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Abstract We analyze the effect of a gravitational field on
the sound modes of superfluids. We derive an instability con-
dition that generalizes the well-known Jeans instability of the
sound mode in normal fluids. We discuss potential experi-
mental implications.

1 Introduction

The Jeans instability of the sound mode in normal fluids
that is caused by a gravitational field is a well-known phe-
nomenon [1]. It exhibits itself in astrophysical scenarios of
aggregation of masses and galaxy formation. The Jeans dis-
persion relation of a normal fluid sound mode is obtained by
linearizing the fluid equations in the presence of a gravita-
tional field. It modifies the sound mode dispersion relation
w? = u%l_é2 to

o> = ulk> — 47 Gp. )

o is the frequency, k is the momentum vector, u is the speed
of sound in a normal fluid u% = g—z evaluated at fixed entropy,
p is the pressure, p the local mass density and G is the grav-
itational coupling. Instability occurs when the RHS of (1) is

negative,

el fp . )
U

It determines a Jeans length scale X, all scales larger than

that being unstable to a gravitational collapse.

In this letter we will analyze the effect of a gravitational
field on the sound modes in superfluids. Superfluids are quan-
tum fluids, i.e. fluids at temperatures close to zero where
quantum effects are of primary importance [2]. They exhibit
remarkable properties, such as the ability to flow without vis-
cosity in narrow capillaries. Superfluidity/superconductivity
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is also expected to be realized in neutron stars (see e.g. [3]),
as well as in high density phases of QCD [4].

The hydrodynamic description of superfluids consists of
two separate motions, a normal flow and a super flow with
densities p, and ps, respectively, pp+ps = p [5,6]. The super
flow moves without viscosity, the normal flow is viscous, and
the two flows do not exchange momentum between them. We
denote by v, and 9 the velocities of the normal and super
flows, respectively. The superfluid velocity v corresponds
to the gradient of the condensate phase that breaks sponta-
neously the global/local symmetry, which results in super-
fluidity/superconductivity, respectively. Thus, the superfluid
motion is irrotational

V x s = 0. 3)

There are two sound modes in superfluids: the first sound
u1 which is a density wave as in normal fluids, and the sec-
ond sound u7, which is a temperature wave and is unique to
superfluids. Its dispersion relation reads

,OSS2
ds ’
Pn g

o =22, = )
where T is the temperature, s is the entropy density per parti-
cle, and the derivative is taken at fixed pressure. As expected,
the second sound vanishes in the limit p; — 0. In general
the waves can be a superposition of the two.

As we will show, in the absence of density fluctuations the
pure second sound (4) remains stable, while density fluctu-
ations imply a stability criterion for both sound modes and

their superpositions. It reads

- 4n G
P2 §)
ui + a=p42
ds 0p.
where J = Za{,i . This condition generalizes the ordinary

aT 3p
Jeans instability p(2) and reduces to it in the limit pg — O.
The RHS of (5) depends on the details of the system’s ther-

modynamic properties. An interesting limit to take is that of
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very low temperatures 7 — 0, where the super flow com-
ponent is dominant. In this limit one has u% = 3u% [6] and
J — 0 [7]. Thus, at very low temperature we have a larger
Jeans length than that of a normal fluid by a factor of %

The letter is organized as follows. We will introduce a
gravitational potential to the superfluid hydrodynamics equa-
tions and study fluctuations at the linear order. We will then
analyze the instability conditions and derive (5), which is our
main result. Finally, we will discuss potential experimental
implications.

2 Gravitational instability in superfluid hydrodynamics

We will consider the evolution equations of a superfluid in the
presence of a gravitational field. We denote the gravitational
potential by ¢. It satisfies Gauss’s law,

V2¢ = 4n Gp. (6)
2.1 Self-gravitating superfluid hydrodynamics

We will consider an ideal superfluid. The superfluid density
current reads

j = pnl-))n + /OSBS’ @)

and it satisfies a continuity equation, which is not affected by
the gravitational field

Fiv.i=o. 8
” J @®)
Similarly, the entropy conservation is not affected by the

gravitational field and reads

il >
5, (P3) + (p$)V - V0 = 0. ©)

Note that entropy is carried only by the normal flow and not
by the super flow.

The energy and momentum conservation equations, how-
ever, are modified in the presence of the gravitational field
and take the form

dji 0Tl ¢
9i Mk 99 _ 10
ot oxe | Pox (10)
IE - - - -
S HV-0+]-Ve=0. (11)

IT;4 is the momentum flux tensor and é is the energy flux as
calculated without a gravitational field in [6].

