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Abstract The planar quantum dynamics of a neutral parti-
cle with a magnetic dipole moment in the presence of electric
and magnetic fields is considered. The criteria to establish
the planar dynamics reveal that the resulting nonrelativis-
tic Hamiltonian has a simplified expression without making
approximations, and some terms have crucial importance for
the system dynamics.

1 Introduction

The Aharonov–Bohm effect [1] has been an usual frame-
work for demonstrating the importance of potentials in quan-
tum mechanics. After its experimental verification [2,3] sev-
eral other analog effects were being proposed along the last
decades. For example, in Ref. [4], it was shown that a particle
with a magnetic moment moving in an electric field acquires
a quantum phase. This phase has been observed in a neutron
interferometer [5] and in a neutral atomic Ramsey interfer-
ometer [6]. In Refs. [7,8] it was verified that a neutral particle
with an electric dipole moment which moves in a magnetic
field acquires a topological phase. The experimental confir-
mation of this phase was established in Ref. [9]. In Ref. [10]
was proposed a unified and fully relativistic treatment of the
interaction of the electric and magnetic dipole moments of a
particle with the electromagnetic field. This study in essence
reveals that a new force on dipoles is obtained using the
non-Abelian nature of this interaction, and new experiments
analogous to the Aharonov–Bohm effect to test this inter-
action are proposed. Since this interaction is a consequence
of a nonminimal coupling, it is also interesting to analyze
the consequences of this interaction in other contexts. For
instance, it may be of interest to study scattering and bound
states of neutral fermions in external electromagnetic fields
and access other physical quantities such as energy bound
states [11,12] and scattering [13,14]. The dual results of the
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magnetic dipole interaction for the electric dipole interaction
for the system considered in Ref. [10] has been established
in Ref. [15], where the phase shift in the interference of a
magnetic or electric dipole due to the electromagnetic field
is obtained relativistically and nonrelativistically.

In this work, we consider the same system as addressed
in Ref. [15] but now assuming that the dynamics is purely
planar, and we derive its equation of motion. This system is
a generalization, for example, of that studied in Ref. [12],
where only the effects of an electric field has been consid-
ered. An interesting feature of this system is that even in the
absence of an electric field it admits bound and scattering
states, which does not occur in the previous work. As an
application, we consider the problem of a bound state for the
case of a magnetic dipole moment interacting with electric
and magnetic fields generated by an infinitely long charged
solenoid, carrying a magnetic field. In our treatment, we con-
sider the self-adjoint extension method [16], which is appro-
priate for addressing any system endowed with a singular
Hamiltonian (due to localized field sources or quantum con-
finement) [17–26]. We determine the energy spectrum and
wave functions by applying boundary conditions allowed by
the system.

2 The planar Pauli equation

We begin with the Dirac equation in (3+1) dimensions [15],
which governs the nonrelativistic dynamics of a neutral parti-
cle that possesses a magnetic dipole moment, in the presence
of electric and magnetic fields (h̄ = c = 1)

[
iγ μ∂μ − M + μ

2
σμνFμν

]
� = 0, (1)

where μ is the magnetic dipole moment, Fμν is the
electromagnetic tensor whose components are given by(
F0i , Fi j

) = (−Ei ,−εi jk Bk
)
, and

(
σ 0 j , σ i j

) = (
iα j ,
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−εi jk

k
)
, where 
k is the spin operator, are the compo-

nents of the operator σμν = i[γ μ, γ ν]/2, which are given in
terms of the Dirac matrices. With this notation, it is possible
to show that the spin is coupled to the electromagnetic field
tensor through the term

1

2
σμνFμν = −


 · B + iααα · E, (2)

where E and B are the electric and magnetic field strengths.
This result is explicitly calculated in the following represen-
tation of the γ -matrices:

γ 0 =
(

1 0
0 −1

)
, γγγ =

(
0 σσσ

−σσσ 0

)
,

ααα = γ 0γγγ =
(

0 σσσ

σσσ 0

)
, 


 =

(
σσσ 0
0 σσσ

)
.

with σσσ = (σ1, σ1, σ3) being the Pauli matrices. Equation (1)
can be written as

ĤD� = E�, (3)

where the operator

ĤD = βM + ααα · p + μ(−β


 · B + iγγγ · E) (4)

is the Dirac Hamiltonian. The nonrelativistic limit of Eq. (3)
was established in Ref. [15], and the relevant equation is
found to be

