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Abstract In this paper we ask whether the wormhole
solutions exist in different dimensional noncommutativity-
inspired spacetimes. It is well known that the noncommu-
tativity of the space is an outcome of string theory and it
replaced the usual point-like object by a smeared object.
Here we have chosen the Lorentzian distribution as the den-
sity function in the noncommutativity-inspired spacetime.
We have observed that the wormhole solutions exist only in
four and five dimensions; however, in higher than five dimen-
sions no wormhole exists. For five dimensional spacetime,
we get a wormhole for a restricted region. In the usual four
dimensional spacetime, we get a stable wormhole which is
asymptotically flat.

1 Introduction

A wormhole is a hypothetical topological feature of the
spacetime which connects two distinct spacetimes. Morris
and Thorne [1] have shown that the wormhole geometry
could be found by solving the Einstein field equation by vio-
lating the null energy condition (NEC) which is named as
exotic matter. There are a large number of works [2–4] based
on the concept of Morris and Thorne.

In recent years, researchers have shown considerable inter-
est on the study of noncommutative spaces. One of the
most interesting outcomes of the string theory is that the
target spacetime coordinates become noncommuting oper-
ators on a D-brane [5,6]. Now the noncommutatativity of
a spacetime can be encoded in the commutator [xμ, xν] =
iθμν , where θμν is an anti-symmetric matrix of dimension
(length)2 which determines the fundamental cell discretiza-
tion of spacetime. It is similar to the way that the Planck
constant h̄ discretizes phase space [7]. In noncommutative
space the usual definition of mass density in the form of
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the Dirac delta function does not hold. So in noncommuta-
tive spaces the usual form of the energy density of the static
spherically symmetrical smeared and particle-like gravita-
tional source in the form of a Lorentzian distribution is [8]

ρ = M
√

φ

π2(r2 + φ)
n+2

2

.

Here, the mass M could be the mass of a diffused centralized
object such as a wormhole and φ is the noncommutativity
parameter.

Many works inspired by noncommutative geometry are
found in the literature. Nozaria and Mehdipoura [8] used a
Lorentzian distribution to analyze ‘Parikh–Wilczek Tunnel-
ing from Noncommutative Higher Dimensional Black Holes’
[9]. Rahaman et al. have shown that a noncommutative geo-
metrical background is sufficient for the existence of a stable
circular orbit and one does not need to consider dark mat-
ter for galactic rotation curves. Kuhfittig [10] found that a
special class of thin shell wormholes could be possible that
are unstable in classical general relativity but are stable in
a small region in noncommutative spacetime. By taking a
Gaussian distribution as the density function Rahaman et al.
[11] have shown that wormhole solutions usually exist in four
and in five dimensions only. Banerjee et al. [12] have made a
detailed investigation of the thermodynamics, e.g. Hawking
temperature, entropy, and the area law for a Schwarzschild
black hole in the noncommutative spacetime. Noncommuta-
tive wormholes in f (R) gravity with a Lorentzian distribu-
tion have been analyzed in [13]. The BTZ black hole inspired
by noncommutative geometry has been discussed in [14].

Recently, the extension of general relativity in higher
dimensions has become a topic of great interest. The dis-
cussion in higher dimensions is essential due to the fact
that many theories indicate that extra dimensions exist in
our universe. The higher dimensional gravastar has been dis-
cussed by Rahaman et al. [15]. Rahaman et al. [16] have
investigated whether the usual solar system tests are compat-
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ible with higher dimensions. Another study in higher dimen-
sions is the motion of test particles in the gravitational field
of a higher dimensional black hole [17].

Inspired by all of this previous work, we are going to
analyze whether wormhole solutions exist in four and higher
dimensional spacetime in a noncommutativity-inspired
geometry where the energy distribution function is taken as
a Lorentzian distribution.

