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Abstract Elaborating on the four-dimensional helicity
scheme, we propose a pure four-dimensional formulation
(FDF) of the d-dimensional regularization of one-loop scat-
tering amplitudes. In our formulation particles propagating
inside the loop are represented by massive internal states
regulating the divergences. The latter obey Feynman rules
containing multiplicative selection rules which automati-
cally account for the effects of the extra-dimensional reg-
ulating terms of the amplitude. We present explicit rep-
resentations of the polarization and helicity states of the
four-dimensional particles propagating in the loop. They
allow for a complete, four-dimensional, unitarity-based con-
struction of d-dimensional amplitudes. Generalized unitar-
ity within the FDF does not require any higher-dimensional
extension of the Clifford and the spinor algebra. Finally we
show how the FDF allows for the recursive construction of
d-dimensional one-loop integrands, generalizing the four-
dimensional open-loop approach.

1 Introduction

The recent development of novel methods for computing
one-loop scattering amplitudes has been highly stimulated
by a deeper understanding of their multi-channel factoriza-
tion properties in special kinematic conditions enforced by
on-shellness [1–3] and generalized unitarity [4,5], strength-
ened by the complementary classification of the mathemat-
ical structures present in the residues at the singular points
[6–11].
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The unitarity-based methods, reviewed in [12–19], use
two general properties of scattering amplitudes such as ana-
lyticity and unitarity. The former grants that the amplitudes
can be reconstructed from their singularity-structure while
the latter grants that the residues at the singular points fac-
torize into products of simpler amplitudes.

Integrand-reduction methods [6,20], instead, allow one
to decompose the integrands of scattering amplitudes are
into multi-particle poles, and the multi-particle residues are
expressed in terms of irreducible scalar products formed by
the loop momenta and either external momenta or polariza-
tion vectors constructed out of them. The polynomial struc-
ture of the multi-particle residues is a qualitative information
that turns into a quantitative algorithm for decomposing arbi-
trary amplitudes in terms of master integrals (MIs) by polyno-
mial fitting at the integrand level. In this context the on-shell
conditions have been used as a computational tool reduc-
ing the complexity of the algorithm. A more intimate con-
nection among the idea of reduction under the integral sign
and analyticity and unitarity has been pointed out recently.
Using basic principles of algebraic geometry [7,8,21–23],
have shown that the structure of the multi-particle poles is
determined by the zeros of the denominators involved in the
corresponding multiple cut. This new approach to integrand
reduction methods allows for their systematization and for
their all-loop extension.

Moreover, the proper understanding of the integrands of
the amplitudes paved the way to the recent proposal of a four-
dimensional renormalization scheme, which allows one the
recognize and subtract UV-divergent contributions already at
the integrand level [24–26].

Dimensionally regulated amplitudes are constituted
by terms containing (poly)logarithms, also called cut-
constructible terms, and rational terms. The former may be
obtained by the discontinuity structure of integrals over the
four-dimensional loop momentum. The latter ones, instead,
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escape any four-dimensional detectability and require one to
cope with integrations including also the (d −4) components
of the loop momentum.

Within generalized-unitarity methods both terms can in
principle be obtained by performing d-dimensional general-
ized cuts [27–32]. In this context, the issue of addressing fac-
torization in conjunction with regularization clearly emerges,
since d-dimensional unitarity requires to work with tree-
level amplitudes involving external particles in arbitrary, non-
integer dimensions. Polarization states, dimensionality of the
on-shell momenta, and the completeness relations for the par-
ticles wavefunctions have to be consistently handled since the
number of spin eigenstates depends on the space-time dimen-
sion. Therefore, in many cases generalized unitarity in arbi-
trary non-integer dimensions is avoided and cut-constructible
and rational terms are obtained in separate steps. The former
are computed by performing four-dimensional generalized
cuts in the un-regularized amplitudes. If possible the rational
terms are obtained by using special properties of the ampli-
tude under consideration, like the supersymmetric decompo-
sition [33,34].

Within integrand-reduction methods, different approaches
are available, according to the strategies adopted for the deter-
mination of cut-constructible and rational terms.

In some algorithms, the computation of the two ingredi-
ents proceeds in two steps [35]: the cut-constructible piece
and part of the rational contributions, the so-called R1 term,
are obtained by reducing four-dimensional part of the inte-
grand. The remaining contribution to the rational part, R2,
is instead computed by introducing new counterterm-like
diagrams which depend on the model under considera-
tion [35,36]. Alternatively, the term R2 can be be obtained
by using four-dimensional Feynman rules, as described in
[37].

Other methods, instead, aim at the combined determina-
tion of the two ingredients by reducing the dimensionally
regulated integrand. Therefore the numerator of the inte-
grand has to be generated and manipulated in d dimen-
sions and acquires a dependence on (d − 4) and on the
square of the (d − 4)-dimensional components of the loop
momentum, μ2 [31,32,38]. The multi-particle residues are
finally determined by performing generalized cuts by setting
d-dimensional massive particles on shell. This is equivalent
to have on-shell four-dimensional states whose squared mass
is shifted by μ2.

If the integrand at a generic multiple cut is obtained as
a product of tree-level amplitudes, the issues related to fac-
torization in presence of dimensional regularization have to
be addressed. An interesting approach [31] uses the linear
dependence of the amplitude on the space-time dimension-
ality to compute the d-dimensional amplitude. In particular
the latter is obtained by interpolating the values of the one-
loop amplitude in correspondence to two different integer

values of the space-time. When fermions are involved, the
space-time dimensions have to admit an explicit represen-
tation of the Clifford algebra [32]. More recently, this idea
has been combined with the six-dimensional helicity formal-
ism [39] for the analytic reconstruction of one-loop scattering
amplitudes in QCD via generalized unitarity.

In this article, we elaborate on the four-dimensional
helicity (FDH) scheme [28,40,41] and we propose a four-
dimensional formulation (FDF) of the d-dimensional regu-
larization scheme which allows for a purely four-dimensional
regularization of the amplitudes. Within FDF, the states in
the loop are described as four-dimensional massive parti-
cles. The four-dimensional degrees of freedom of the gauge
bosons are carried by massive vector bosons of mass μ

and their (d − 4)-dimensional ones by real scalar particles
obeying a simple set of four-dimensional Feynman rules. A
d-dimensional fermion of mass m is instead traded for
a tardyonic Dirac field with mass m + iμγ 5. The d-
dimensional algebraic manipulations are replaced by four-
dimensional ones complemented by a set of multiplicative
selection rules. The latter are treated as an algebra describ-
ing internal symmetries.

Within integrand-reduction methods, our regularization
scheme allows for the simultaneous computation of both
the cut-constructible and the rational terms by employing
a purely four-dimensional formulation of the integrands.
As a consequence, an explicit four-dimensional representa-
tion of generalized states propagating around the loop can
be formulated. Therefore, a straightforward implementation
of d-dimensional generalized unitarity within exactly four
space-time dimensions can be realized, avoiding any higher-
dimensional extension of either the Dirac [31,32] or the
spinor algebra [42].

Another interesting consequence of our framework is the
possibility to extend to d dimensions the recursive generation
of the integrand from off-shell currents and open loops, now
limited to four dimensions [43–45].

The paper is organized as follows. Section 2 is devoted to
the description of our regularization method, while Sect. 3
describes how generalized unitarity method can be applied
in presence of a FDF of one-loop amplitudes. Sections 4, 5
and 6, collect the applications of generalized-unitarity meth-
ods within the FDF. Section 7 describes how the integrand of
the FDF of one-loop amplitudes can be generated recursively
within the open-loop approach.