Ĥψ = Eψ, (5)

where ψ is a two-component spinor, with

Ĥ = 1

2M

[
p − (μμμ× E)

]2 − 1

2M
μ2 E2

+ 1

2M
μ (∇∇∇ · E)− (μμμ · B) , (6)

whereμμμ = μσσσ . Our goal is to analyze the physical implica-
tions of the Hamiltonian (6), when we assume that the system
dynamics is now planar. This is established as follows. By
detaching the third component of Eq. (6), we get

Ĥ = 1

2M

2∑
i=1

[
pi − (μμμ× E)i

]2 − 1

2M
μ2 E2

+ 1

2M

[
p3 − (μμμ× E)3

]2

+ 1

2M

2∑
i=1

μ (∇∇∇ · E)i + 1

2M
μ (∇∇∇ · E)3

−
2∑

i=1

(μμμ · B)i − (μμμ · B)3 , (i = 1, 2). (7)

If we assume that the dynamics is planar, the above
Hamiltonian provides us with an important result, namely,
the

[
p3 − (μμμ× E)3

]2 term leads exactly to the quantity
μ2 E2/2M . The planar case is accessed by requiring that
pz = z = 0 together with the imposition of the fields should
not have a third direction. This question can also be under-
stood when we look at the symmetry under z translations,
which allows us to access the solutions of the planar Dirac
equation. This type of simplification is in fact manifest only
when we assume that the particle moves in a plane. Thus,
since Aμ = (
,A), we write the electric and magnetic fields,
respectively, as

E = −x̂∂x
(x, y)− ŷ∂y
(x, y), (8)

B = ẑ(∂x Ay − ∂y Ax ). (9)

The fields E and B above are now intrinsically two-
dimensional. Note that the square of Eq. (8) gives exactly
E2

1 + E2
2 for the planar case. Also, the restriction imposed

on the potential A reveals that the (μμμ · B)i term in Eq. (7)
is now identically zero. Now, we can show that the quantity
(μμμ× E)3 is given by μ (σ1 E2 − σ2 E1), and the third term
of Eq. (7) results in

[
p3 − (μμμ× E)3

]2 → μ2 (σ1 E2 − σ2 E1)
2 = μ2 E2. (10)

Thus, we now can write Eq. (7) as

Ĥ = 1

2M

2∑
i=1

{[
pi − (μμμ× E)i

]2 + μ (∇∇∇ · E)i
}
−(μμμ · B)3 ,

(11)

where the magnetic interaction term (μμμ · B)3 gives the only
explicit dependence of the spin. In Ref. [15] it was assumed
that the charge density ρ = ∇∇∇·E and also theμ2 E2/2M term
(for thermal neutrons) are negligible. In fact, this approxima-
tion can only be performed, if we are only interested in a study
of the phase shift. However, if we want to study the dynamics
of the system, such as the scattering and bound states prob-
lems, all terms of the equation of motion must be taken into
account. This, for example, has been addressed by Hagen
[27] to show that there is an exact equivalence between the
AB and AC effects for spin-1/2 particles. In these effects,
∇∇∇ · E and ∇∇∇ × A being proportional to a delta function, such
terms must now contribute to the dynamics of the system,
and they cannot be neglected. For this reason, since we are
dealing with a Aharonov–Bohm-like system for spin-1/2 par-
ticles, the μ (∇∇∇ · E)i and (μμμ · B)3 terms in Eq. (11), may not
be negligible.

Let us clarify this issue. Consider an infinitely long
solenoid, carrying a magnetic field B, and with a charge den-
sityλdistributed uniformly along the z-axis. The electric field
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and magnetic flux tube (in cylindrical coordinates) generated
by this configuration are known to be

E = 2λ
r̂
r
, ∇∇∇ · E = 2λ

δ(r)

r
, (12)

B = ∇∇∇ × A = φ
δ(r)

r
ẑ, (13)

where φ is the magnetic flux inside the tube, and the vector
potential in the Coulomb gauge is

A = φ

r
ϕ̂̂ϕ̂ϕ. (14)

We see that the fields E and B are proportional to a δ function.
By using Eqs. (12) and (13), the Pauli equation (5) is now
written as

