a conserved KK-parity given by (−1)n .
The conservation of KK-parity ensures that the lightest n = 1
KK-particle, called the lightest Kaluza–Klein (LKP), is abso-
lutely stable and hence is a potential dark matter candidate.
As the masses of the SM particles are small compared to 1/R,
this scenario leads to an almost degenerate particle spectrum
at each KK-level. This mass degeneracy could be lifted by
radiative corrections. Being an extra-dimensional theory and
hence being non-renormalizable, this can only be an effec-
tive theory characterised by a cutoff scale �. So at the two
fixed points (y = 0 and y = π R) of S1/Z2 orbifold, one
can include four-dimensional kinetic and/or mass terms for
the KK-states. These terms are also required as countert-
erms for cutoff dependent loop-induced contributions [3] of
the five-dimensional theory. In the minimal universal extra-
dimensional models (mUED) these terms are fixed by requir-
ing that the five-dimensional loop contributions [4,5] are
exactly cancelled at the cutoff scale � and the boundary val-
ues of the corrections, e.g., logarithmic mass corrections of
KK-particles, can be taken to be zero at the scale �. There
are several publications [2,6–43] in which we can find how
the experimental results constrain the values of the two basic
parameters (R and �) of mUED theory.

In this work we generate non-conservation of KK-parity1

by adding unequal boundary terms at the two fixed boundary
points. Consequently n = 1 KK-states are no longer sta-
ble. Hence the single production of n = 1 KK-states and

1 This is equivalent to R-parity violation in supersymmetry.
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its subsequent decay into n = 0 states would be possible
via this non-conservation of KK-parity. We will utilise this
KK-parity-non-conserving coupling of the B1(W 1

3 ) to a pair
of SM fermions (n = 0 states) [44] to calculate the (reso-
nance) production cross section of B1(W 1

3 ) in pp collisions at
the LHC (8 TeV) and its subsequent decays to e+e−/μ+μ−,
assuming B1 and W 1

3 to be the lightest KK-particles. Once
B1 and W 1

3 are produced via KK-parity-non-conserving cou-
pling, the KK-parity-conserving decaying mode being kine-
matically disallowed, the B1 and W 1

3 decay to a pair of zero-
mode fermions via the same KK-parity-non-conserving cou-
pling. A search for high-mass resonances based on 8 TeV
LHC pp collision data collected by the ATLAS and CMS
have been reported in [1] and [45], respectively. References
[1] and [45] present the expected and observed exclusion
upper limits on cross section times branching ratio at 95 %
C.L. for the combined dielectron and dimuon channels for
resonance search. In this article we have used the above
results to constrain the masses of the n = 1 level KK-
fermions and B1 ( W 1

3 ) of the model. In Ref. [46] we have
reported the production of the n = 1 KK-excitation of gluon
and its subsequent decay to t t̄ pair at the LHC. Both the pro-
duction and the decay are governed by the KK-parity-non-
conserving interaction. Constraints have also been derived
by comparing the t t̄ cross section with LHC data from the
CMS [47] and ATLAS [48] Collaborations.

The plan of this article is as follows. At first we present
the relevant couplings and masses in the framework of UED
with asymmetric boundary-localised kinetic terms. We then
review the expected �+�− signal from the combined pro-
duction of the B1 and W 1

3 at the LHC and their subsequent
decay. This is compared with the ATLAS [1] 8 TeV results
and the restrictions on the couplings and KK-excitation
masses are exhibited. Finally we will summarise the results in
Sect. 5.

2 KK-parity-non-conserving UED in a nutshell

In a non-minimal version of five-dimensional UED theory,
we put boundary-localised kinetic terms (BLKTs) [44,49–
54] at the orbifold fixed points (y = 0 and y = π R). �L ,R

are the free fermion fields, the zero-modes of which are the
chiral projections of the SM fermions. In the presence of
BLKTs, the five-dimensional action can be written as [44,55]

S =
∫

d4x dy
[
�̄Li�M∂M�L + ra

f δ(y)φ
†
Li σ̄ μ∂μφL

+rb
f δ(y − π R)φ

†
Li σ̄ μ∂μφL

+�̄Ri�M∂M�R + ra
f δ(y)χ

†
Riσμ∂μχR

+rb
f δ(y − π R)χ

†
Riσμ∂μχR

]
. (1)

Here, σμ ≡ (I, �σ) and σ̄ μ ≡ (I,−�σ), �σ being the (2 × 2)

Pauli matrices. ra
f , rb

f are the free BLKT parameters which
are equal for �L and �R for the purpose of illustration.