2 Four-dimensional Feynman rules

The FDH scheme [28,40,41] defines a d-dimensional vec-
tor space embedded in a larger ds-dimensional space, ds ≡
(4 − 2ε) > d > 4. The scheme is determined by the follow-
ing rules:
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– The loop momenta are considered to be d-dimensional.
All observed external states are considered as four dimen-
sional. All unobserved internal states, i.e. virtual states
in loops and intermediate states in trees, are treated as
ds-dimensional.

– Since ds > d > 4, the scalar product of any d- or ds-
dimensional vector with a four-dimensional vector is a
four-dimensional scalar product. Moreover, any dot prod-
uct between a ds -dimensional tensor and a d-dimensional
one is a d-dimensional dot product.

– The Lorentz and the Clifford algebra are performed in
ds dimensions, which has to be kept distinct from d. The
matrix γ 5 is treated using the ’t Hooft–Veltman prescrip-
tion, i.e. γ 5 commutes with the Dirac matrices carrying
−2ε indices.

– After the γ -matrix algebra has been performed, the limit
ds → 4 has to be performed, keeping d fixed. The limit
d → 4 is taken at the very end.

In the following ds-dimensional quantities are denoted by a
bar. One can split the ds-dimensional metric tensor as fol-
lows:

ḡμν = gμν + g̃μν, (1)

in terms of a four-dimensional tensor g and a −2ε-
dimensional one, g̃, such that

g̃μρ gρν = 0, g̃μ
μ = −2ε −→

ds→4
0, gμ

μ = 4. (2)

The tensors g and g̃ project a ds-dimensional vector q̄ into
the four-dimensional and the −2ε-dimensional subspaces,
respectively,

qμ ≡ gμ
ν q̄ν, q̃μ ≡ g̃μ

ν q̄ν . (3)

At one loop the only d-dimensional object is the loop
momentum �̄. The square of its −2ε-dimensional component
is defined as:

�̃2 = g̃μν �̄μ �̄ν ≡ −μ2. (4)

The properties of the matrices γ̃ μ = g̃μ
ν γ̄ ν can be obtained

from Eq. (2)

[γ̃ α, γ 5] = 0, {γ̃ α, γ μ} = 0, (5a)

{γ̃ α, γ̃ β} = 2 g̃αβ. (5b)

We remark that the −2ε tensors cannot have a four-
dimensional representation. Indeed the metric tensor g̃ is a
tripotent matrix

g̃μρ g̃ρν g̃νσ = g̃μσ , (6)

and its square is traceless

g̃μρ g̃ρμ = g̃μ
μ −→

ds→4
0, (7)

but in any integer-dimension space the square of any non-null
tripotent matrix has an integer, positive trace [46]. Moreover,
the component �̃ of the loop momentum vanishes when con-
tracted with the metric tensor g,

�̃μ gμν = �̄ρ g̃ρμ gμν = 0, (8)

and in four dimensions the only four vector fulfilling (8) is
the null one. Finally in four dimensions the only non-null
matrices fulfilling the conditions (5a) are proportional to γ 5,
hence γ̃ ∼ γ 5. However, the matrices γ̃ fulfill the Clifford
algebra (5b), thus

γ̃ μ γ̃μ −→
ds→4

0, while γ 5γ 5 = I . (9)

These arguments exclude any four-dimensional represen-
tation of the −2ε subspace. It is possible, however, to find
such a representation by introducing additional rules, called
in the following −2ε selection rules, (−2ε)-SRs. Indeed, as
shown in Appendix A, the Clifford algebra (5b) is equivalent
to

. . . γ̃ α . . . . . . γ̃α . . . = 0, /̃�/̃� = −μ2. (10)

Therefore any regularization scheme which is equivalent of
FDH has to fulfill the conditions (2)–(5a), and (10). The
orthogonality conditions (2) and (3) are fulfilled by splitting
a ds-dimensional gluon onto a four-dimensional one and a
colored scalar, sg , while the other conditions are fulfilled by
performing the substitutions:

g̃αβ → G AB, �̃α → i μ Q A, γ̃ α → γ 5 
A. (11)

The −2ε-dimensional vectorial indices are thus traded for
(−2ε)-SRs such that

G AB G BC = G AC , G AA = 0, G AB = G B A,


AG AB = 
B, 
A
A = 0, Q A
A = 1,

Q AG AB = Q B, Q A Q A = 1.

(12)

The exclusion of the terms containing odd powers of μ com-
pletely defines the FDF, and it allows one to build integrands
which, upon integration, yield to the same result as in the
FDH scheme.

The rules (12) constitute an abstract algebra which is sim-
ilar to the algebras implementing internal symmetries. For
instance, in a Feynman diagrammatic approach the (−2ε)-
SRs can be handled as the color algebra and performed for
each diagram once and for all. In each diagram, the indices of
the (−2ε)-SRs are fully contracted and the outcome of their
manipulation is either 0 or ±1.

To summarize, the QCD d-dimensional Feynman rules in
the ’t Hooft–Feynman gauge, collected in [47], may have the
following FDF:
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a, α b, β

k = −i δab gαβ

k2 − μ2 + i0
(gluon), (13a)

a b

k = i δab 1

k2 − μ2 + i0
(ghost), (13b)

a, A b, B

k = −i δab G AB

k2 − μ2 + i0
, (scalar), (13c)

i j

k = i δi j /k + iμγ 5 + m

k2 − m2 − μ2 + i0
, (fermion),

(13d)

1, a, α

2, b, β

3, c, γ

= −g f abc [
(k1 − k2)

γ gαβ

+ (k2 − k3)
αgβγ + (k3 − k1)

βgγα
]
, (13e)

1, a, α

2, b

3, c

= −g f abc kα
2 , (13f)

1, a, α

2, b, B

3, c, C

= −g f abc (k2 − k3)
α G BC , (13g)

1, a, α

2, b, B

3, c, γ

= ∓g f abc (iμ) gγα Q B

(
k̃1 =0, k̃3 =±�̃

)
, (13h)

1, a, α

4, d, δ

2, b, β

3, c, γ

= −ig2
[

f xad f xbc (
gαβgδγ − gαγ gβδ

)

+ f xac f xbd (
gαβgδγ − gαδgβγ

)

+ f xab f xdc (
gαδgβγ − gαγ gβδ

) ]
, (13i)

1, a, α

4, d, δ

2, b, B

3, c, C

= 2ig2 gαδ
(

f xab f xcd + f xac f xbd)
G BC ,

(13j)

1, i

2, b, β

3, j

= −ig
(

tb
)

j i
γ β, (13k)

1, i

2, b, B

3, j

= −ig
(

tb
)

j i
γ 5 
B . (13l)

In the Feynman rules (13l) all the momenta are incoming
and the scalar particle sg can circulate in the loop only. The
terms μ2 appearing in the propagators (13a)–(13d) enter only
if the corresponding momentum k is d-dimensional, i.e. only
if the corresponding particle circulates in the loop. In the
vertex (13h) the momentum k1 is four-dimensional while the
other two are d-dimensional. The possible combinations of
the −2ε components of the momenta involved are
{

k̃1, k̃2 , k̃3

}
=

{
0,∓�̃,±�̃

}
. (14)

The overall sign of the Feynman rule (13h) depends on which
of the combinations (14) is present in the vertex.