Ĥψ = Eψ, (15)

with

Ĥ = 1

2M

2∑
i=1

(
pi − φEσz

ϕ̂̂ϕ̂ϕ

r

)2

+ (φE − φBσz)
δ(r)

r
,

(16)

where φE = 2μλ and φB = 2Mμφ. From Eq. (15), we can
see that ψ is an eigenfunction of σz , whose eigenvalues are
designated by s = ±1, that is, σzψ = ±ψ = sψ . Thus, since
Ĥ commutes with the operators Ĵz = −i∂ϕ + σz/2, where
Ĵz is the total angular momentum operator in the z-direction,
we seek solutions of the form

ψ(r, ϕ) =
[

fm(r) eimϕ

gm(r) ei(m+1)ϕ

]
, (17)

with m + 1/2 = ±1/2,±3/2, . . . , (m ∈ Z). Inserting (17)
into Eq. (15), we can extract the radial equation for fm(r),

H fm(r) = k2 fm(r), (18)

where

H = H0 + (φE − sφB)
δ(r)

r
(19)

and

H0 = − d2

dr2 − 1

r

d

dr
+ (m − sφE )

2

r2 . (20)

Note that, even in the absence of an electric field, bound
and scattering states are possible. This does not occur, for
example, in the system studied in Ref. [12], where the particle
interacts only with an electric field. Moreover, if a magnetic
field is present, the physical system changes completely. We
will see later that this fact directly influences the expression

for the self-adjoint extension parameter and, hence, on the
boundary conditions allowed by the operator H0. In other
words, this has direct implications on the dynamics of the
system. This can be seen more easily by studying the signal
ofφE −sφB in Eq. (19), where several possible combinations
of φE , φB and s give us the possibilities for the existence of
bound and scattering states. As a result of these combinations,
we have

φE − sφB < 0, scattering and bound states, (21)

φE − sφB > 0, scattering states. (22)

The case φE = sφB is not of interest here because it cancels
the term that explicitly depends on the spin.

3 Physical regularization and the bound states problem

In this section, we study the dynamics of the system in the
whole space, including the r = 0 region. We consider the
problem of bound states. To this end, we use the self-adjoint
extension method in the treatment. As is well known, if
the Hamiltonian has a singularity point, as is the case of
the Hamiltonian in Eq. (19), we must verify that it is self-
adjoint in the region of interest. Even though H†

0 = H0, their
domains could be different. This is the crucial point in our
study. The operator H0, with domain D(H0), is self-adjoint
if D(H†

0 ) = D(H0) and H†
0 = H0. However, for this to be

established, we must find the deficiency subspaces,

N+ =
{
ψ ∈ D(H†

0 ), H†
0ψ = z+ψ, Im z+ > 0

}
, (23)

N− =
{
ψ ∈ D(H†

0 ), H†
0ψ = z−ψ, Im z− < 0

}
, (24)

with dimensions n+ and n−, respectively, called deficiency
indices of H0 [16]. We also know of this theory that a nec-
essary and sufficient condition for H0 being essentially self-
adjoint is that its deficiency indices n+ = n− = 0. On the
other hand, if n+ = n− ≥ 1 the operator H0 has an infinite
number of self-adjoint extensions parametrized by the uni-
tary operators U : N+ → N−. With these ideas in mind,
we now decompose the Hilbert space H = L2(R2) with
respect to the angular momentum H = Hr ⊗ Hϕ , where
Hr = L2(R+, rdr) and Hϕ = L2(S1, dϕ), with S1 denot-
ing the unit sphere in R

2. The operator −∂2
ϕ is known to be

essentially self-adjoint in L2(S1, dϕ). By using the unitary
operator [18]

V : L2(R+, rdr) → L2(R+, dr), (25)

given by

(V Q)(r) = r1/2 Q(r), (26)
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the operator H0 reads

H
′
0 =V H0V −1 =− 1

2M

{
d2

dr2 + 1

r2

[
(m − sφE )

2 − 1

4

]}
,

(27)

which is essentially self-adjoint for (m − sφE ) ≥ 1, while
for (m − sφE ) < 1, it admits a one-parameter family of
self-adjoint extensions [16]. To characterize this family, we
follow the recipe based on the boundary conditions given in
Ref. [28]. Basically, the boundary condition is a match of the
logarithmic derivatives of the zero-energy solutions for Eq.
(18) and the solutions for the problem H0 plus the self-adjoint
extension. Then, following [28], we temporarily forget the δ-
function potential and find the boundary conditions allowed
for H0. Next, we substitute the problem in Eq. (18) by