In order to derive the modified equations in the pres-
ence of the gravitational field, one uses thermodynamics and
the Galilean principle [6]. One denotes by K the reference
frame, where the super flow velocity is zero. The velocity of
the normal flow in this frame is v, — Vs. In this frame one has
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Eg=—p+Tps + up + ¢p + (B — B9 - Jo (12)

and

1 I
A+ 9) = ~sdT + dp - %(vn — B9d @, — T). (13)

Ey and fo are the energy and density current in the system
Ko, respectively. There are two effects of the gravitational
field. First, to replace the chemical potential 1 by u + ¢.
Second, to introduce a new term in the fluid flow: in addition
to the force term —%p, we have —p%q&.

Finally, the super flow being a potential flow satisfies

s = (1,
S5, TV GR+rte)=0. (14)

It is straightforward to see that the hydrodynamics equations
together with the thermodynamic relations constitute a com-
plete set that determines all the charge densities and veloci-
ties.

2.2 Self-gravitating superfluid sound

Linearizing the above ideal superfluid hydrodynamics equa-
tions in a presence of the gravitational field we get

a > o
3, (P3) + (pS)V -V =0

97 (15)
a—i +Vp+pVep=0
vy =~ >
— +Vu+Ve =0,
ot
from which we derive
82
a_tlzo = Vzp + pvz¢7
824 (16)
=B 4 Bvg,
8t pn ,On

Perturbing! around (16), using Gauss’s law for the gravita-
tional potential, and expressing all quantities in terms of the
pressure p and the temperature 7 we get

ap 9%8p  dp 98T 5 ap ap
L L =Vp+4nGp | —8p + —8T
ap 02 T aT a2 A AT T
ds 8%8p  ds 9%8T
ap 0t 9T 0t?
‘ ) B)
= B 22T £ anG s (—p(Sp + —'O(ST) . (17)
On pn \dp oT

' As in the ordinary Jeans instability analysis, we perturb around a
stable state and therefore ignore the zeroth order contribution of the
Laplacian of the gravitational potential V2¢.



Eur. Phys. J. C (2014) 74:3183

Page 3of 5 3183

This system of equations for a wave of the form exp(ilz .
X — iowt) reads

) - )
(_’O(a)2 + 47 Gp) — k2> Sp + a—i(wz +47Gp)sT =0
ds 5, dp
—w” + — 47 G—s Sp
ap ap Pn

9s 5 ps o7a 0P Ps

— o’ = B2+ L 4xGEs )T =0. (18
+<aT‘” o T O (1%

In the absence of a gravitational field (G — 0) the equations
reduce to the well-known superfluid sound modes [6].

In the general case, for a solution of these system of equa-
tions we require the determinant to vanish,

3 ps 5 05\ -
Ho' + (4nGHp — (L2 L DV 2) o2
dp Pn oT

> 0 0 >
+ (ﬁszkz —4nG s (—'0,0 n —p)) =0, (19
Pn oo \dp or
where H = ( ’;) is the Jacobian for changing variables

from (p, s) to (p, T'), and we assume that H > 0. Solving
for w* we get

0 as \ -
2Hw? = — dnGHp — _p&s2+_s k>
ap pn or

and the second sound solution
ap
s | 0p »- aT
s —'Oszk2 +

sk (4nGH+assk2)
pn \ Op (471GH,0— )

Hw® =

(23)
2.3 Comparison to the non-gravitational case
It is instructive to compare special solutions to the superfluid

sound equations in the presence of the gravitational interac-
tion (18) to the non-gravitating case.

2.3.1 The pure second sound limit

In the limit g—; = 0, the non-gravitational sound equations
(setting G = 0 in (18)) read

9 .
<—pa)2 — k2> 5p=0
ap

3 as\-\> 9
j:\/<4nGH,o+( Plsga_ >k2> 4420 s
op Pn oT 8Tp

3 9 (24)
—sa)z op + —Sw2 — &szl_c}2 6T = 0.
ap oT Pn
as -
sk2 (47TGH + —skz). (20)
ap

In the absence of a gravitational field, we have the plus and
minus sign solutions reducing to first and second sound,
respectively.