The (−2ε)-SRs (12) and the Feynman rules (13l) have
been implemented in FeynArts [48] and FormCalc [49–
51] and have been used to generate the numerators of the
one-loop integrands of the processes

q q̄ → t t̄, g g → t t̄, t t̄ → t t̄,

g g → g g, q q̄ → t t̄ g, g g → t t̄ g,

q q̄ → t t̄ q ′ q̄ ′.
(15)

We have analytically checked that the numerators of the inte-
grands obtained using FDF are equivalent to the correspond-
ing ones obtained using the FDH scheme. In particular, we
have verified that their difference is spurious, i.e. it van-
ishes upon integration over the loop momentum. As already
pointed out, the (−2ε)-SRs constitute a formal algebra, thus
they cannot have a purely numerical matrix implementation.
Therefore the manipulations related to the (−2ε)-SRs have
to be performed algebraically by using algebraic manipula-
tions programs such as mathematica or form [52]. It is
worth to mention that the manipulations are extremely sim-
ple and have to be performed once and for all. In particu-
lar they can be performed before any other manipulation or
any recursive construction and would allow one to know in
advance whether the diagram or the cut vanishes. The selec-
tion rules (12) are more trivial than the color algebra, since
no interference with tree-level is needed. Moreover they can
easily be implemented, e.g. along the lines of any algebraic
implementation of the color manipulation.

Our prescriptions, Eq. (11), can be related to a five-
dimensional theory characterized by g55 = −1, �5 =
μ and a 4 × 4 representation of the Clifford algebra,
{γ 0, . . . , γ 3, iγ 5}. Regularization methods in five dimen-
sions have been proposed as an alternative formulation of
the Pauli–Villars regularization [53] or as regulators of mass-
less pure Yang–Mills theories at one loop [54]. Our method
distinguishes itself by the presence of the (−2ε)-SRs, a cru-
cial ingredient for the correct reconstruction of dimensionally
regularized amplitudes.

It is worth to notice that the possibility to obtain the ratio-
nal part of one-loop amplitudes by using four-dimensional
Feynman rules has been already investigated in [37]. The
method presented there computes the μ2-dependent part of
the numerator only, thus its Feynman rules are different from
the ones presented in Eq. (13l). In particular our method
does not introduces any additional scalar particle for each
fermion flavor since the replacement of γ̃ α with γ 5 takes care
of the ds-dimensional Clifford algebra automatically. More-
over, the presence of the (−2ε)-SRs guarantee the proper
reconstruction of the μ2-independent part of the numerator.
Finally the propagators of the FDF, Eqs. (13a)–(13d), depend
on μ2, thus all particles are massive. Therefore in the FDF
formulation the d-dimensional cuts needed by both integrand
reduction and generalized unitarity become four-dimensional
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massive cuts. In particular, as we show momentarily, a tree-
level-based construction of the integrand has to involve
amplitudes built by using μ-dependent spinors and polar-
izations vectors, fulfilling massive completeness relations.

3 Generalized unitarity

Generalized-unitarity methods in d dimensions require an
explicit representation of the polarization vectors and the
spinors of d-dimensional particles. The latter ones are essen-
tial ingredients for the construction of the tree-level ampli-
tudes that are sewn along the generalized cuts. In this respect,
the FDF scheme is suitable for a four dimensional realization
of the d-dimensional generalized unitarity. The main advan-
tage of the FDF is that the four-dimensional expression of the
propagators of the particles in the loop admits an explicit rep-
resentation in terms of generalized spinors and polarization
expressions, whose expression is collected below.

In the following discussion we will decompose a d-
dimensional momentum �̄ as follows:

�̄ = � + �̃, �̄2 = �2 − μ2 = m2, (16)

while its four-dimensional component � will be expressed as

� = �� + q̂�, q̂� ≡ m2 + μ2

2 � · q�

q�, (17)

in terms of the two massless momenta �� and q�.

Spinors The spinors of a d-dimensional fermion have to ful-
fill a completeness relation which reconstructs the numerator
of the cut propagator,

2(ds−2)/2∑

λ=1

uλ, (d)

(
�̄
)

ūλ, (d)

(
�̄
) = /̄� + m,

2(ds−2)/2∑

λ=1

vλ, (d)

(
�̄
)
v̄λ, (d)

(
�̄
) = /̄� − m.

(18)

The substitutions (11) allow one to express Eq. (18) as fol-
lows:
∑

λ=±
uλ (�) ūλ (�) = /� + iμγ 5 + m,

∑

λ=±
vλ (�) v̄λ (�) = /� + iμγ 5 − m.

(19)

As shown in Appendix B, the generalized massive spinors

u+ (�) = ∣∣��
〉 + (m − iμ)

[
�� q�

] |q�] ,

u− (�) = ∣∣��
] + (m + iμ)

〈
�� q�

〉 |q�〉 ,

v− (�) = ∣∣��
〉 − (m − iμ)

[
�� q�

] |q�] ,

v+ (�) = ∣∣��
] − (m + iμ)

〈
�� q�

〉 |q�〉 , (20a)

ū+ (�) = [
��

∣
∣ + (m + iμ)

〈
q� ��

〉 〈q�| ,

ū− (�) = 〈
��

∣
∣ + (m − iμ)

[
q� ��

] [q�| ,

v̄− (�) = [
��

∣∣ − (m + iμ)
〈
q� ��

〉 〈q�| ,

v̄+ (�) = 〈
��

∣∣ − (m − iμ)
[
q� ��

] [q�| (20b)

fulfill the completeness relation (19). The spinors (20a) are
solutions of the tardyonic Dirac equations [53,55–57]

(
/�+iμγ 5−m

)
uλ (�)=0,

(
/�+iμγ 5+m

)
vλ (�) = 0,

(21)

which leads to a Hermitian Hamiltonian. It is worth to notice
that the spinors (20) fulfill the Gordon identities

ūλ (�) γ ν uλ (�)

2
= v̄λ (�) γ ν vλ (�)

2
= �ν. (22)

Polarization vectors The d-dimensional polarization vec-
tors of a spin-1 particle fulfill the following relation:

d−2∑

i=1

ε
μ

i (d)

(
�̄, η̄

)
ε∗ν

i (d)

(
�̄, η̄

) = −ḡμν + �̄μ η̄ν + �̄ν η̄μ

�̄ · η̄
,

(23)

where η̄ is an arbitrary d-dimensional massless momentum
such that �̄·η̄ 
= 0. Gauge invariance in d dimensions guaran-
tees that the cut is independent of η̄. In particular the choice

η̄μ = �μ − �̃μ, (24)

with �, �̃ defined in Eq. (16), allows one to disentangle the
four-dimensional contribution form the d-dimensional one:

d−2∑

i=1

ε
μ

i (d)

(
�̄, η̄

)
ε∗ν

i (d)

(
�̄, η̄

)

=
(

−gμν + �μ�ν

μ2

)
−

(

g̃μν + �̃μ�̃ν

μ2

)

. (25)

The first term is related to the cut propagator of a massive
gluon and can be expressed as follows:

− gμν + �μ�ν

μ2 =
∑

λ=±,0

ε
μ
λ (�) ε∗ν

λ (�), (26)
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in terms of the polarization vectors of a vector boson of mass
μ [58],

ε
μ
+ (�) = −

[
�� |γ μ| q̂�

〉

√
2μ

, ε
μ
− (�) = −

〈
�� |γ μ| q̂�

]

√
2μ

,

ε
μ
0 (�) = ��μ − q̂μ

�

μ
. (27)

The latter fulfill the well-known relations

ε2±(�) = 0, ε±(�) · ε∓(�) = −1,

ε2
0(�) = −1, ε±(�) · ε0(�) = 0, (28)

ελ(�) · � = 0.

The second term of the r.h.s. of Eq. (25) is related to the
numerator of cut propagator of the scalar sg and can be
expressed in terms of the (−2ε)-SRs as:

g̃μν + �̃μ�̃ν

μ2 → Ĝ AB ≡ G AB − Q A Q B . (29)

The factor Ĝ AB can easily be accounted for by defining the
cut propagator as

a, A b, B = Ĝ AB δab. (30)

The generalized four-dimensional spinors and polariza-
tion vectors defined above can be used for constructing tree-
level amplitudes with full μ-dependence.