H0 fζ (r) = k2 fζ (r), (28)

plus self-adjoint extensions. Here, fζ is labeled by the param-
eter ζ of the self-adjoint extension, which is related to the
behavior of the wave function at the origin. In order for the
H0 to be a self-adjoint operator in Hr , its domain of defini-
tion has to be extended by the deficiency subspace, which is
spanned by the solutions of the eigenvalue equation

H†
0 f± (r) = ±ik2

0 f± (r), (29)

where k2
0 ∈ R is introduced for dimensional reasons. Since

H†
0 = H0, the only square integrable functions which are

solutions of Eq. (29) are the modified Bessel functions of the
second kind,

f± (r) = Km−sφE (
√∓ik0r), (30)

with Im
√±i > 0. By studying Eq. (30), we verify that it is

square integrable only in the range m − sφE ∈ (−1, 1).
In this interval, nevertheless, the Hamiltonian (20) is not
self-adjoint. The dimension of such deficiency subspace is
(n+, n−) = (1, 1). So, we have two situations for m − sφE ,
i.e.,

−1 < m − sφE < 0,

0 < m − sφE < 1. (31)

To address both cases of Eq. (31), we write Eq. (30) as

f± (r) = K|m−sφE |(
√∓ik0r). (32)

Equation (32) allows us to identify the domain of H†
0 as

D(H†
0 ) = D(H0)⊕ N+ ⊕ N−. (33)

So, to extend the domain D(H0) and make it equal to D(H†
0 )

and therefore to turn H0 self-adjoint, we get

D(H0,ς ) = D(H†
0 ) = D(H0)⊕ N+ ⊕ N−. (34)

Equation (34) establishes the following result. For each value
of ζ , we have a possible domain for D(H0,ζ ), but the phys-
ical parameters are entailed of the problem that will select a
particular value of it. The Hilbert space is now specified by
[16]

fζ (r) = fm(r)+ C
[

K|m−sφE |(
√−ik0r)

+eiζ K|m−sφE |(
√

ik0r)
]
, (35)

where fm(r), with fm(0) = ḟm(0) = 0 ( ḟ ≡ d f/dr ) is
the regular wave function and the parameter ζ ∈ [0, 2π)
represents a choice for the boundary condition. For each ζ ,
we have a possible domain for H0 and the physical situation
is the factor that will determine the value of ζ [20,29–34].
Thus, to find a fitting for ζ compatible with the physical
situation, a physically motivated form for the magnetic field
is preferable for the regularization of the δ-function. This is
accomplished by replacing (14) with [35]

eA =
{
φ

r
ϕ̂̂ϕ̂ϕ, r > a

0, r < a.
(36)

With this modification, the delta function in Eq. (19) is
now regularized as δ(r − a)/a. A remarkable feature of this
regularization is that, although the functional structure of
δ(r)/r and δ(r − a)/a are quite different, we are free to
use any form of potential once the specific details of the
regularization model can be shown to be irrelevant provided
that only the contribution is independent of angle and has no
δ-function contribution at the origin [35]. It should also be
mentioned that the δ(r − a)/a potential is one-dimensional
and well defined, contrary to the two-dimensional δ(r)/r .

Now, we are in a position to determine a fitting value
for ζ . To do so, we consider the zero-energy solutions for
f0 (r) with the regularization, and for fζ,0 (r) without the δ
function, respectively, i.e.,
{

−1

r

d

dr

(
r

d

dr

)
+ (m − sφE )

2

r2

+ (φE − sφB)
δ(r − a)

a

}
f0 (r) = 0, (37)

{
−1

r

d

dr

(
r

d

dr

)
+ (m − sφE )

2

r2

}
fζ,0 (r) = 0. (38)
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The value of ζ is determined by the boundary condition

lim
a→0+ a

ḟ0 (r)

f0 (r)

∣∣∣
r=a

= lim
a→0+ a

ḟζ,0 (r)

fζ,0 (r)

∣∣∣
r=a

. (39)

By integrating Eq. (37) from 0 to a and noting that the behav-
ior of f0 as a → 0 is f0 ∼ r |m−sφE |, the left-hand side of
Eq. (39) is found to be

lim
a→0+ a

ḟ0 (r)

f0 (r)