The KK-decomposition of five-dimensional fermion fields
using two component chiral spinors are introduced as2

[44,55]

�L(x, y) =
(

φL(x, y)

χL(x, y)

)
=

∞∑
n=0

(
φn(x) f n

L (y)

χn(x)gn
L(y)

)
, (2)

�R(x, y) =
(

φR(x, y)

χR(x, y)

)
=

∞∑
n=0

(
φn(x) f n

R(y)

χn(x)gn
R(y)

)
. (3)

Using appropriate boundary conditions [44], we can have the
solutions for f n

L and gn
R which are simply denoted by f and

g for illustrative purposes:

f n(y) = Nn

[
cos(mn y) − ra

f mn

2
sin(mn y)

]
, 0≤ y <π R,

f n(y) = Nn

[
cos(mn y)+ ra

f mn

2
sin(mn y)

]
,−π R ≤ y < 0.

(4)

Here the KK-masses mn for n = 0, 1, . . . are solutions of the
transcendental equation [50]

(ra
f rb

f m2
n − 4) tan(mnπ R) = 2(ra

f + rb
f )mn . (5)

The non-trivial wave functions are combinations of a sine
and a cosine function, different from the case of mUED
where they are either only sine or cosine function. The depar-
ture of the wave functions from mUED theory and the fact
that the KK-masses are solutions of Eq. (5) rather than just
n/R are the key features of this non-minimal universal extra-
dimensional (nmUED) model.

In our analysis we study the KK-parity-non-conserving
UED in two ways. In the first case, we take equal strengths
of the BLKTs (at two fixed point y = 0 and y = π R) for
fermion, i.e., ra

f = rb
f ≡ r f , while the other case has the

BLKT at one of the fixed points only: ra
f �= 0, rb

f = 0. In
the latter situation Eq. (5) becomes

tan(mnπ R) = −ra
f mn

2
. (6)

In both cases the mass eigenvalues can be solved by the tran-
scendental equations (Eqs. (5) and (6)) using numerical tech-
niques.

2 We use the chiral representation with γ5 = diag(−I, I ).
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Fig. 1 Left panel The dependence of M(1) ≡ mα(1) R with respect to
Rα ≡ ra

α/R when ra
α = rb

α . In the inset is shown the variation of M(1)

on �Rα ≡ (rb
α − ra

α)/R for two different Rα . Right panel M(1) with
respect to Rα when the BLKT is present only at the y = 0 fixed point.

The inset shows a magnified portion of the variation, which gives the
actual range of Rα that is considered later. The insets of both panels
show small variations of M(1) with respect to BLKTs. Here α = f
(fermions) and V (gauge bosons)

For small values of
ra

f
R (<< 1) the approximate KK-mass

formula becomes (using Eq. (6))

mn ≈ n

R

⎛
⎝ 1

1 + ra
f

2π R

⎞
⎠ ≈ n

R

(
1 − ra

f

2π R

)
. (7)

It is clear from the above expression that for ra
f > 0, the KK-

mass diminishes with ra
f . This result also holds good when

the BLKTs are present at both boundary points.
Nn is the normalisation constant, determined from the

orthonormality condition [44]:

∫
dy

[
1 + ra

f δ(y) + rb
f δ(y − π R)

]
f n(y) f m(y) = δnm,

(8)

and it is given by

Nn =
√

2

π R

⎡
⎢⎢⎣ 1√

1 + r2
f m2

n

4 + r f
π R

⎤
⎥⎥⎦, (9)

for equal strengths of the boundary terms (rb
f = ra

f ≡ r f ).

For the other situation when rb
f = 0 and where we use

ra
f ≡ r f , one has

Nn =
√

2

π R

⎡
⎢⎢⎣ 1√

1 + r2
f m2

n

4 + r f
2π R

⎤
⎥⎥⎦. (10)

Now it is evident from Eqs. (9) and (10) that, for
r f
R <

−π (for a double brane setup) and
r f
R < −2π (for a sin-

gle brane setup), the squared norm of the zero-mode solu-
tions become negative. Moreover, for

r f
R = −π (for a double

brane setup) and
r f
R = −2π (for a single brane setup) the

solutions become divergent. Beyond these region the fields
become ghost-like; consequently the values of

r f
R beyond

these should be avoided. However, for simplicity we stick to
positive values of BLKTs only in the rest of our analysis.