The plan of our paper is as follows: in Sect. 2 we formulate
the basic Einstein field equations. In Sect. 3, we solve those
fields equations in different dimensions, and in Sect. 4 the
linearized stability analysis for four dimensional spacetime
is worked out. Active mass function and total gravitational
energy of four and five dimensional wormhole have been
discussed in Sects. 5 and 6 respectively. Some discussions
and concluding remarks are presented in the final section.

2 Einstein field equation in higher dimension

To describe the static spherically symmetry spacetime (we
have geometrical units G = 1 = c here and onwards) in
higher dimensions, we consider the line element in the stan-
dard form

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2d�2
n (1)

where

d�2
n = dθ2

1 + sin2 θ1dθ2
2 + sin2 θ1 sin2 θ2dθ2

3

+ · · · +
n−1∏

i=1

sin2 θi dθ2
n . (2)

The most general form of the energy momentum tensor for
the anisotropic matter distribution can be taken as [2]

T μ
ν = (ρ + pr )u

μuν − pr gμ
ν + (pt − pr )η

μην (3)

with uμuμ = −ημημ = 1.
Here ρ is the energy density, and pr and pt are, respec-

tively, the radial and transverse pressures of the fluid.
In higher dimensions, the Einstein field equations can be

written as [11]

e−λ

(
nλ′

2r
− n(n − 1)

2r2

)
+ n(n − 1)

2r2 = 8πρ, (4)

e−λ

(
n(n − 1)

2r2 + nν′

2r

)
− n(n − 1)

2r2 = 8πpr , (5)

1

2
e−λ

[
1

2
(ν′)2 + ν′′ − 1

2
λ′ν′ + (n − 1)

r
(ν′ − λ′)

]

+ (n − 1)(n − 2)

2r2 (e−λ − 1) = 8πpt . (6)

Here a prime denotes differentiation with respect to the
radial co-ordinate r .

In higher dimensions, the density function of a static and
spherically symmetric Lorentzian distribution of smeared
matter is as follows [8]:

ρ = M
√

φ

π2(r2 + φ)
n+2

2

(7)

where M is the smeared mass distribution.

3 Model of the wormhole

Let us assume the constant redshift function for our model,
the so-called tidal force solution. Therefore, we have

ν = ν0 (8)

where ν0 is a constant. Using Eq. (8) the Einstein field equa-
tions become

nb′

2r2 + n(n − 2)b

2r3 = 8π M
√

φ

π2(r2 + φ)
n+2

2

, (9)

8πpr = −n(n − 1)

2r3 b, (10)

8πpt = (3 − n)(n − 1)

2r3 b − (n − 1)b′

2r2 (11)

where b(r) = r(1 − e−λ) is termed the shape function of the
wormhole.

From Eq. (9) we get

b(r) = 16M
√

φ

nπ

1

rn−2

∫
rn

(r2 + φ)
n+2

2

dr + C

rn−2 . (12)

Now, the following criteria need to be imposed for the exis-
tence of a wormhole solution:

1. The redshift function ν(r) must be finite everywhere
(traversability criterion).

2. b(r)
r → 0 as n → ∞ (asymptotically flat spacetime).

3. At the throat (r0) of the wormhole b(r0) = r0 and
b′(r0) < 1 (flaring out condition).

4. b(r) < r for r > r0 (regularity of metric coefficient).

3.1 Four dimensional spacetime (n = 2)

In four dimensional spacetime, the shape function of the
wormhole is given by

b(r) = 4M
√

φ

π

{
1√
φ

tan−1
(

r√
φ

)
− r

r2 + φ

}
+ C (13)

where C is an integration constant.
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Fig. 1 A diagram of the shape function of the wormhole in four dimen-
sions against r

The radial and transverse pressure can be obtained as

8πpr = − 1

r3

[
4M

√
φ

π

{
1√
φ

tan−1
(

r√
φ

)
− r

r2+φ

}
+C

]
, (14)

8πpt = 1

2r3

[
4M

√
φ

π

{
1√
φ

tan−1
(

r√
φ

)
− r

r2 + φ

}
+ C

]