The FDF within generalized unitarity may be seen as
a massive implementation of d-dimensional regularization.
However, the FDF is different from the most commonly used
massive regularization prescriptions, i.e. the one introduc-
ing a massive scalar particle [59] and the six-dimensional
helicity method [39]. Indeed the former relies on the super-
symmetric decomposition of the amplitude in terms of cut-
constructible supersymmetric amplitudes and an amplitude
involving a scalar. The original amplitude is computed in two
steps. The cut-constructible part is obtained by using four-
dimensional unitarity while the rational one is computed by
using the amplitude involving a d-dimensional scalar, which
is traded with a massive four-dimensional ones. The FDF
does not rely on existence of the supersymmetric decompo-
sition and computes the full amplitude without splitting it.

The six-dimensional helicity method casts d-dimensional
on-shell momenta into a six-dimensional massless spinor
and, on the cuts, uses six-dimensional helicity spinors to com-
pute efficiently the relevant tree-level amplitudes. However,
since dimensional regularization cannot be achieved in finite
dimensions, the six-dimensional helicity method deliver a
result that has to be corrected by hand with the help of topolo-
gies involving six-dimensional scalars along the lines of [31].
The FDF, instead, splits the d-dimensional objects into their
four-dimensional and (d − 4)-dimensional parts and finds a
four-dimensional representation for both of them. Moreover,

it introduces the (−2ε)-SRs to account for the orthogonality
of the subspaces and for the effects of the (ds − 4) → 0
limit. No further corrections are needed since FDF properly
takes care of the peculiar features of d-dimensional regular-
ization. Therefore, in the context of on-shell and unitarity-
based methods, they are a simple alternative to approaches
introducing explicit higher-dimensional extension of either
the Dirac [31,32] or the spinor [39,42] algebra.

4 The gggg amplitude

As a first example we consider the four-gluon color-ordered

helicity amplitude A4

(
1+

g , 2+
g , 3+

g , 4+
g

)
. The latter vanishes

at tree-level, while the one-loop contribution is finite, rational
and can be obtained from the quadruple cut C1|2|3|4 [28,40,
59–61]. The relevant tree-level three-point amplitudes are
computed by using the color-ordered Feynman rules col-
lected in Appendix C and collected in Appendix E.

In the FDF, the quadruple-cut C1|2|3|4 and the coefficients
c1|2|3|4; n can be decomposed into a sum of five contributions,

C1|2|3|4 =
4∑

i=0

C [i]
1|2|3|4, c1|2|3|4; n =

4∑

i=0

c[i]
1|2|3|4; n, (31)

where C [i] (c[i]) is the contribution to the cut (coefficient)
involving i internal scalars. In the picture below, internal
lines are understood to be on-shell. The quadruple cuts read
as follows:

C [0]
1|2|3|4 =

+−

+
−

+ −
+
−

1+

2+ 3+

4+

+
−+

−
+

− +
−
+

1+

2+ 3+

4+

+
00

0
0

0 0

0
0

1+

2+ 3+

4+

, (32a)

C [1]
1|2|3|4 =

∑

hi =±,0

T1

−h1h1

h2

−h2

−h3h3

1+

2+ 3+

4+

+ c.p., (32b)

C [2]
1|2|3|4 =

∑

hi =±,0

T 2
1

−h1h1

−h2h2

1+

2+ 3+

4+

+ T2

−h1h1

h2

−h2

1+

2+ 3+

4+

+ c.p., (32c)

123
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C [3]
1|2|3|4 =

∑

h1=±,0

T3

−h1h11+

2+ 3+

4+

+ c.p., (32d)

C [4]
1|2|3|4 = T4

1+

2+ 3+

4+

, (32e)

where the abbreviation “c.p.” means “cyclic permutations of
the external particles”. In Eqs. (32) the (−2ε)-SR have been
stripped off and collected in the prefactors Ti ,

T1 = Q AĜ AB Q B = 0,

T2 = Q AĜ AB G BC ĜC D Q D = 0,

T3 = Q AĜ AB G BC ĜC DG DE Ĝ E F QF = 0,

T4 = tr
(

G Ĝ G Ĝ G Ĝ G Ĝ
)

= −1.

(33)

The prefactors T1, T2, T3 force the cuts (32b)–(32d) to vanish
identically. The only cuts contributing, Eqs. (32) and (32e),
lead to the following coefficients:

c[0]
1|2|3|4; 0 = 0, c[0]

1|2|3|4; 4 = 3i
[12] [34]

〈12〉 〈34〉 ,

c[4]
1|2|3|4; 0 = 0, c[4]

1|2|3|4; 4 = −i
[12] [34]

〈12〉 〈34〉 .
(34)

The color-ordered one-loop amplitude can be obtained from
Eqs. (31) and (D.11). In this simple case it reduces to

A4

(
1+

g , 2+
g , 3+

g , 4+
g

)
= c1|2|3|4; 4 I1|2|3|4[μ4]

= − i

48 π2

[12] [34]

〈12〉 〈34〉 , (35)

and it is in agreement with the literature [60]. This example
clearly shows the difference between our computation and the
one based on the supersymmetric decomposition [59]. In the
latter one, the result is uniquely originating by the complex
scalar contribution. Instead in our procedure the result arises
from both the massive gluons and the massive scalars sg .

For clarity reasons, in this example we have computed the
(−2ε)-SRs factors, Ti , explicitly. It is worth to notice that in
practice the (−2ε)-SRs can easily be automated and can be
performed cut-by-cut once and for all, even before the tree-
level amplitudes are computed. Therefore the cut topologies
which vanish because of the (−2ε)-SRs can be discarded at
the beginning of the computation without affecting its com-
plexity.

5 The ggqq̄ amplitude

In this section we show the calculation of the leading-
color one-loop contribution to the helicity amplitude

A4

(
1−

g , 2+
g , 3−

q̄ , 4+
q

)
, which at tree-level reads,

Atree
4 = −i

〈13〉3 〈14〉
〈12〉 〈23〉 〈34〉 〈41〉 . (36)

The leading-color contribution to a one-loop amplitude with
n particles and two external fermions can be decomposed in
terms of primitive amplitudes [62]. For the helicity configu-
ration we consider the amplitude can be expressed in terms of
the left-turning, AL

4 , and right-turning, AR
4 , primitive ampli-

tudes as follows:

A1 loop
4 = AL

4 − 1

N 2
c

AR
4 , (37)

where Nc is the number of colors.

Left-turning amplitude In the following we list the coeffi-
cients c[L]

i1...ik ; n entering the decomposition (D.11) of AL
4 and

the corresponding cut C [L]
i1...ik

. The quadruple cut is given by

C [L]
1|2|3|4 =

+−
+
−

+ −
±
∓

1

2 3

4

+
−+

−
+

− +
±
∓

1

2 3

4

+
00

0
0

0 0

±
∓

1

2 3

4

+
1

2 3

4

,

c[L]
1|2|3|4; 0 = 1

2
Atree

4

(

1 − s3
14

s3
13

)

s12s14, (38)

c[L]
1|2|3|4; 4 = 0.

The first two cut diagrams contribute both to the cut-
constructible and to the rational part, while the last two cut
diagrams cancel against each other.