Our concern here is only with the zero-modes and the
n = 1 KK-wave functions of the five-dimensional fermion
fields.

Masses and y-dependent wave functions for the elec-
troweak gauge bosons are very similar to the fermions and
can be obtained3 in a similar manner. We do not repeat them
in this article. This is readily available in [44].

As the KK-masses obtained from transcendental equa-
tions are similar for fermions and gauge bosons, we use
ra
α, rb

α to pameterise the strengths of the BLKT with α = f
(fermions) or V (gauge bosons) for the purposes of our dis-
cussion. It has been assumed in the following that the KK-
quarks are either mass degenerate with or heavier than the
KK-leptons. However, they do not enter in our analysis. For
simplicity we have assumed that the BLKTs for U(1) and
SU(2) gauge bosons are the same, so that B1 and W 1

3 are
degenerate in mass. We are only interested in the n = 1
state.

In Fig. 1 we have shown in the plots the dimensionless
quantity M(1) ≡ mα(1) R, in the two different cases. The left
panel reflects the mass profile for the n = 1 KK-excitation
when the BLKTs are present at the two fixed points (y = 0
and y = π R), while the right panel shows the case when the
BLKTs are present only at y = 0. In both cases the KK-mass
decreases with the increasing values of BLKT parameter. The
detailed illustrations of this non-trivial KK-mass dependence
has been discussed and can be found in Ref. [46].

3 The KK-modes of the gauge bosons also receive a contribution to
their masses from spontaneous breaking of the electroweak symmetry,
but we have not considered those contributions as they are negligible
with respect to extra-dimensional contribution.
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Fig. 2 Left panel The dependence of the squared value of scaled KK-
parity-non-conserving coupling between B1(W 1

3 ) and a pair of zero-
mode fermions with R f ≡ Ra

f = Rb
f for different �RV , for Ra

V = 10.

Right panel The dependence of the same coupling with R f for different
choices of RV when the fermion and gauge boson BLKTs are present
only at the y = 0 fixed point

3 Interacting coupling of V 1(B1orW1
3 ) with zero-mode

fermions

The coupling of the states B1 or W 1
3 to two zero-mode

fermions f 0 is given by

gV 1 f 0 f 0 = g5(G)

∫ π R

0
(1+r f {δ(y)+δ(y−π R)}) f 0

L f 0
L a1dy,

= g5(G)

∫ π R

0
(1+r f {δ(y)+δ(y−π R)})g0

Rg0
Ra1dy.

(11)

Further, the five-dimensional gauge coupling g5(G) which
appears above is related to the usual coupling g through

g5(G) = g

√√√√π R

(
1 + Ra

V + Rb
V

2π

)
. (12)

We denote the zero-mode fermion wave functions by f 0
L

and g0
R while the KK (n = 1)-gauge boson wave functions

are denoted by a1 depending on the values of chosen BLKTs.
Let us first discuss the case in which BLKTs are presented

at both fixed points. Here we assume for the fermions: ra
f =

rb
f = r f , but for the gauge bosons: ra

V �= rb
V . Using y-

dependent wave functions and a proper normalisation [44]
we get

gV 1 f 0 f 0 = g5(G)(
1 + R f

π

) N 1
G

[
sin(π M(1))

π M(1)

{
1− M2

(1) Ra
V R f

4

}

+ Ra
V

2π

{
cos(π M(1))−1

}+ R f

2π

{
cos(π M(1))+1

}]
,

(13)

which vanishes4 when �RV = 0.

4 See Fig. 3 in [44].

Here M(1) ≡ mV (1) R is the scaled KK-mass, and R f ≡
r f /R, Ra

V ≡ ra
V /R, and Rb

V ≡ rb
V /R are the scaled

dimensionless variables defined earlier.
Now we turn to the case which could be considered the

most asymmetric one, namely, the BLKT for the fermion and
the gauge boson are present only at the y = 0 fixed point.
We obtain for this case [44]

gV 1 f 0 f 0 =
√

2 g

√(
1 + RV

2π

)

(
1 + R f

2π

)√
1 +

(
RV M(1)

2

)2 + RV
2π

(
R f −RV

2π

)
,

(14)

and this becomes zero if we put RV = R f . Here5 RV ≡
rV /R and R f ≡ r f /R.