−4M
√

φ

π

1

(r2 + φ)2 . (15)

Next, we are going to verify whether the shape function
b(r) (see Fig. 1) satisfies all the physical requirements to form
a wormhole structure (which is given in Sect. 3). For this pur-
pose we assign some arbitrary values to the parameters (men-
tioned in the figures). Form Fig. 2, we see that b(r)

r → 0 as
r → ∞, which verifies that the spacetime is asymptotically
flat. The throat r0 of the wormhole occurs where b(r0) = r0,
which is the root of the function G(r) = b(r) − r . We have
plotted G(r) in Fig. 3. The throat of the wormhole occurs
where G(r) cuts the r axis. From this figure, we see that
r0 = 0.165. Figure 3 also indicates that G(r) < 0 when
r > r0, which implies b(r)

r < 1 when r > r0. One can
also notice from Eq. (9) that at the throat of the wormhole
(r0 = 0.165) b′(0.165) = 0.207 < 1. Hence the flare-out
condition is also satisfied.

According to Morris and Thorne [1] the embedding sur-
face of the wormhole is denoted by the function z(r), which
satisfies the following differential equation:

dz

dr
= ± 1√

r
b(r)

− 1
. (16)

Fig. 2 Asymptotically flatness condition in four dimensional space-
time against r

Fig. 3 The throat of the wormhole in 4D occurs where G(r) cuts the
r -axis

In the above equation dz
dr diverges at the throat of the worm-

hole, from which one concludes that the embedding surface
is vertical at the throat. Equation (16) gives

z = ±
∫ r

r+
0

dr√
r

b(r)
− 1

. (17)

The proper radial distance of the wormhole is given by

l(r) = ±
∫ r

r+
0

dr√
1 − b(r)

r

(18)
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Table 1 Values of z(r) for different r . r+
0 = 0.17, φ = 0.001, M =

0.075

r z(r)

2 0.9462904189

4 1.476685471

6 1.881582603

8 2.222220748

10 2.521990341

12 2.792809650

Table 2 Values of l(r) for different r . r+
0 = 0.17, φ = 0.001, M =

0.075

r l(r)

2 2.053236413

4 4.106613071

6 6.137481048

8 8.159285247

10 10.17615752

12 12.18992251

14 14.20154866

(here r0 is the throat of the wormhole.) The two integrals
mentioned in Eqs. (17) and (18) cannot be done analytically.
But we can perform it numerically. The numerical values are
obtained by fixing a particular value of the lower limit and by
changing the upper limit, as given in Tables 1 and 2, respec-
tively. The embedding diagram z(r) and the radial proper
distance l(r) of the 4D wormhole are depicted in Figs. 4 and
5, respectively. Figure 6 represents the full visualization of
the 4D wormhole obtained by rotating the embedding curve
about the z-axis.

We can match our interior wormhole spacetime with the
Schwarzschild exterior spacetime

ds2 = −
(

1 − 2m

r

)
dt2 + dr2

1 − 2m
r

+ r2d�2
2 (19)

where

d�2
2 = dθ2 + sin2 θdφ2.

Now by using the Darmois–Israel [18,19] junction condi-
tion the surface energy density (σ ) and the surface pressure
(P) at the junction surface r = R can be obtained as

σ = − 1

4π R

[√
1 − 2m

R
+ Ṙ2 −

√
1− b(R)

R
+ Ṙ2

]
, (20)

Fig. 4 The embedding diagram of the 4D wormhole against r

Fig. 5 The radial proper length of the 4D wormhole against r

P = 1

8π R

⎡

⎣1 − m
R + Ṙ + R R̈

√
1 − 2m

R + Ṙ2

− 1 − b(R)
R + Ṙ2 + R R̈ − Ṙ2

2
b−b′ R
R−b√

1 − b(R)
R + Ṙ2

⎤

⎦ . (21)

The mass of the thin shell (ms) is given by

ms = 4π R2σ. (22)
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Fig. 6 The full visualization of the 4D wormhole surface is obtained
by rotating the embedding curve with respect to the z-axis

Using the expression of σ in Eq. (20) (considering the static
case) one can obtain the mass of the wormhole as

m = b(R)

2
− ms

2

[
ms

R
+ 2

√
1 − b(R)

R

]
. (23)

This gives the mass of the wormhole in terms of the thin shell
mass.