Consider the leading effect of the super flow in the dimen-
sionless parameter % < 1. At first order we get

3s - ds -
2Ho? = — (4nGHp — 2282 + (4nGHp — 2252
oT T

8,0 72 as 12
8 N 8 N 3TSk (47TGH + afsk )
+ 2 ('Oszkz + P2y P

P\ 9P op (4nGHp — 3302)
2D
Therefore, we have the first sound solution
Ho? = (471GH,0 — a—kz)
s g—"T)slz2 (471GH +3 o5 skz) )

Pn (471GH - a’—;kz)

One has a solution where §p = 0, 67T arbitrary, and the
dispersion relation (4) of the pure second sound describing
the temperature wave. There is another solution, where the
dispersion relation is that of a first sound mode, and the pres-
sure and temperature variations are related by

<a—s>5p (ps 200 aS)ST. (25)
ap

pn dp 0T
When we introduce gravity, still having g—"T) =0, we get
3 -
(i’(w2 1 47Gp) — k2> 5p=0
(26)

9 9 9 B,
( S 4nG—)5 +( 2 W2 &s2k2)sr=o.
ap ap p oT” Pn

We see that the pure second sound solution (4) is not affected
by gravity. This is expected since the pure second sound is
characterized by no variation of the density, thus gravity does
not affect it.

However, the first sound solution is changed. The disper-
sion relation is the same as the Jeans dispersion relation (1),
but the pressure and temperature variations are related by a
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different formula,

a a
( sa)2 + @ ~471G&s) Sp

5 ap Pn
3 9 3

= ((-’Oﬁsz _ —S> w4 P ~4nG&ps2> ST. (27)
ap Pn or ap Pn

Comparing (25) and (27), we see a frequency dependence
of the linear relation between pressure and temperature (27),
which vanishes as p; — 0.

2.3.2 The pure first sound limit

Consider next the classical pure first sound limit, g—; = 0.The
non-gravitational sound equations in this case are (setting
G =0and g_;, = 01in (18)):

p 5 I 5
—ow"—k")$ — 8T =0
(550 %)+ (570

0 o
—sa)2 — &szkz 8T = 0.
or Pn

(28)

We have a solution where §7 = 0, dp arbitrary, and the
dispersion relation of the pure first sound. There is another
solution, where the dispersion relation is (4), and the pressure
and temperature variations are related by

d 1 B d
OS5 Pn 2 _ 0P Sp = 9P\ st (29)
T ps s dp oT

When we introduce gravity, still with g—; =0, we get

3 . 3

O (@* + 4rGp) — k2 ) op + £ <w2 n 471Gp) 5T =0

ap aT

3 9 .

(—'0 -4716&5) Sp + (—Sa)z - &szkz

3]) Pn oT Pn
9

+ 22 -4nG&s>8T —0. (30)
or Pn

We see that the pure first sound solution is not pure anymore.
This is in contrast to the pure second sound solution, which
was not modified by gravity.

2.4 General instability conditions

In the following we will analyze the instability conditions
arising from the roots (20).

2.4.1 Identical roots

Consider the case where the two solutions (20) are identical.
In this case we have the same dispersion relation for the first
and second sound and we obtain the instability condition

P2 4nGHp

ﬁ. 3D
S M
(L2s2+4)
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Dividing by H, we can recast (31) as (5). The constraint (5)
is a generalization of (2) to superflows, and it is valid for both
the first and the second sounds. It reduces to (2) in the limit
ps — 0.Inlimit 7 — 0, u% = 3u% [6], and one can see from
the data presented in [7] that / — 0. Thus we see that the
Jeans length of the superfluid is larger by a factor of \% than
that of a normal fluid.

2.4.2 Different roots

The conditions for instability of the two sound modes are the
upper bound on the momentum (5) as well as a lower bound

- a dp 1
k* > 4nGp @ + @» , (32)
ap T ps

which together imply a constraint on the system independent
of the gravitational field,

0 dap 1 B 0

S (L R (33)
ap 9T ps) \3p pn oT

2.5 Discussion

As the ordinary Jeans instability has been observed exper-
imentally, it is natural to inquire how can we observe the
generalized instability conditions for superfluids. It is prob-
ably unlikely that current condensed matter experiments can
detect the gravitational instability of superfluids. A potential
experimental laboratory could be neutron stars. Superfluidity
is expected to occur both in the inner crust and the core of
neutron stars as a consequence of the formation of Cooper
pairs of neutrons that break spontaneously the U (1) Baryon
symmetry [3]. Superfluidity has been invoked in order to
explain, for instance, pulsar glitches [8]. Therefore the grav-
itational instability seems relevant to the dynamics of neu-
tron stars, such as its rotational and vibrational oscillations.
The fluid velocities in neutron stars can be small compared
to the speed of light. For instance, the velocity at the equa-
tor of the most rapidly spinning neutron stars is about 20 %
of the speed of light, making the non-relativistic two fluid
model of superfluid hydrodynamics a useful description (see
e.g. [9]). It would, therefore, be interesting to work out the
details of the gravitational instability effects in this frame-
work. It would also be of interest to generalize our work to
relativistic superfluid flows.
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