The triple cuts are given by

C [L]
12|3|4 =

−+
− +

±
∓1

2

3

4

+
+−

+ −
±
∓1

2

3

4

+
00

+ −
±
∓1

2

3

4

+
+−

0 0
±
∓1

2

3

4

+
00

0 0
±
∓1

2

3

4

+ ±
∓1

2

3

4

,

c[L]
12|3|4; 0 = 1

2
Atree

4

(

1 − s3
14

s3
13

)

s12,

c[L]
12|3|4; 2 = 1

2
Atree

4

(

2 − s2
12

s2
13

)

; (39a)

123
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C [L]
1|2|34 = +

−
+ −

+−
1

2

3

4
+ −

+
− +

−+
1

2

3

4

+ 0
0

0 0

00
1

2

3

4
+

1

2

3

4
,

c[L]
1|2|34; 0 = −1

2
Atree

4

(
1 + s14

3

s13
3

)
s12,

c[L]
1|2|34; 2 = −1

2
Atree

4
s2

12

s2
13

; (39b)

C [L]

1|23|4 =
+−

+
− +

−

1

2 3

4

+
00

0
0 −

+

1

2 3

4

+
−
+

1

2 3

4

,

c[L]

1|23|4; 0 = −1
2

Atree
4 1 +

s3
14

s3
13

s14 ,

c[L]

1|23|4; 2 = −1
2

Atree
4

s14s12

s2
13

;

(39c)

C [L]
2|3|41 =

+ −
+

−
+
+
1

2 3

4

+
0 0

−
+

0
0

1

2 3

4

+ −
+

1

2 3

4

,

c[L]
2|3|41; 0 = − 1

2
Atree

4

(

1 + s3
14

s3
13

)

s14,

c[L]
2|3|41; 2 = − 1

2
Atree

4
s14s12

s2
13

. (39d)

In all the triple cuts the last two cut diagrams cancel against
each other. In the cut C [L]

12|3|4, Eq. (39c), the third cut diagram
exactly compensates the contribution of the fourth one.

The double cuts read as follows:

C [L]
12|34 =

1

2 3

4
+−

+ −
+

1

2 3

4
00

+ −
+

1

2 3

4
+−

0 0

+
1

2 3

4
00

0 0

+
1

2 3

4
,

c[L]
12|34; 0 = Atree

4
s14

s13

(
s14

s13
− 1

2

)
,

c[L]
12|34; 2 = 0; (40a)

C [L]
23|41 =

2 3

1 4

+
− +

− +
2 3

1 4

0
0 +

−

+
2 3

1 4

0
0 −

+ +
2 3

1 4

−
+ ,

c[L]
23|41; 0 = Atree

4

(
3

2
− s2

14

s2
13

+ 1

2

s14

s13

)

,

c[L]
23|41; 2 = 0. (40b)

In both cases the last two diagrams cancel against each other.
In the case of the cut C [L]

13 the second and the third diagram
cancel as well.

Right-turning amplitude The computation of the coeffi-
cients of AR

4 is similar to the one leading to the computation
of the ones of AL

4 . The explicit expression of the correspond-

ing coefficients c[R]
i1...ik ; n are shown in Appendix F.

Leading-color amplitude The leading-color amplitude can
be obtained from the decomposition (D.11) by using the coef-
ficients

ci1...ik ; n = c[L]
i1...ik ; n − 1

N 2
c

c[R]
i1...ik ; n . (41)

The result agrees with the one presented in [60].

6 The gggH amplitude

In this section, we show how the FDF scheme can be applied
in the context of an effective theory, where the Higgs boson
couples directly to the gluon. In particular we compute
leading-color one-loop contribution to the helicity amplitude

A4

(
1−

g , 2+
g , 3+

g , H
)

in the heavy top-mass limit, which at

leading order is given by

Atree
4,H = i

[23]4

[12] [23] [31]
. (42)

The Feynman rules for the Higgs-gluon and Higgs-scalar
couplings in the FDF are given in Appendix C. They are
used to compute the tree-level amplitudes sewn along the
cuts.

The one-loop amplitude can be decomposed according to
Eq. (D.13), in terms of three different ordering of the external
particles, i.e. 123H , 12H3 and 1H23. In the case of the first
ordering the coefficients ci1...ik ; n and the corresponding cut
Ci1...ik read as follows:

C1|2|3|H =
1−

2+ 3+

H

+
1−

2+ 3+

H

,

c1|2|3|H ; 0 = −1

2
Atree

4,H s12s23,

c1|2|3|H ; 4 = 0 ; (43a)

123
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C12|3|H =
1−
2+

3+

H

+
1−
2+

3+

H

,

c12|3|H ; 0 = 1

2
Atree

4,H (s13 + s23) ,

c12|3|H ; 2 = 0 ; (43b)

C1|23|H =
1−

2+ 3+

H

+
1−

2+ 3+

H

,

c1|23|H ; 0 = 1

2
Atree

4,H (s12 + s13) ,

c1|23|H ; 2 = 0 ; (43c)

C1|2|3H =
1−

2+
3+
H

+
1−

2+
3+
H

,

c1|2|3H ; 0 = 0,

c1|2|3H ; 0 = 0 ; (43d)

C12|3H =
1−
2+ 3+

H
+

1−
2+ 3+

H
,

c12|3H ; 0 = 0,

c12|3H ; 2 = 0. (43e)

The cut C123|H does not give any contribution. The
remaining coefficients are collected in Appendix G. The one-
loop amplitude can be obtained by using the coefficients col-
lected in Eqs. (43) and (G.25) and the decomposition (D.13).
The result agrees with the literature [63].

7 Generalized open loop

The FDF of d-dimensional one-loop amplitudes is compat-
ible with methods generating recursively the integrands of
one-loop amplitudes [64,65] and leads to the complete recon-
struction of the numerator of Feynman integrands as a poly-
nomial in the loop variables, �ν and μ. Our scheme allows for
a generalization of the current implementations of these tech-
niques [43–45]. Indeed, currently the latter can reconstruct
only the four-dimensional part the numerator of the inte-
grands, which is polynomial in �ν only. In the following we
focus on the generalization of the open-loop technique [43]
within the FDF scheme.

Tree-level and one-loop amplitudes, M and δM, can be
obtained as a sum of Feynman diagrams

M =
∑

diag

M(diag), δM =
∑

diag

δM(diag). (44)

The color factor C and the (−2ε)-SRs term T factorize,
thus they can be stripped off each diagram

M(diag) = C(diag) A(diag) (45)

δM(diag) = C(diag) T (diag) A(diag). (46)

The color structures are computed once, as described in [43].
The computation of the (−2ε)-SRs prefactors T turns out to
be even easier, since they enter only in the one-loop dia-
grams and can be computed once and for all. In the ’t Hooft–
Feynman gauge they can be either 0 or 1.

The recursive construction of the color-stripped tree-level
diagrams, A(diag), is not affected by the new Feynman parti-
cles and Feynman rules, which enter at loop-level only.