Let us use the conservation identity given by

Si
j,i = −

[
σ̇ + 2

Ṙ

R
(P + σ)

]
,

which gives the following expression:

σ ′ = − 2

R
(P + σ) + � (24)

where � is given by

� = − 1

4π R

b − b′ R
2(R − b)

√
1 − b(R)

R
+ Ṙ2. (25)

The above expression � will be used to discuss the stability
analysis of the wormhole. From Eq. (22) we get
(ms

2a

)′′ = ϒ − 4πσ ′η

where

η = P ′

σ ′ and ϒ = 4π

R
(σ + P) + 2π R�′

Fig. 7 Diagram of the shape function of the wormhole in five dimen-
sions against r

where the parameter
√

η generally denotes the velocity of
the sound. So one must have 0 < η ≤ 1.

3.2 Five dimensional spacetime (n = 3)

In five dimensional spacetime, the shape function of the
wormhole is given by

b(r) = 1

r

{
−16M

√
φ

9π

3r2 + 2φ

(r2 + φ)
3
2

+ C

}
. (26)

The radial and transverse pressures can be obtained as

8πpr = − 3

r4

{
−16M

√
φ

9π

3r2 + 2φ

(r2 + φ)
3
2

+ C

}
, (27)

8πpt = 1

r4

{
−16M

√
φ

9π

3r2 + 2φ

(r2 + φ)
3
2

+ C

}

−16M
√

φ

3π

1

(r2 + φ)
5
2

. (28)

Next our aim is to verify whether b(r) (see Fig. 7) satisfies
all the physical requirements to form a shape function. From
Fig. 8 we see that b(r)

r → 0 as n → ∞, so spacetime is
asymptotically flat. The throat of the wormhole is the point
where G(r) = b(r)−r cuts the r axis. From Fig. 9 we see that
G(r) cuts the ‘r ’ axis at 0.16, so the throat of the wormhole
occurs at r = 0.16 for the 5D spacetime. Consequently, we
see that b′(0.16) = 0.89 < 1. For r > r0, we see that
b(r) − r < 0, which implies b(r)

r < 1 for r > r0. The slope
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Fig. 8 Diagram of the flatness of the wormhole spacetime in five
dimensions against r

Fig. 9 The throat of the wormhole in 5D case

of the shape function is still positive up to r1 = 0.22 but
soon it becomes negative (see Fig. 10). So we have a valid
wormhole solution from the throat up to a certain radius, say,
r1 = 0.22, which is a convenient cut-off for the wormhole.
This indicates that we get a restricted class of wormholes
in five dimensional spacetime. In this case we can match
our interior solution to the exterior 5D line element given
by

Fig. 10 The slope is still positive up to r1 = 0.22 but soon becomes
negative

Table 3 Values of z(r) of 5D spacetime for different r . r+
0 = 0.16,

φ = 0.001, M = 0.075

r l(r)

0.17 0.0221068505

0.175 0.0388300822

0.18 0.0527692279

0.19 0.0758115765

0.20 0.0948891894

0.21 0.1114219209

ds2 = −
(

1 − 2μ

r2

)
dt2 +

(
1 − 2μ

r2

)−1

dr2

+r2
(

dθ2
1 + sin2 θ1dθ2

2 + sin2 θ1 sin2 θ2dθ2
3

)

where μ, the mass of the 5D wormhole, is defined by
μ = 4Gm

3π
.