∣∣∣
r=a

= φE − sφB . (40)

To calculate the right-hand side of Eq. (39), we need to use
the asymptotic behavior for Kν(z) in the limit z → 0, given
by

Kν(z) ∼ π

2 sin(πν)

[
z−ν

2−ν�(1 − ν)
− zν

2ν�(1 + ν)

]
. (41)

The substitution of Eq. (41) into Eq. (35) leads to

lim
a→0+ a

ḟζ,0 (r)

fζ,0 (r)

∣∣∣
r=a

= lim
a→0+

Ẇζ (r)

Wζ (r)

∣∣∣
r=a

, (42)

with

Wζ (r) =
[(√−ik0r

)−|m−sφE |

2−|m−sφE |�(−)
−

(√−ik0r
)|m−sφE |

2|m−sφE |�(+)

]

+eiζ

[(√
ik0r

)−|m−sφE |

2−|m−sφE |�(−)

(√
ik0r

)|m−sφE |

2|m−sφE |�(+)

]
(43)

and �(±) = � (1 ± |m − sφE |) was defined for purposes of
simplification. Inserting (40) and (42) in (39), we obtain

lim
a→0+

Ẇζ (r)

Wζ (r)

∣∣∣
r=a

= φE − sφB, (44)

which gives us the parameter ζ in terms of the physics of
the problem, i.e., the correct behavior of the wave functions
when r → 0.

As promised above, let us now derive determine the bound
states for H0. In order for a system to have a bound state,
its energy must be negative, so that in Eq. (28), k is a pure
imaginary quantity, i.e., k = iκ , with κ = √−2M E , where
E < 0 is the bound state energy. Then, with the substitution
k → iκ , we have

{
1

r

d

dr

(
r

d

dr

)
−

[
(m − sφE )

2

r2 + κ2

]}
fζ (r) = 0, (45)

The above equation is the modified Bessel equation whose
general solution is given by

fζ (r) = K|m−sφE |
(

r
√−2M E

)
. (46)

Since these solutions belong to D(Hζ,0), it is of the form
(35) for some ζ selected from the physics of the problem.
So, we substitute (46) into (35) and use (41) to calculate the
left-hand side of Eq. (39). After these manipulations, we find
the relation

|m − sφE | [a2|m−sφE |�(−)(−M Eb)
|m−sφE | + 2|m−sφE |�(+)

]
a2|m−sφE |�(−)(−M Eb)

|m−sφE | − 2|m−sφE |�(+)
= φE − sφB . (47)

Solving the above equation for E , we find the energy spec-
trum

E = − 2

Ma2

×
[(
φE − sφB + |m − sφE |
φE − sφB − |m − sφE |

)
� (1 + |m − sφE |)
� (1 − |m − sφE |)

] 1|m−sφE |
. (48)

Notice that there is no arbitrary parameter in the above equa-
tion. Also, to ensure that the energy is a real quantity, we must
establish that
(
φE − sφB + |m − sφE |
φE − sφB − |m − sφE |

)
�(1 + |m − sφE |)
�(1 − |m − sφE |) > 0. (49)

This inequality is satisfied if

|φE − sφB | ≥ |m − sφE | . (50)

Because of the condition that |m − sφE | < 1, it is suffi-
cient to consider |φE − sφB | ≥ 1. A necessary condition
for a δ-function to generate an attractive potential, which is
able to support bound states, is that the coupling constant
(φE − sφB) must be negative. Thus, the existence of bound
states requires

φE − sφB ≤ −1. (51)

Thus, it seems that we must have

sφB > φE , (52)

in such way that the flux and the spin must be parallel, and
consequently, a minimum value for |φB | and |φE | is estab-
lished.

4 Conclusions

We have analyzed the planar quantum dynamics of a mag-
netic dipole moment in the presence of electric and magnetic
fields. We have shown that the initial Hamiltonian system
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(Eq. 6) reduces to a planar form (Eq. 11) without making
any approximations. As an application, we have considered
the bound state problem for the case of a magnetic dipole
moment interacting with electric and magnetic fields gen-
erated by an infinitely long solenoid, carrying a magnetic
field, and with a charge density distributed uniformly about
it along the z-axis. The self-adjoint extension approach was
used to determine the bound states of the particle in terms
of the physics of the problem, in a very consistent way and
without any arbitrary parameter.
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