The one-loop color-stripped diagram δA(diag), character-
ized by a given topology In , is constructed by n tree-level
topologies i1, . . . , in , connected to the loop. The numerator
of the one-loop diagram can be expressed as

N (In, �, μ) =
R∑

j=0

R− j∑

a=0

N [a]
ν1...ν j

(In) �ν1 . . . �ν j μa, (47)

where R is its rank. The diagram is obtained by performing
the integration over the d-dimensional loop momentum:

δA(diag) =
R∑

j=0

R− j∑

a=0

N [a]
ν1...ν j

(In) I
ν1...ν j
n

[
μa]

. (48)

where

I
ν1...ν j
n

[
μa] ≡

∫
dd �̄

�ν1 . . . �ν j μa

D0 . . . Dn−1
. (49)

The starting point of the open-loop technique is to cut a prop-
agator and to remove the denominators. The open numerator
can be expressed in terms of the tree-level topology in and a
one-loop topology In−1:

N β
α (In, �, μ)

= Xβ
γ δ (In, in, In−1) N γ

α (In−1, �, μ) ωδ (in) , (50)

where ωδ is the expression related to the tree-level topology
in . The vertices Xβ

γ δ are obtained by the FDF Feynman rules,
Eq. (13l), and they can be written as follows:

Xβ
γ δ = Y β

γ δ + �ν Zβ

ν; γ δ
+ μ W β

γ δ. (51)

Therefore the tensor coefficients of the covariant decompo-
sition

N β
α (In, �, μ) =

R∑

j=0

R− j∑

a=0

N [a]β
ν1...ν j ;α (In) �ν1 . . . �ν j μa

123
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are obtained by the recursive relation

N [a]β
ν1...ν j ;α (In) =

[
Y β

γ δ N [a] γ
ν1...ν j ;α (In−1)

+Zβ

ν1; γ δ
N [a] γ

ν2...ν j ;α (In−1)

+W β
γ δ N [a−1] γ

ν1...ν j ;α (In−1)

]
ωδ(in). (52)

The recursive generation of integrands within the FDF can be
suitably combined with public codes like Samurai [66] and
Ninja [67,68], which can reduce integrands keeping the full
dependence on the loop variables �ν and μ. Moreover, it can
improve the generation of the d-dimensional integrands per-
formed by the packages GoSam [69] and FormCalc [49].
The latter are public codes dedicated to the automatic eval-
uation of one-loop multi-particle scattering amplitudes, and
they already support the FDH regularization scheme.

8 Conclusions

We introduced a four-dimensional formulation (FDF) of the
d-dimensional regularization of one-loop scattering ampli-
tudes. Within our FDF, particles that propagate inside the
loop are represented by massive particles regularizing the
divergences. Their interactions are described by general-
ized four-dimensional Feynman rules. They include selection
rules accounting for the regularization of the amplitudes. In
particular, massless spin-1 particles in d-dimensions were
represented in four dimensions by a combination of mas-
sive spin-one particle and a scalar particle. Fermions in d-
dimensions were represented by four-dimensional fermions
obeying the Dirac equation for tardyonic particles. The inte-
grands of one-loop amplitudes in the FDF and in the FDH
scheme differ by spurious terms which vanish upon integra-
tion over the loop momentum. Therefore the two schemes
are equivalent.

In the FDF, the polarization and helicity states of the
particles inside the loop admit an explicit four-dimensional
representation, allowing for a complete, four-dimensional,
unitarity-based construction of d-dimensional amplitudes.
The application of generalized-unitarity methods within the
FDF has been described in detail by computing the NLO
QCD corrections to helicity amplitudes of the processes
gg → qq̄ and gg → gH .

Mutual cancelations among the contributions of the lon-
gitudinal gluons and the ones of the scalar particles suggest a
connection among them that deserves further investigations.

The FDF Feynman rules are compatible with methods
generating recursively the integrands of one-loop amplitudes.
In this context we have proposed a generalization to the open-
loop method, which allows for a complete reconstruction of
the integrand, currently limited to four dimensions only.

The FDF approach is suitable for analytic as well as
numerical implementation. Its main asset is the use of purely
four-dimensional ingredients for the complete reconstruction
of dimensionally regulated one-loop amplitudes. We plan to
investigate its applicability beyond one loop. In particular
we aim at using explicit four-dimensional representations to
avoid the complications emerging from the formal manipu-
lations of the (d − 4)-dimensional degrees of freedom.
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Appendix A: One-loop equivalence

In this appendix we show that, at one loop, the FDH scheme
defined by Eqs. (2)–(5b) is equivalent to the one defined by
Eqs. (2)–(5a) and (10).

In the two approaches the only differences may arise from
the manipulations of the −2ε components of the Dirac matri-
ces contracted among each others. Therefore potential differ-
ences in their predictions can only be rational contributions
of divergent diagrams involving at least an open fermion line.
The loop-dependent part of the integrand of a one-loop dia-
gram is a sum of integrands of the type

I r,a,k ≡ �μ1 . . . �μr (μ2)a

Di1 . . . Dik

, D j ≡ (� + p j )
2 − m j − μ2.

(A.1)

An integrand I r,a,k leads to a divergent integral if it sat-
isfies the conditions

4 + r + 2 a − 2 k ≥ 0. (A.2)

At one loop in QCD the diagrams involving at least an open
fermion line and integrands fulfilling the conditions (A.2) are

¯

, ¯ ,

¯+ p

¯

.
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For these diagrams, the numerators obtained by using the two
schemes differ by terms of the type

. . . γ̃ α(/� + /̃� + m)γ̃α . . . ,

. . . γ̃ α(/� + /̃� + m)γ μ(/� + /p + /̃� + m)γ̃α . . . , (A.3)

where “. . .” represent four-dimensional spinorial objects. In
the FDH scheme it is easy to show that the terms (A.3) vanish
in the ds → 4 limit, while in the other scheme they vanish
as a consequence of Eq. (10). Therefore the two sets of pre-
scriptions lead to the same integrand.

The FDF fulfills the prescriptions (2)–(5a) and (10), thus,
at one loop, it leads to the same amplitudes of the FDH
scheme.

Appendix B: Proof of the completeness relations

In this appendix we show that the generalized spinors (20)
fulfill the completeness relation (19). For later convenience
we define the chirality projectors

ω± = I ± γ 5

2
, (B.4)

and we show that:

|q�][��| − |l�][q�|
[��q�] = |q�]〈q� ��〉[��| + |��]〈�� q�〉[q�|

2�� · q�

= (|q�]〈q�|)(|��〉[��|)+(|��]〈��|)(|q�〉[q�|)
2�� · q�

= ω−/q�
ω+/�

� + ω−/�
�
ω+/q�

2�� · q�

= ω2−{/q�
/�
�}

2�� · q�

= ω− (B.5a)

and similarly

|��〉〈q�| − |q�〉〈��|
〈q� ��〉 = ω+. (B.5b)

Using Eqs. (B.5) we get

∑

λ=±
uλ(�)ūλ(�) =

(
|��〉 + (m − iμ)

[�� q�] |q�]
)

×
(
[��| + (m + iμ)

〈q� ��〉 〈q�|
)

+
(
|��] + (m + iμ)

〈�� q�〉 |q�〉
)

×
(
〈��| + (m − iμ)

[q� ��] [q�|
)

= /�
� + m2 + μ2

2�� · q�
/q�

+ (m − iμ)
|q�][��| − |��][q�|

[�� q�]

+ (m + iμ)
|��〉〈q�| − |q�〉〈��|

〈q� ��〉
Eq. (B.5)= /�

� + m2 + μ2

2�� · q�
/q�

+ (m − iμ)ω− + (m + iμ)ω+
Eq. (17)= /� + iμγ 5 + m. (B.6)

Appendix C: Color-ordered Feynman rules

In the FDF, the d-dimensional color-ordered Feynman rules
collected in [70] become:

α β

k = −i
gαβ

k2 − μ2 + i0
, (gluon), (C.7a)

A B

k = −i
G AB

k2 − μ2 + i0
, (scalar), (C.7b)

k = i
/k + iμγ 5 + m

k2 − m2 − μ2 + i0
. (fermion),

(C.7c)

1, α

2, β

3, γ

= i√
2

[
gαβ(k1 − k2)γ + gβγ (k2 − k3)α

+ gγα(k3 − k1)β
]
, (C.7d)

1, α

2, B

3, C

= i√
2
(k2 − k3)αG BC , (C.7e)

1, α

2, B

3, γ

= ± i√
2

gαγ (iμ)Q B

(k̃1 = 0, k̃3 = ±�̃), (C.7f)