To obtain the profile of embedding diagram and radial
proper distance in a θ3 = constant plane in the 5D worm-
hole spacetime, we have to find the integral of Eqs. (17)
and (18), respectively. But it is not possible to perform it
analytically. So we will need the help of numerical integra-
tion. The numerical values are obtained by fixing a particu-
lar value of the lower limit and by changing the upper limit,
which are given in Tables 3 and 4, respectively. The embed-
ding diagram z(r) and the radial proper distance l(r) of the
5D wormhole are depicted in Figs. 12 and 11, respectively.
Figure 13 represents the full visualization of the 5D worm-
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Table 4 Values of l(r) of 5D spacetime for different r . r+
0 = 0.165,

φ = 0.001, M = 0.075

r l(r)

0.17 0.2267089806

0.18 0.5493836396

0.19 0.8006389468

0.20 0.1016074351

0.21 0.1209317737

Fig. 11 The radial proper distance of the 5D wormhole in θ3 = 0 plane

hole obtained by rotating the embedding curve about the
z-axis.

3.3 Six and seven dimensional spacetime (n = 4) and
(n = 5)

In six dimensional spacetime, the shape function of the
wormhole is given by

b(r)= 1

r2

[
M

√
φ

2π

{
3√
φ

tan−1
(

r√
φ

)
− 5r3+3rφ

(r2+φ)2

}
+C

]
.

(29)

The other parameters are given by

8πpr =− 6

r5

[
M

√
φ

2π

{
3√
φ

tan−1
(

r√
φ

)
− 5r3+3rφ

(r2+φ)2

}
+C

]

(30)

8πpt = 3

2r5

[
M

√
φ

2π

{
3√
φ

tan−1
(

r√
φ

)
− 5r3+3rφ

(r2+φ)2

}
+C

]

−6M
√

φ

π

1

(r2 + φ)3 . (31)

Fig. 12 The embedding diagram of the 5D wormhole in θ3 = 0 plane

Fig. 13 The full visualization of the 5D wormhole in θ3 = 0 plane

Next we want to verify whether b(r) obeys the physical
conditions (see Sect. 3) to be a shape function of a worm-
hole. From Fig. 14 we see that b(r) is a strictly decreasing
function of r , and the same situation arises in seven dimen-
sional spacetime (n = 5). In seven dimensional spacetime
the shape function of the wormhole (see Fig. 15) is given by
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Fig. 14 Diagram of the shape function of the wormhole in six dimen-
sions against r

Fig. 15 Diagram of the shape function of the wormhole in seven
dimensions against r

b(r) = 1

r3

[
−16M

√
φ

75π

15r4 + 20r2φ + 8φ2

(r2 + φ)
5
2

+ C

]
. (32)

So it is clear that no wormhole solutions exist for n > 3
because for n > 3 the shape function b(r) [see Eq. (12)]
contains a factor 1

rn−2 , which is a dominating one, and if we
consider n > 3 the shape function becomes monotonically
decreasing. As a result b(r) in a higher dimensional space-
time fails to be a shape function.

Fig. 16 The energy condition in 4D against r

3.4 Energy condition

In this subsection, we are going to verify whether our par-
ticular model of wormholes (both 4D and 5D) satisfies all
the energy conditions, namely the NEC, the weak energy
condition, the strong energy condition, stated as follows:

ρ ≥ 0, (33)

ρ + pr ≥ 0, (34)

ρ + pt ≥ 0, (35)

ρ + pr + 2pt ≥ 0. (36)

The profiles of the energy conditions for four and five
dimensional wormholes are shown in Figs. 16 and 17, respec-
tively. The figures indicate that ρ + pr < 0 i.e. the NEC is
violated to hold a wormhole open.

4 Linearized stability analysis

In this section, we will focus on the stability of the wormhole
in four dimensional spacetime (n = 2).