Figure 2 depicts the KK-parity-non-conserving coupling
strength in the two different cases. In the left panel (BLKTs
are present at two fixed points y = 0 and y = π R) we plot
the square of the coupling for a fixed value6 of Ra

V = 10
as a function of R f for several choices of �RV . The right
panel shows the same thing with respect to R f (BLKTs are
present only at y = 0) for different values of RV . In both
cases the KK-parity-non-conserving coupling decreases with
the increasing values of the fermion BLKT parameters. The
detailed analysis of this coupling strength with respect to the
BLKT parameters can be found in Ref. [46].

4 Production and decay of B1(W1
3 ) via

KK-parity-non-conservation

We are now in a position to discuss the main result of this
paper. From now for the SM particles we will not explicitly

5 As the BLKTs are present at only one fixed point, we use R f and RV
with no superscript for fermions and gauge bosons, respectively.
6 We have checked that the results are quite similar for the other value
of Ra

V that we consider later.
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write the KK-number (n = 0) as a superscript. At the LHC
we study the resonant production of B1(W 1

3 ), via the process
pp (qq̄) → B1(W 1

3 ) followed by B1(W 1
3 ) → �+�−. This

results in an �+�− resonance at the B1(W 1
3 ) mass.

The final state leads to two leptons (e or μ), with the invari-
ant mass peaking at mV (1) , which is the KK-mass (n = 1) of
the gauge bosons. It should be noted that both the production
and the decay of n = 1 KK-excitations of the electroweak
gauge bosons are driven by KK-parity-non-conserving cou-
plings which depend on R f , Ra

V and �RV (R f , RV when
BLKTs are present at only one fixed point). If in the future
such a signature is observed at the LHC, then it would be
a good channel to measure such KK-parity-non-conserving
couplings.

Both the ATLAS [1] and the CMS [45] Collaborations
have looked for a resonance decaying to e+e−/μ+μ− pair in
pp collisions at 8 TeV in the LHC experiment. From the lack
of observation of such a signal at 95 % C.L., upper bounds
have been put on the cross section times branching ratio of
such a final state as a function of the mass of the resonance.
The calculated values of the event rate in the KK-parity-non-
conserving framework when compared to the experimental
data set limits on the parameter space of the model. To get
the most up-to-date bounds we use the latest 8 TeV results7

from ATLAS [1].
The production of B1 (W 1

3 ) (which we generically denote
by V 1) in pp collisions is driven qq̄ fusion. A compact form
of the production cross section in proton–proton collisions
can be written as [44]

σ(pp → V 1 + X) = 4π2

3m3
V (1)

∑
i

�(V 1 → qi q̄i )

×
∫ 1

τ

dx

x

[
f qi

p
(x, m2

V (1) ) f q̄i
p
(τ/x, m2

V (1) )+qi ↔ q̄i

]
. (15)

Here, qi and q̄i denote a generic quark and the correspond-
ing antiquark of the i th flavour, respectively. f qi

p
( f q̄i

p
) is the

parton distribution function for a quark (antiquark) within
a proton. We define τ ≡ m2

V (1)/SP P , where
√

SP P is the

proton–proton centre of momentum energy. �(V 1 → qi q̄i )

represents the decay width of V 1 into the quark–antiquark

pair and is given by � =
[

g2
V 1qq
32π

] [
(Y q

L )2 + (Y q
R)2

]
m B(1)

(with Y q
L and Y q

R being the weak-hypercharges for the left-

and right-chiral quarks) for B1 and � =
[

g2
V 1qq
32π

]
m

W (1)
3

for

the W 1
3 . Here g

V 1qq
is the KK-parity-non-conserving cou-

pling of the V 1 with the SM quarks—see Eqs. (13) and (14).

7 ATLAS results have been used in this paper as it used a higher accu-
mulated data set. However, we have checked that the limits derived from
CMS [45] data are almost the same.