1, α

2, β

3, C

= ∓ i√
2

gαβ(iμ)QC

(k̃1 = 0, k̃3 = ±�̃), (C.7g)

1, α

4, δ

2, β

3, γ

= igαγ gβδ − i

2

(
gαβgγ δ + gαδgβγ

)
,

(C.7h)

1, α

4, δ

2, B

3, C

= − i

2
gαδG BC , (C.7i)

1

2, β

3

= − i√
2
γ β, (C.7j)

1

2, β

3

= i√
2
γ β, (C.7k)
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1

2, B

3

= − i√
2
γ 5
B, (C.7l)

1

2, B

3

= i√
2
γ 5
B, (C.7m)

The color-ordered Feynman rules describing the interaction
among an external Higgs boson and gluons in the infinite
top-mass limit are given by

H

2, β

3, γ

= −2i
[
kβ

3 kγ
2 − gβγ (k2 · k3 + μ2)

]
,

(C.8a)

H

2, B

3, γ

= ±2 kγ
2 μ Q B . (k̃3 = ±�̃), (C.8b)

H

2, β

3, C

= ±2 kβ
3 μ QC , (k̃2 = ±�̃), (C.8c)

H

2, B

3, C

= −2i
[
μ2 Q B QC − G BC (k2 · k3 + μ2)

]
,

(C.8d)

H

4, δ

2, β

3, γ

= i
√

2
[
gβγ (k2 − k3)δ + gβδ(k4 − k2)γ

+ gγ δ(k3 − k4)β
]
, (C.8e)

H

4, D

2, β

3, C

= i
√

2GC D(k3 − k4)β, (C.8f)

H

4, δ

2, β

3, C

= ∓√
2gβδ μ QC , (k̃4 − k̃2 = ±�̃).

(C.8g)

In the Feynman rules (C.7), (C.8) all the momenta are outgo-
ing. The terms μ2 appearing in the the propagators (C.7a)–
(C.7c) enter only if the corresponding momentum k is d-
dimensional, i.e. only if k contains the loop momentum �̄.
In the vertices (C.7f), (C.7g) the momentum k1 is four-
dimensional while the other two are d-dimensional. For these
vertices the overall sign depend on which of the combina-
tions (14) is present in the vertex. Similarly the overall sign
of the Feynman rules (C.8b), (C.8c) and (C.8g) depend on
the flow of the loop momentum �̄. As already mentioned each
cut scalar propagator carries a (−2ε)-SRs factor of the type

A B
= Ĝ AB, (C.9)

where Ĝ AB is defined in Eq. (29).

Appendix D: One-loop amplitudes

In this section we present the decomposition of the one-loop
amplitudes presented in Sects. 4–6 in terms of the MIs. We
consider the one-loop four-point amplitudes with four out-
going massless particles,

0 → 1(p1) 2(p2) 3(p3) 4(p4), (D.10)

where pi is the momentum of the particle i . In general, a
massless four-point one-loop amplitude can be decomposed
in terms MIs, as follows:

A4 = 1

(4π)2−ε

[
c1|2|3|4; 0 I1|2|3|4 + (

c12|3|4; 0 I12|3|4

+ c1|2|34; 0 I1|2|34 + c1|23|4; 0 I1|23|4 + c2|3|41; 0 I2|3|41
)

+ (
c12|34; 0 I12|34 + c23|41; 0 I23|41

)

+ c1|2|3|4; 4 I1|2|3|4[μ4] + (
c12|3|4; 2 I12|34[μ2]

+ c1|2|34; 2 I1|2|34[μ2] + c1|23|4; 2 I1|23|4[μ2]
+ c2|3|41; 2 I2|3|41[μ2])

+ (
c12|34; 2 I12|34[μ2] + c23|41; 2 I23|41[μ2])

]
. (D.11)

We consider also the process involving three gluons, 1, 2, 3,
and a Higgs boson, H ,

0 → 1(p1) 2(p2) 3(p3) H(pH ) (D.12)

in the large top-mass limit [71,72]. The one-loop amplitude
for this process is decomposed as follows:

A4,H = 1

(4π)2−ε

[
(
c1|2|3|H ; 0 I1|2|3|H + c1|2|H |3; 0 I1|2|H |3

+ c1|H |2|3; 0 I1|H |2|3
) + (

c12|3|H ; 0 I12|3|H
+ c12|H |3; 0 I12|H |3 + c1|23|H ; 0 I1|23|H
+ c1|H |23; 0 I1|H |23 + c2|H |31; 0 I2|H |31

+ cH |2|31; 0 IH |2|31 + c1|2|3H ; 0 I1|2|3H

+ c1|2H |3; 0 I1|2H |3 + c1H |2|3; 0 I1H |2|3
)

+ (
c12|3H ; 0 I12|3H + c23|H1; 0 I23|H1

+ cH2|31; 0 IH2|31
) + c123|H ; 0 I123|H

+ (
c1|2|3|H ; 4 I1|2|3|H

[
μ4

]

+ c1|2|H |3; 4 I1|2|H |3
[
μ4

]

+ c1|H |2|3; 4 I1|H |2|3
[
μ4

] )

+ (
c12|3|H ; 2 I12|3|H

[
μ2

]
+ c12|H |3; 2 I12|H |3

[
μ2

]

+ c1|23|H ; 2 I1|23|H
[
μ2

]
+ c1|H |23; 2 I1|H |23

[
μ2

]

+ c2|H |31; 2 I2|H |31

[
μ2

]
+ cH |2|31; 2 IH |2|31

[
μ2

]

123
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+ c1|2|3H ; 2 I1|2|3H

[
μ2

]
+ c1|2H |3; 2 I1|2H |3

[
μ2

]

+ c1H |2|3; 2 I1H |2|3
[
μ2

] )

+ (
c12|3H ; 2 I12|3H

[
μ2

]
+ c23|H1; 2 I23|H1

[
μ2

]

+ cH2|31; 2 IH2|31

[
μ2

]
+ c123|H ; 2 I123|H

[
μ2

] ) ]
.

(D.13)

The coefficients c’s entering in the decompositions (D.11)
and (D.13) can be obtained by using the generalized-unitarity
techniques for quadruple [5,73], triple [73–75], and dou-
ble [76–78] cuts. We observe that single-cut techniques [79–
81] are not needed because of the absence of (d-dimensional)
massive particles in the loop.

Appendix E: Three-point amplitudes

The tree-level three-point amplitudes relevant for the compu-
tation presented in Sect. 4 are the ones involving either three
gluons or two scalars and one gluon. The tree-level ampli-
tudes with two gluons and one scalar should be included as
well but they are not needed since their cut diagrams vanish
because of the (−2ε)-SRs, cfr. Sect. 4. The tree-level ampli-
tudes are computed by using the color-ordered Feynman rules
collected in Appendix C.

The general expression of the three-point all-gluon ampli-
tude is given by

2λ2

1λ1

3λ3

= ig√
2

[
gμν (1 − 2)σ + gνσ (2 − 3)μ

+ gσμ (3 − 1)ν
]
ελ1
μ (1) ελ2

ν (2, r2) ελ3
σ (3) .