Using the expression of Eq. (20) in Eq. (22) and rearrang-
ing we get

Ṙ2 + V (R) = 0 (37)

where V (R) is given by

V (R) = F(R) −
( ms

2R

)2 −
(

2m − b(R)

2ms(R)

)2
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Fig. 17 Diagram of energy condition for the 5D wormhole plotted
against r

where F(R) = 1 − b+2m
2R (for details of the calculation see

the Appendix.)
To discuss the linearized stability analysis let us take a lin-

ear perturbation around a static radius R0. Expanding V (R)

by a Taylor series around the radius of the static solution
R = R0, one can obtain

V (R) = V (R0) + (R − R0)V ′(R0) + (R − R0)
2

2
V ′′(R0)

+O
[
(R − R0)

3
]

(38)

where the prime denotes the derivative with respect to R.
Since we are linearizing around the static radius R = R0

we must have V (R0) = 0, V ′(R0) = 0. The configuration
will be stable if V (R) has a local minimum at R0 i.e. if
V ′′(R0) > 0.

Now from the relation V ′(R0) = 0 we get

(
ms(R0)

2R0

)′
=

(
R0

ms(R0)

)[
F ′(R0) − 2

(
2m − b(R0)

2ms(R0)

)

×
(

2m − b(R0)

2ms(R0)

)′]
, (39)

V ′′(R) = F ′′(R) − 2

(
ms(R)

2R

) (
ms(R)

2R

)′′

−2

{(
ms(R)

2R

)′}2

−2

(
2m − b(R)

2ms(R)

)

×
(

2m − b(R)

2ms(R)

)′′
−2

{(
2m − b(R)

2ms(R)

)′}2

.

Fig. 18 dσ 2
0

dR0
plotted against R0

Now the configuration will be stable if V ′′(R0) > 0. i.e. if

�0 > 2π R0σ0

(
ms(R)

2R

)′′
|R=R0 (40)

where �0 is given by

�0 = F ′′(R0)

2
−

{(
ms(R0)

2R0

)′}2

−
(

2m − b(R0)

2ms(R0)

)

×
(

2m − b(R0)

2ms(R0)

)′′
−

{(
2m − b(R0)

2ms(R0)

)′}2

.

Now using the expression of
(

ms
2R0

)′′
in Eq. (40) we get

η(R0)
dσ 2

dR
|R=R0 >

1

2π

[
σ0�(R0) − �0

2π R0

]
(41)

(for details of the calculation see the Appendix), which gives

η(R0) > (R0)

(
dσ 2

dR

)−1

|R=R0 if
dσ 2

dR
|R=R0 > 0 (42)

and

η(R0) < (R0)

(
dσ 2

dR

)−1

|R=R0 if
dσ 2

dR
|R=R0 < 0 (43)

where (R0) = 1
2π

[
σ(R0)�(R0) − �0

2π R0

]
.

For a wormhole in four dimensional spacetime, we have
dσ 2

0
dR0

< 0 (see Fig. 18). Therefore, we conclude that the
stability of the wormhole is given by Eq. (43). Next we
are interested to search the region where our 4D wormhole
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Fig. 19 Plot of η(R0)

model is stable. To obtain the region we have plotted the

graph of η(R0) = (R0)
(

dσ 2

dR

)−1 |R=R0 , which is shown

in Fig. 19. The stability region is given by the inequality

η(R0) < (R0)
(

dσ 2

dR

)−1 |R=R0 . So the region of stability is

given below the curve. Interestingly, we see that 0 < η ≤ 1,
which indicates that our wormhole is very stable.

5 Active mass function

We will discuss the active gravitational mass within the
region from the throat r0 up to the radius R for two cases,
because we have seen earlier that wormholes exist only in
four and five dimensional spacetimes. For the 4D case the
active gravitational mass can be obtained as

Mactive =
∫ r

r0

4πρr2

= 2M

π

[
tan−1

(
r√
φ

)
− r

√
φ

r2 + φ

]r

r0

. (44)

For the 5D case, one can get the active gravitational mass
as

Mactive =
∫ r

r0

2π2r3ρdr = 2M
√

φ

[
−1

3

3r2 + 2φ

(r2 + φ)
3
2

]r

r0

.(45)

To see the nature of the active gravitational mass Mactive

of the wormhole, we have drawn Figs. 20 and 21 for four
and five dimensional spacetimes, respectively. The positive
nature indicates that the models are physically acceptable.