We use a parton-level Monte Carlo code with parton dis-
tribution functions as parametrised in CTEQ6L [56] for the
determination of the numerical values of the cross sections.
In our analysis we set the pp centre of momentum energy
at 8 TeV and the factorisation scales (in the parton distribu-
tions) at mV (1) . To obtain the event rate one must multiply the
cross sections with the appropriate branching ratio8 of B1 or
W 1

3 into e+e−/μ+μ−. Here we have assumed without any
loss of generality that B1 and W 1

3 are lighter than the n = 1
KK-excitation of the fermions. This implies that they are the
lightest KK-particle and they can decay only to a pair of SM
particles via KK-parity-non-conserving coupling—see Eqs.
(13) and (14).

Let us comment on the values of the BLKT parameters
used in our analysis. The BLKTs imposed in Eq. (1) are
not five-dimensional operators in four-dimensional effective
theory but some sort of boundary conditions on the respec-
tive fields at the orbifold fixed points. The masses (solutions
of transcendental equations) and profiles in the y-directions
for the fields are consequences of these boundary condi-
tions. In fact, four-dimensional effective theory only con-
tains the canonical kinetic terms for the fields and their KK-
excitations along with their mutual interactions. The effect
of BLKTs only shows up in modifications of some of these
couplings via an overlap integral (see Eq. (11)) and also in
deviations of the masses from UED values of n/R (in the
nth KK-level). So as long as these overlap integrals are not
very large (� 1) we do not have any problem with the con-
vergence of perturbation series. In Fig. 2, we have shown
that the values of the overlap integrals (involved in the cou-
plings determined by the five-dimensional wave functions)
are � 1 for the entire range of the strengths of the BLKTs
which we have used in this article and never grow with these
strengths. Furthermore it has been shown in [57] that theories
with large strengths of the BLKTs (relative to their natural
cutoff scale, �) were found to be perturbatively consistent
and are thus favoured. Such results in Ref. [57] are in agree-
ment with our observation that the numerical values of the
overlap integral diminish with increasing magnitude of the
BLKT coefficients (ri ’s).

We now present the main numerical results for two distinct
cases, either BLKTs are present at both fixed points or only
at one of the two, in the following subsections.

4.1 BLKTs are present at y = 0 and y = π R

In Fig. 3 we present the results for the case when the fermion
BLKTs are symmetric at the two fixed points but unequal
values of the gauge BLKTs break the KK-parity. Here we
show the region of parameter space excluded by the ATLAS

8 The branching ratio of B1 (W 1
3 ) to e+e− and μ+μ− is approximately

30
103 ( 2

21 ).
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Fig. 3 95 % C.L. exclusion plots in the mV (1) –R f plane for several
choices of �RV . Each panel corresponds to a specific value of Ra

V . The
region to the left of a given curve is excluded from the non-observation

of a resonant �+�− signal running at 8 TeV by ATLAS data [1]. 1/R
and M f (1) = m f (1) R are displayed in the upper and right-side axes,
respectively (see text)

8 TeV data [1] for two different choices of Ra
V . Each panel

depicts that the region to the left of a curve in the mV (1)–R f

plane is excluded by the ATLAS data.
For a chosen Ra

V there is an one-to-one correspondence
of mV (1) with 1/R which is shown on the upper axis of the
panels, as the KK-mass is rather insensitive to �RV . Also,
for any displayed value of 1/R we can estimate the first exci-
tation of the fermion KK-mass M f (1) = m f (1) R ( plotted on
right-side axis) which is determined by R f .

The exclusion plots can be understood easily in con-
junction with Figs. 1 and 2. For a given �RV and Ra

V
the KK-parity-non-conserving couplings are almost insen-
sitive to R f . Thus R f has no steering on the production of
e+e−/μ+μ−. The signal rate thus solely depends on Ra

V and
�RV . The coupling (and in turn the signal strength) increases
with �RV . Thus with higher and higher strength of KK-
parity non-conservation one can exclude higher and higher
masses (and higher values of 1/R) as revealed in Fig. 3.

4.2 BLKTs are present only at y = 0

Now let us concentrate on the case of the fermion and gauge
BLKTs at only one fixed point. In this case we display the
exclusion curves in the mV (1)–R f plane for several choices of
RV in Fig. 4. The region below a curve has been disfavoured
by the ATLAS data.