(E.14)

Generalized massive momenta, carrying dependence on μ,
are denoted by a bold font, and the polarization of the particle
will be the superscript of the corresponding momentum. The
momenta are outgoing,

1 + 2 + 3 = 0, (E.15)

and in general q̂1 and q̂3 can be chosen to be proportional,

q̂3 = ξ q̂1. (E.16)

Moreover, the spinors associated to the momenta j� and q̂j

are such that
〈
j�|q̂j

〉 = [
q̂j|j�

] = μ, j = 1, 3. (E.17)

The polarization vector associated to a massless momentum
k is defined as [70]

ε
μ
+ (k, rk) = 〈rk |γ μ| k

]

√
2 〈rk k〉 ,

ε
μ
− (k, rk) = −

[
rk |γ μ| k〉√

2 [rk k]
, (E.18)

in terms of an arbitrary reference spinor rk . We observe that
the amplitude (E.14) is independent of the choice of r2. The
proof proceeds along the lines of a similar proof presented in
[82]. A change in the reference momentum shifts the ampli-
tude (E.14) by an amount proportional to
[
gμν (1 − 2)σ + gνσ (2 − 3)μ + gσμ (3 − 1)ν

]

ελ1
μ (1) 2ν ελ3

σ (3) , (E.19)

which vanishes owing to momentum conservation, Eq. (E.15),
and to the transversality condition (28).

The explicit expressions of the polarized amplitudes in the
FDF are:

2+

1+

3+
= 0,

2+

1+

3−
= ig

( [1�|2][q̂1|2]
μ

+ 〈r2|1|2]
〈r2|2〉

)
,

2+

10

3+
= 0,

2+

10

3−
=

√
2ig [q̂1|2]2

μ
,

2+

1−

3−
= ig

[
q̂1|2

] [
q̂3|2

] 〈1�|3�〉
μ2 ,

2+

10

30

= −ig
〈r2|1|2]
〈r2|2〉

[
1− (1+ξ)

ξ μ2

(
(1+ξ) μ2+ξ 〈q̂1|2|q̂1]

)]
.

(E.20)

The three-point amplitude involving a gluon and two
scalars is

2+

1

3

= ig√
2

(3 − 1)μ ε+
μ (2, r2) G AB

= −ig
〈r2|1|2]
〈r2|2〉 G AB . (E.21)

123
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Appendix F: Results for the ggqq̄ right-turning
amplitude

In this appendix we collect the coefficients entering the
decomposition (D.11) of the right-turning amplitude AR

4 . The
corresponding cuts are shown as well. The quadruple cut is
given by

C [R]
1|2|3|4 =

+−
+
−

+ −
+
−

1+

2+ 3+

4+

+
−+

−
+

− +
−
+

1+

2+ 3+

4+

+
00

0
0

0 0

0
0

1+

2+ 3+

4+

,

c[R]
1|2|3|4; 0 = −1

2
Atree

4
s3

12

s3
13

s12s14,

c[R]
1|2|3|4; 4 = 0. (F.22)

The first helicity configuration contributes only to the cut-
constructible part while the second one cancels against the
box with internal scalars. The triple cuts are given by

C [R]
12|3|4 =

−+
− +

±
∓1

2

3

4

+
+−

+ −
±
∓1

2

3

4

+
00

0 0
±
∓1

2

3

4

+
00

+ −
±
∓1

2

3

4

,

c[R]
12|3|4; 0 = −1

2
Atree

4

(

2 + s3
12

s3
13

)

s12,

c[R]
12|3|4; 2 = −1

2
Atree

4

(

1 + s2
14

s2
13

)

; (F.23a)

C [R]
1|2|34 = +

−
+ −

+−
1

2

3

4
+ −

+
− +

−+
1

2

3

4
,

c[R]
1|2|34; 0 = −1

2
Atree

4
s3

12

s3
13

s12,

c[R]
1|2|34; 2 = −1

2
Atree

4
s12

s13

(
1 − s14

s13

)
; (F.23b)

C [R]
1|23|4 =

+−

+
− +

−

1

2 3

4

+
00

0
0 −

+

1

2 3

4

+ −
+

1

2 3

4

,

c[R]
1|23|4; 0 = −1

2
Atree

4
s3

12

s3
13

s14,

c[R]
1|23|4; 2 = −1

2
Atree

4
s12s14

s2
13

; (F.23c)

C [R]
2|3|41 =

− +
−

+
+
−
1

2 3

4

+
+ −

0
0

−
+
1

2 3

4

+
+ −

−
+
1

2 3

4

,

c[R]
2|3|41; 0 = − 1

2
Atree

4
s3

12

s3
13

s14,

c[R]
2|3|41; 2 = − 1

2
Atree

4
s12s14

s2
13

. (F.23d)

In the case of the cuts C [R]
12|3|4 and C [R]

1|2|34 the first diagram
gives contributions to the both cut-constructible and the ratio-
nal part, while the second one contributes to the rational
part only. In the cuts C [R]

12|3|4, C [R]
1|23|4 and C [R]

2|3|41 the last two
diagrams cancel against each other, i.e. the scalar contribu-
tion exactly compensates the contribution of the longitudinal
polarization of the gluon. The double cuts are

C [R]
12|34 =

1

2 3

4
−+

− +
,

c[R]
12|34; 0 = Atree

4

[
s12

s13

(
s14

s13
+ 3

2

)
+ 3

2

]
,

c[R]
12|34; 2 = 0; (F.24a)

C [R]
23|41 =

2 3

1 4

−
+ −

+ +
2 3

1 4

+
− 0

0 +
2 3

1 4

+
− ,

c[R]
23|41; 0 = −Atree

4
s12

s13

(
s14

s13
+ 3

2

)
,

c[R]
23|41; 2 = 0. (F.24b)

For the cut C [R]
24 , the first diagram contributes to the cut-

constructible part only while the second one is canceled by
the diagram with an internal scalar.

Appendix G: Coeffcients of the gggH amplitude for the
orderings 12H3 and 1H23

The coefficients entering the decomposition (D.13) and cor-
responding to the orderings 12H3 and 1H23 reads as fol-
lows:

C1|2|H |3 =
1−

2+ H

3+

+
1−

2+ H

3+

,

c1|2|H |3; 0 = −1

2
Atree

4,H s13s12,

c1|2|H |3; 4 = 0; (G.25a)

123
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C1|H |2|3 =
1−

H 2+

3+

+
1−

H 2+

3+

,

c1|H |2|3; 0 = −1

2
Atree

4,H s23s13,

c1|H |2|3; 4 = 0; (G.25b)

C12|H |3 =
1−
2+

H

3+

+
1−
2+

H

3+

,

c12|H |3; 0 = 1

2
Atree

4,H (s13 + s23) ,

c12|H |3; 2 = 0; (G.25c)

C1|H |23 =
H

2+ 3+

1−

+
H

2+ 3+

1−

,

c1|H |23; 0 = 1

2
Atree

4,H (s12 + s13) ,

c1|H |23; 2 = 0; (G.25d)

C2|H |31 =
1−

2+ H

3+

+
1−

2+ H

3+

,

c2|H |31 0 = 1

2
Atree

4,H (s12 + s23) ,

c2|H |31 2 = 0; (G.25e)

CH |2|31 =
1−

H 2+

3+

+
1−

H 2+

3+

,

cH |2|31; 0 = 1

2
Atree

4,H (s12 + s23) ,

cH |2|31; 2 = 0; (G.25f)

C1|2H |3 =
3+

1−
2+
H

+
3+

1−
2+
H

,

c1|2H |3; 0 = 0,

c1|2H |3; 0 = 0; (G.25g)

C1H |2|3 =
2+

3+
1−
H

+
2+

3+
1−
H

,

c1H |2|3; 0 = 0,

c1H |2|3; 2 = −2Atree
4,H

s12s13

s2
23

; (G.25h)

C23|H1 =
2+ 3+

1− H

+
2+ 3+

1− H

,

c23|H1; 0 = 0,

c23|H1; 2 = 4Atree
4,H

s12s13

s3
23

; (G.25i)

CH2|31 =
3+ 1−

2+ H

+
3+ 1−

2+ H

,

cH2|31; 0 = 0,

cH2|31; 2 = 0. (G.25j)
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