Fig. 20 The variation of Mactive for the 4D case against r

Fig. 21 The variation of Mactive for the 4D case against r in the
restricted range

6 Total gravitational energy

Following Lyndell-Bell et al.’s [20] and Nandi et al.’s [21]
prescription, we shall try to calculate the total gravitational
energy of the wormholes for four and five dimensional space-
times. For the 4D case we have

Eg = 1

2

∫ r

r0

[1 − (grr )
1
2 ]ρr2dr + r0

2
. (46)
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Table 5 Values of Eg of the 4D wormhole for different r . r0 = 0.165,
φ = 0.001, M = 0.075

r Eg

0.2 0.08248549261

0.3 0.08241864488

0.4 0.08234761560

0.5 0.08227653015

0.6 0.08220571804

0.7 0.08213515524

0.8 0.08206478498

0.9 0.08199455998

1.0 0.08192444534

Table 6 Values of Eg of the 5D wormhole for different r . r0 = 0.165,
φ = 0.001, M = 0.075

r Eg

0.17 0.1255974565

0.175 0.1255950236

0.18 0.1255922125

0.185 0.1255891335

0.19 0.1255858558

0.195 0.1255824265

0.20 0.1255788793

0.205 0.1255752392

0.21 0.1255715251

For the 5D case we have

Eg = π

4

∫ r

r0

[1 − (grr )
1
2 ]ρr3dr + πr0

4
, (47)

where

grr =
(

1 − b(r)

r

)−1

.

Since it not possible to find analytical solutions of these inte-
grals, we solve them numerically assuming the range of the
integration from the throat r0 to the embedded radial space
of the wormhole geometry (see Tables 5, 6). Figures 22 and
23 show that Eg > 0, which indicates that there is repul-
sion around the throat. This nature of Eg is expected for the
construction of a physically valid wormhole.

7 Discussion and concluding remarks

In the present paper, we have obtained a new class of worm-
hole solutions in the context of a noncommutative geometry
background. In this paper we have chosen a Lorentzian dis-
tribution function as the density function of the wormhole
in noncommutativity-inspired spacetime. We have examined

Fig. 22 The variation of Eg for 4D case against r

Fig. 23 The variation of Eg for 5D case against r in the restricted range

whether wormholes with a Lorentzian distribution exist in
different dimensional spacetimes. From the above investiga-
tions, we see that the wormholes exist only in four and five
dimensional spacetimes. In case of five dimensions, we have
observed that a wormhole exists in a very restricted region.
From six dimensions and onwards the shape function of the
wormhole becomes monotonic decreasing due to the pres-
ence of the term 1

rn−2 in the shape function. So from the
above discussion, we can conclude that no wormhole solu-
tion exists beyond five dimensional spacetime. In the case of
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four and five dimensional wormholes, ρ + pr < 0, i.e. the
NECs are violated. We note that a four dimensional worm-
hole is large enough, however, one can get a five dimensional
wormhole geometry only in a very restricted region. We
have matched our interior wormhole solution to the exterior
Schwarzschild spacetime in the presence of a thin shell. The
linearized stability analysis under a small radial perturbation
has also been discussed for a four dimensional wormhole. We
have provided the region where the wormhole is stable and
with the help of a graphical representation we have proved
that 0 < η ≤ 1, i.e. our wormhole is very stable. Finally,
we can compare our results with those obtained in Ref. [11].
In both models (ours and the one of Ref. [11]), noncommu-
tativity replaces point-like structures by smeared objects. In
Ref. [11], one had used the Gaussian distribution as the den-
sity function in the noncommutativity-inspired spacetime,
whereas we have used a Lorentzian distribution as the den-
sity function in the noncommutativity-inspired spacetime. In
both cases, it is shown that wormhole solutions exist only
in four and five dimensional spacetimes. However, our study
is more complete compared to Ref. [11]. We have studied
the stability and calculated the active gravitational mass and
the total gravitational energy of the wormhole. Thus, we can
comment that this study confirms the result that wormhole
solutions exist in noncommutativity-inspired geometry only
for four and five dimensional spacetimes.
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Appendix 1