One can explain Fig. 4 on the basis of Figs. 1 and 2. It
is revealed in the left panel of Fig. 1, M(1) ≡ mV (1) R has
mild variation with RV . So we can take the mass of V 1 to
be approximately proportional to 1/R (the relevant values of
1/R are displayed in the upper axis of the panel in Fig. 4).
In our model we estimate the cross section times branching
ratio corresponding to any mV (1) , and comparing this with
the ATLAS data we can have a specific value of (RV , R f )

pair on each curve via KK-parity-non-conserving coupling.
Alternatively, it is evident from Fig. 4, as mV (1) increases,
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Rf Mf (1)
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RV=11.0
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Fig. 4 95 % C.L. exclusion plots in the mV (1) –R f plane for several
choices of RV . The region below a specific curve is ruled out from the
non-observation of a resonant �+�− signal in the 8 TeV run of LHC by
ATLAS [1]. 1/R and M f (1) = m f (1) R are displayed in the upper and
right-side axes, respectively (see text)

the production of the B1(W 1
3 ) decreases. As a compensation,

the KK-parity-non-conserving coupling must increase as we
increase the mV (1) . So it is clear from the right panel of Fig. 2,
increasing value of KK-parity-non-conserving coupling is
achieved by the higher values of RV for a fixed value of R f .
In this case also, the KK-fermion mass of first excitation can
be obtained in a correlated way from the right-side axis of
this plot.

Let us pay some attention to Fig. 4. For a given curve
(specified by a RV ), the allowed area in mV (1)–R f plane is
bounded by the curve itself and a line parallel to mV (1) axis
corresponding to the value of R f determined by the specific
value of RV of that curve. The choice of the R f < RV

ensures mass hierarchy among KK-electroweak gauge boson
and KK-leptons. So the bounded region implies that for a
given value of mV (1) , R f is bounded from below which in
turn imposes an upper limit on the mass of the n = 1 KK-
lepton.
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5 Conclusions

In summary, we have investigated the phenomenology of
KK-parity non-conservation in the UED model where all the
SM fields propagate in 4+1 dimensional space time. We have
achieved this non-conservation due to inclusion of asym-
metric9 BLTs at the two fixed points of this orbifold. These
boundary (kinetic in our case) terms can be thought of as a
cutoff (�) dependent log divergent radiative corrections [4]
which remove the degeneracy in the KK-mass spectrum of
the effective 3+1 dimensional theory.

With positive values of BLKTs, we have studied the elec-
troweak interaction, in two alternative ways. In the first case
we put equal strengths of the fermion BLKTs at the two
fixed points and parametrised by r f , while for the elec-
troweak gauge boson we have considered unequal strengths
of BLKTs (ra

V �= rb
V ). Equal strengths of electroweak gauge

boson BLKTs would preserve the Z2-parity. In the other situ-
ation we have considered the fermion and electroweak gauge
boson BLKTs are present only at the y = 0 fixed point. These
BLKTs modify the field equations and the boundary condi-
tions of the solutions lead to the non-trivial KK-mass excita-
tions and wave functions of the fermions and the electroweak
gauge bosons in the y-direction in both cases. In this plat-
form we have calculated the KK-parity-non-conserving cou-
pling between the n = 1 KK-excitation of the electroweak
gauge bosons and a pair of SM fermions (n = 0) in terms of
r f , ra

V , rb
V and 1/R when BLKTs are present at both fixed

points and r f , rV , and 1/R for the other case. This driving
coupling vanishes in the �RV = 0 limit in the first case and
for R f = RV in the second.

Finally we estimate the single production of V 1 at the LHC
and its subsequent decay to �+�−; both the production and
the decay are controlled by the KK-parity-non-conserving
coupling. We compare our results with the �+�− resonance
production signature at the LHC running at 8 TeV pp centre
of momentum energy [1,45]. The lack of observation of this
signal with 20 f b−1 accumulated luminosity by the ATLAS
Collaboration [1] at the LHC already excludes a large part of
the parameter space (spanned by r f , ra

V , rb
V and 1/R in one

case and r f , rV and 1/R in the other). Here we consider that
the B1(W 1

3 ) is lighter than the corresponding fermion and
the bounds on the mass of the former are the same as that on
the �+�− resonance from the data.

At the end, we also like to point out another important
observation regarding the excluded parameter space of this
model that the �+�− resonance search disfavoured more
parameter space in comparison to the t t̄ resonance search
which we performed in Ref. [46].

9 Symmetric BLTs leads to conserved Z2 symmetry, hence n = 1 KK-
particles is stable and can be a dark matter candidate [58–63].
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