We have

ms = 4π R2σ ;

using the expression of σ we get

or
ms

4π R2 = 1

4π R

[√
1 − b(R)

R
+ Ṙ2. −

√
1 − 2m

R
+ Ṙ2

]

or
ms

R
=

√
1 − b(R)

R
+ Ṙ2 −

√
1 − 2m

R
+ Ṙ2

or
ms

R
−

√
1 − b(R)

R
+ Ṙ2 = −

√
1 − 2m

R
+ Ṙ2.

Squaring both sides we get

(ms

R

)2 − 2
ms

R

√
1 − b(R)

R
+ Ṙ2 = 1

R
(b − 2m)

or
ms

R

[
ms

R
− 2

√
1 − b(R)

R
+ Ṙ2

]
= 1

R
(b − 2m)

or
ms

R
− 2

√
1 − b

R
+ Ṙ2 = 1

ms
(b − 2m)

or
ms

2R
− b(R) − 2m

2ms
=

√
1 − b(R)

R
+ Ṙ2,

and again squaring both sides we get

Ṙ2 =
( ms

2R

)2 +
(

b(R) − 2m

2ms

)2

+ b + 2m

2R
− 1.

Now Ṙ2 = −V (R), which gives

V (R) = 1 − b + 2m

2R
−

( ms

2R

)2 −
(

b − 2m

2ms

)2

V (R) = F(R) −
( ms

2R

)2 −
(

b − 2m

2ms

)2

where

F(R) = 1 − b + 2m

2R
.

Appendix 2

We have

ms = 4π R2σ

or
ms

2R
= 2π Rσ.

Differentiating both sides with respect to R we get

or
( ms

2R

)′ = 2π(Rσ ′ + σ)

= 2π R

{
− 2

R
(σ + P) + �

}
+ 2πσ

= −4πP + 2π R� − 2πσ.

Differentiating both sides with respect to R we get
( ms

2R

)′′ = −4πP ′ + 2π(R�′ + �) − 2πσ ′.

Using the value of σ ′ we get
( ms

2R

)′′ =−4πP ′+2π(R�′ + �)−2π

{
− 2

R
(σ +P)+�

}

= 4π

R
(σ + P) + 2π R�′ − 4πησ ′;

therefore,
( ms

2R

)′′ = ϒ − 4πησ ′
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where

ϒ = 4π

R
(σ + P) + 2π R�′.

Appendix 3

We have

V ′′(R) = F ′′(R) − 2

(
ms(R)

2R

) (
ms(R)

2R

)′′

+2

{(
ms(R)

2R

)′}2

− 2

(
2m − b(R)

2ms(R)

)

×
(

2m − b(R)

2ms(R)

)′′
+ 2

{(
2m − b(R)

2ms(R)

)′}2

.

Now V ′′(R0) > 0 gives

�0 > 2π R0σ0

(
ms

2R0

)′′
,

where

�0 = F ′′(R0)

2
− 2

{(
ms(R0)

2R0

)′}2

−
(

2m − b(R0)

2ms(R0)

)

×
(

2m − b(R0)

2ms(R0)

)′′
−

{(
2m − b(R0)

2ms(R0)

)′}2

�0 > 2π R0σ [�(R0) − 4πη(R0)σ
′
0]

�0 > 2π R0σ0�(R0) − 4π2 R0η(R0)
dσ 2

0

dr0

�0

2π R0
> σ(R0)�(R0) − 2πη(R0)

dσ 2
0

dr0

2πη(R0)
dσ 2

0

dr0
> σ0�(R0) − �0

2π R0
,

which gives

η(R0)
dσ 2

0

dr0
>

1

2π

[
σ0�(R0) − �0

2π R0

]
.
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